Production & Supply Chain
Feasibility of Hydrogen Production from Steam Reforming of Biodiesel (FAME) Feedstock on Ni-supported Catalysts
Jan 2015
Publication
The catalytic steam reforming of biodiesel was examined over Ni-alumina and Ni–ceria–zirconia catalysts at atmospheric pressure. Effects of temperatures of biodiesel preheating/vaporising (190–365 ◦C) and reforming (600–800 ◦C) molar steam to carbon ratio (S/C = 2–3) and residence time in the reformer represented by the weight hourly space velocity ‘WHSV’ of around 3 were examined for 2 h. Ni supported on calcium aluminate and on ceria–zirconia supports achieved steady state hydrogen product stream within 90% of the equilibrium yields although 4% and 1% of the carbon feed had deposited on the catalysts respectively during the combined conditions of start-up and steady state. Addition of dopants to ceria–zirconia supported catalyst decreased the performance of the catalyst. Increase in S/C ratio had the expected positive effects of higher H2 yield and lower carbon deposition.
Water Electrolysis: From Textbook Knowledge to the Latest Scientific Strategies and Industrial Developments
May 2022
Publication
Replacing fossil fuels with energy sources and carriers that are sustainable environmentally benign and affordable is amongst the most pressing challenges for future socio-economic development. To that goal hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting if driven by green electricity would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first principles calculations and machine learning. In addition a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the ‘junctions’ between the field’s physical chemists materials scientists and engineers as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Life Cycle Assessment of Natural Gas-based Chemical Looping for Hydrogen Production
Dec 2014
Publication
Hydrogen production from natural gas combined with advanced CO2 capture technologies such as iron-based chemical looping (CL) is considered in the present work. The processes are compared to the conventional base case i.e. hydrogen production via natural gas steam reforming (SR) without CO2 capture. The processes are simulated using commercial software (ChemCAD) and evaluated from a technical point of view considering important key performance indicators such as hydrogen thermal output net electric power carbon capture rate and specific CO2 emissions. The environmental evaluation is performed using Life Cycle Analysis (LCA) with the following system boundaries considered: i) hydrogen production from natural gas coupled to CO2 capture technologies based on CL ii) upstream processes such as: extraction and processing of natural gas ilmenite and catalyst production and iii) downstream processes such as: H2 and CO2 compression transport and storage. The LCA assessment was carried out using the GaBi6 software. Different environmental impact categories following here the CML 2001 impact assessment method were calculated and used to determine the most suitable technology. Sensitivity analyses of the CO2 compression transport and storage stages were performed in order to examine their effect on the environmental impact categories.
Development Concept of Integrated Energy Network and Hydrogen Energy Industry Based on Hydrogen Production Using Surplus Hydropower
Apr 2020
Publication
The development of hydropower industry is progressing rapidly in China and the installed capacity and power generation are increasing year by year. However due to factors such as transmission channels and power grid peaking capacity hydropower consumption in some areas is facing greater pressure. As an excellent medium for energy interconnection hydrogen energy can play an important role in promoting hydropower consumption. This paper introduces the current status and trends of hydrogen energy development in major developed countries and China and analyzes the current status of China’s hydropower abandoned water. Based on the production of hydrogen using surplus hydropower in the Dadu River Basin in Sichuan an integrated energy network research plan including hydropower electrolytic hydrogen production storage and transportation hydrogen refueling and hydrogen-powered vehicles is proposed. At the same time the development concept of hydrogen energy industry including hydrogen energy source economy hydrogen energy industry ecosphere and hydrogen energy sky road in western Sichuan is also proposed.
Methane Pyrolysis for CO2-Free H2 Production: A Green Process to Overcome Renewable Energies Unsteadiness
Aug 2020
Publication
The Carbon2Chem project aims to convert exhaust gases from the steel industry into chemicals such as methanol to reduce CO2 emissions. Here H2 is required for the conversion of CO2 into methanol. Although much effort is put to produce H2 from renewables the use of fossil fuels especially natural gas seems to be fundamental in the short term. For this reason the development of clean technologies for the processing of natural gas with a low environmental impact has become a topic of utmost importance. In this context methane pyrolysis has received special attention to produce CO2-free H2.
Techno-Economic Evaluation of Deploying CCS in SMR Based Merchant H2 Production with NG as Feedstock and Fuel
Aug 2017
Publication
Hydrogen is a crucial raw materials to other industries. Globally nearly 90% of the hydrogen or HyCO gas produced is consumed by the ammonia methanol and oil refining industries. In the future hydrogen could play an important role in the decarbonisation of transport fuel (i.e. use of fuel cell vehicles) and space heating (i.e. industrial commercial building and residential heating). This paper summarizes the results of the feasibility study carried out by Amec Foster Wheeler for the IEA Greenhouse Gas R&D Programme (IEA GHG) with the purpose of evaluating the performance and costs of a modern steam methane reforming without and with CCS producing 100000 Nm3 /h H2 and operating as a merchant plant. This study focuses on the economic evaluation of five different alternatives to capture CO2 from SMR. This paper provides an up-to-date assessment of the performance and cost of producing hydrogen without and with CCS based on technologies that could be erected today. This study demonstrates that CO2 could be captured from an SMR plant with an overall capture rate ranging between 53 to 90%. The integration of CO2 capture plant could increase the NG consumption by -0.03 to 1.41 GJ per Nm3 /h of H2. The amount of electricity exported to the grid by the SMR plant is reduced. The levelised cost of H2 production could increase by 2.1 to 5.1 € cent per Nm3 H2 (depending on capture rate and technology selected). This translates to a CO2 avoidance cost of 47 to 70 €/t.
Wind Resource Assessment and Techno-economic Analysis of Wind Energy and Green Hydrogen Production in the Republic of Djibouti
Jul 2022
Publication
The ever increasing energy demand of the Republic of Djibouti leads to the diversification of energy sources. While a few studies have explored the prospects of green hydrogen production from wind energy in developing countries and particularly in Africa the economic risk analysis of wind power production for electricity generation and green hydrogen production has not been assessed for African countries. This study evaluates for the first time the potential of wind energy for electricity and green hydrogen production in the Republic of Djibouti. In this study wind speed characteristics were analyzed using wind data measured at five meteorological stations from 2015 to 2019. The technoeconomic analysis of five wind farms with a total capacity of 450 MW is performed. Levelized cost of energy production (LCOE) levelized cost of green hydrogen production (LCOH) sensitivity analysis Monte Carlo simulation and economic performance indicators are presented. Results reveal that the annual wind speed varies between 5.52 m/s and 9.01 m/s for the five sites. ERA5 wind reanalysis indicates that the seasonal variability of wind is stable between different years. The proposed wind farms estimate 1739 GWh per year of electrical energy with LCOE ranging from 6.94 to 13.30 US cents/kWh which is less than the locale electricity tariff. The production cost of green hydrogen was competitive with LCOH ranging from 1.79 to 3.38 US $/kg H2. The sensitivity analysis shows that the most relevant parameters in the economic analysis are the initial investment cost the interest rate and the factor capacity.
A Brief Review of Hydrogen Production Methods and Their Challenges
Jan 2023
Publication
Hydrogen is emerging as a new energy vector outside of its traditional role and gaining more recognition internationally as a viable fuel route. This review paper offers a crisp analysis of the most recent developments in hydrogen production techniques using conventional and renewable energy sources in addition to key challenges in the production of Hydrogen. Among the most potential renewable energy sources for hydrogen production are solar and wind. The production of H2 from renewable sources derived from agricultural or other waste streams increases the flexibility and improves the economics of distributed and semi-centralized reforming with little or no net greenhouse gas emissions. Water electrolysis equipment driven by off-grid solar or wind energy can also be employed in remote areas that are away from the grid. Each H2 manufacturing technique has technological challenges. These challenges include feedstock type conversion efficiency and the need for the safe integration of H2 production systems with H2 purification and storage technologies.
Operation of Power-to-X-Related Processes Based on Advanced Data-Driven Methods: A Comprehensive Review
Oct 2022
Publication
This study is a systematic analysis of selected research articles about power-to-X (P2X)- related processes. The relevance of this resides in the fact that most of the world’s energy is produced using fossil fuels which has led to a huge amount of greenhouse gas emissions that are the source of global warming. One of the most supported actions against such a phenomenon is to employ renewable energy resources some of which are intermittent such as solar and wind. This brings the need for large-scale longer-period energy storage solutions. In this sense the P2X process chain could play this role: renewable energy can be converted into storable hydrogen chemicals and fuels via electrolysis and subsequent synthesis with CO2. The main contribution of this study is to provide a systematic articulation of advanced data-driven methods and latest technologies such as the Internet of Things (IoT) big data analytics and machine learning for the efficient operation of P2X-related processes. We summarize our findings into different working architectures and illustrate them with a numerical result that employs a machine learning model using historic data to define operational parameters for a given P2X process.
A Review on Numerical Simulation of Hydrogen Production from Ammonia Decomposition
Jan 2023
Publication
Ammonia (NH3 ) is regarded as a promising medium of hydrogen storage due to its large hydrogen storage density decent performance on safety and moderate storage conditions. On the user side NH3 is generally required to decompose into hydrogen for utilization in fuel cells and therefore it is vital for the NH3 -based hydrogen storage technology development to study NH3 decomposition processes and improve the decomposition efficiency. Numerical simulation has become a powerful tool for analyzing the NH3 decomposition processes since it can provide a revealing insight into the heat and mass transfer phenomena and substantial guidance on further improving the decomposition efficiency. This paper reviews the numerical simulations of NH3 decomposition in various application scenarios including NH3 decomposition in microreactors coupled combustion chemical reactors solid oxide fuel cells and membrane reactors. The models of NH3 decomposition reactions in various scenarios and the heat and mass transport in the reactor are elaborated. The effects of reactor structure and operating conditions on the performance of NH3 decomposition reactor are analyzed. It can be found that NH3 decomposition in microchannel reactors is not limited by heat and mass transfer and NH3 conversion can be improved by using membrane reactors under the same conditions. Finally research prospects and opportunities are proposed in terms of model development and reactor performance improvement for NH3 decomposition.
Multilevel Governance, PV Solar Energy, and Entrepreneurship: The Generation of Green Hydrogen as a Fuel of Renewable Origin
Sep 2022
Publication
In Spain the institutional framework for photovoltaic energy production has experienced distinct stages. From 2007 to 2012 the feed-in-tariff system led to high annual growth rates of this renewable energy but after the suppression of the policy of public subsidies the sector stagnated. In recent years green hydrogen an innocuous gas in the atmosphere has become a driving force that stimulates photovoltaic energy production. Since 2020 encouraged by the European energy strategies and corresponding funds Spain has established a regulation to promote green hydrogen as a form of energy resource. Adopting the new institutional economics (NIE) approach this article investigates the process of changing incentives for the energy business sector and its impact on photovoltaic energy production. The results show an increase in the number of both projects approved or on approval and companies involved in green hydrogen that are planning to use photovoltaic energy in Spain thus engendering the creation of a new photovoltaic business environment based on innovation and sustainability.
Techno-economic Assessment of Offshore Wind-to-hydrogen Scenarios: A UK Case Study
Jan 2023
Publication
The installed capacity electricity generation from wind and the curtailment of wind power in the UK between 2011 and 2021 showed that penetration levels of wind energy and the amount of energy that is curtailed in future would continue to rise whereas the curtailed energy could be utilised to produce green hydrogen. In this study data were collected technologies were chosen systems were designed and simulation models were developed to determine technical requirements and levelised costs of hydrogen produced and transported through different pathways. The analysis of capital and operating costs of the main components used for onshore and offshore green hydrogen production using offshore wind including alternative strategies for hydrogen storage and transport and hydrogen carriers showed that a significant reduction in cost could be achieved by 2030 enabling the production of green hydrogen from offshore wind at a competitive cost compared to grey and blue hydrogen. Among all scenarios investigated in this study compressed hydrogen produced offshore is the most cost-effective scenario for projects starting in 2025 although the economic feasibility of this scenario is strongly affected by the storage period and the distance to the shore of the offshore wind farm. Alternative scenarios for hydrogen storage and transport such as liquefied hydrogen and methylcyclohexane could become more cost-effective for projects starting in 2050 when the levelised cost of hydrogen could reach values of about £2 per kilogram of hydrogen or lower.
Novel Carbon-neutral Hydrogen Production Process of Steam Methane Reforming Integrated with Desalination Wastewater-based CO2 Utilization
Nov 2022
Publication
Steam methane reforming (SMR) process is facing serious greenhouse effect problems because of the significant CO2 emissions. To reduce pollution caused by gaseous emissions desalination wastewater can be used because it contains highly concentrated useful mineral ions such as Ca2+ Mg2+ and Na+ which react with carbonate ions. This study proposes a novel SMR process for carbon-neutral hydrogen production integrated with desalination wastewater-based CO2 utilization. A process model for the design of a novel SMR process is proposed; it comprises the following steps: (1) SMR process for hydrogen production; and (2) desalination wastewater recovery for CO2 utilization. In the process model the CO2 from the SMR process was captured using the Na+ ion and the captured ionic CO2 was carbonated using the Ca2+ and Mg2+ ions in desalination wastewater. The levelized cost of hydrogen (LCOH) was assessed to demonstrate the economic feasibility of the proposed process. Therefore 94.5 % of the CO2 from the SMR process was captured and the conversion of MgCO3 and CaCO3 was determined to be 60 % and 99 % respectively. In addition the CO2 emission via the proposed process was determined to be 0.016 kgCO2/kgH2 and the LCOH was calculated to be 2.6 USD/kgH2.
Exergy and Exergoeconomic Analysis for the Proton Exchange Membrane Water Electrolysis under Various Operating Conditions and Design Parameters
Nov 2022
Publication
Integrating the exergy and economic analyses of water electrolyzers is the pivotal way to comprehend the interplay of system costs and improve system performance. For this a 3D numerical model based on COMSOL Multiphysics Software (version 5.6 COMSOL Stockholm Sweden) is integrated with the exergy and exergoeconomic analysis to evaluate the exergoeconomic performance of the proton exchange membrane water electrolysis (PEMWE) under different operating conditions (operating temperature cathode pressure current density) and design parameter (membrane thickness). Further the gas crossover phenomenon is investigated to estimate the impact of gas leakage on analysis reliability under various conditions and criteria. The results reveal that increasing the operating temperature or decreasing the membrane thickness improves both the efficiency and cost of hydrogen exergy while increasing the gas leakage through the membrane. Likewise raising the current density and the cathode pressure lowers the hydrogen exergy cost and improves the economic performance. The increase in exergy destroyed and hydrogen exergy cost as well as the decline in second law efficiency due to the gas crossover are more noticeable at higher pressures. As the cathode pressure rises from 1 to 30 bar at a current density of 10000 A/m2 the increase in exergy destroyed and hydrogen exergy cost as well as the decline in second law efficiency are increased by 37.6 kJ/mol 4.49 USD/GJ and 7.1% respectively. The cheapest green electricity source which is achieved using onshore wind energy and hydropower reduces hydrogen production costs and enhances economic efficiency. The growth in the hydrogen exergy cost is by about 4.23 USD/GJ for a 0.01 USD/kWh increase in electricity price at the current density of 20000 A/m2. All findings would be expected to be quite useful for researchers engaged in the design development and optimization of PEMWE.
Sustainable Ammonia Production Processes
Mar 2021
Publication
Due to the important role of ammonia as a fertilizer in the agricultural industry and its promising prospects as an energy carrier many studies have recently attempted to find the most environmentally benign energy efficient and economically viable production process for ammonia synthesis. The most commonly utilized ammonia production method is the Haber-Bosch process. The downside to this technology is the high greenhouse gas emissions surpassing 2.16 kgCO2-eq/kg NH3 and high amounts of energy usage of over 30 GJ/tonne NH3 mainly due to the strict operational conditions at high temperature and pressure. The most widely adopted technology for sustainable hydrogen production used for ammonia synthesis is water electrolysis coupled with renewable technologies such as wind and solar. In general a water electrolyzer requires a continuous supply of pretreated water with high purity levels for its operation. Moreover for production of 1 tonne of hydrogen 9 tonnes of water is required. Based on this data for the production of the same amount of ammonia through water electrolysis 233.6 million tonnes/yr of water is required. In this paper a critical review of different sustainable hydrogen production processes and emerging technologies for sustainable ammonia synthesis along with a comparative life cycle assessment of various ammonia production methods has been carried out. We find that through the review of each of the studied technologies either large amounts of GHG emissions are produced or high volumes of pretreated water is required or a combination of both these factors occur.
Dynamic Investigation and Optimization of a Solar‐Based Unit for Power and Green Hydrogen Production: A Case Study of the Greek Island, Kythnos
Nov 2022
Publication
The aim of the present work is the analysis of a solar‐driven unit that is located on the non‐interconnected island of Kythnos Greece that can produce electricity and green hydrogen. More specifically solar energy is exploited by parabolic trough collectors and the produced heat is stored in a thermal energy storage tank. Additionally an organic Rankine unit is incorporated to generate electricity which contributes to covering the island’s demand in a clean and renewable way. When the power cannot be absorbed by the local grid it can be provided to a water electrolyzer; therefore the excess electricity is stored in the form of hydrogen. The produced hydrogen amount is compressed afterward stored in tanks and then finally can be utilized as a fuel to meet other important needs such as powering vehicles or ferries. The installation is simulated parametrically and optimized on dynamic conditions in terms of energy exergy and finance. According to the results considering a base electrical load of 75 kW the annual energy and exergy efficiencies are found at 14.52% and 15.48% respectively while the payback period of the system is deter‐ mined at 6.73 years and the net present value is equal to EUR 1073384.
Feasibility Study of Vacuum Pressure Swing Adsorption for CO2 Capture From an SMR Hydrogen Plant: Comparison Between Synthesis Gas Capture and Tail Gas Capture
Dec 2021
Publication
In this paper a feasibility study was carried out to evaluate cyclic adsorption processes for capturing CO2 from either shifted synthesis gas or H2 PSA tail gas of an industrial-scale SMR-based hydrogen plant. It is expected that hydrogen is to be widely used in place of natural gas in various industrial sectors where electrification would be rather challenging. A SMR-based hydrogen plant is currently dominant in the market as it can produce hydrogen at scale in the most economical way. Its CO2 emission must be curtailed significantly by its integration with CCUS. Two Vacuum Pressure Swing Adsorption (VPSA) systems including a rinse step were designed to capture CO2 from an industrial-scale SMR-based hydrogen plant: one for the shifted synthesis gas and the other for the H2 PSA tail gas. Given the shapes of adsorption isotherms zeolite 13X and activated carbon were selected for tail gas and syngas capture options respectively. A simple Equilibrium Theory model developed for the limiting case of complete regeneration was taken to analyse the VPSA systems in this feasibility study. The process performances were compared to each other with respect to product recovery bed productivity and power consumption. It was found that CO2 could be captured more cost-effectively from the syngas than the tail gas unless the desorption pressure was too low. The energy consumption of the VPSA was comparable to those of the conventional MDEA processes.
Hydrogen Production from the Air
Sep 2022
Publication
Green hydrogen produced by water splitting using renewable energy is the most promising energy carrier of the low-carbon economy. However the geographic mismatch between renewables distribution and freshwater availability poses a significant challenge to its production. Here we demonstrate a method of direct hydrogen production from the air namely in situ capture of freshwater from the atmosphere using hygroscopic electrolyte and electrolysis powered by solar or wind with a current density up to 574 mA cm−2 . A prototype of such has been established and operated for 12 consecutive days with a stable performance at a Faradaic efficiency around 95%. This so-called direct air electrolysis (DAE) module can work under a bone-dry environment with a relative humidity of 4% overcoming water supply issues and producing green hydrogen sustainably with minimal impact to the environment. The DAE modules can be easily scaled to provide hydrogen to remote (semi-) arid and scattered areas.
A Low-temperature Ammonia Electrolyser for Wastewater Treatment and Hydrogen Production
May 2023
Publication
Ammonia is a pollutant present in wastewater and is also a valuable carbon-free hydrogen carrier. Stripping recovery and anodic oxidation of ammonia to produce hydrogen via electrolysis is gaining momentum as a technology yet the development of an inexpensive stable catalytic material is imperative to reduce cost. Here we report on a new nickel copper (NiCu) catalyst electrodeposited onto a high surface area nickel felt (NF) as an anode for ammonia electrolysis. Cyclic voltammetry demonstrated that the catalyst/substrate combination reached the highest current density (200 mA cm2 at 20 C) achieved for a non-noble metal catalyst. A NiCu/NF electrode was tested in an anion exchange membrane electrolyser for 50 h; it showed good stability and high Faradaic efficiency for ammonia oxidation (88%) and hydrogen production (99%). We demonstrate that this novel electrode catalyst/substrate material combination can oxidise ammonia in a scaled system and hydrogen can be produced as a valuable by-product at industrial-level current densities and cell voltages lower than that for water electrolysis.
Prospect of Green Hydrogen Generation from Hybrid Renewable Energy Sources: A Review
Feb 2023
Publication
Hydrogen is one of the prospective clean energies that could potentially address two pressing areas of global concern namely energy crises and environmental issues. Nowadays fossil‐ based technologies are widely used to produce hydrogen and release higher greenhouse gas emis‐ sions during the process. Decarbonizing the planet has been one of the major goals in the recent decades. To achieve this goal it is necessary to find clean sustainable and reliable hydrogen pro‐ duction technologies with low costs and zero emissions. Therefore this study aims to analyse the hydrogen generation from solar and wind energy sources and observe broad prospects with hybrid renewable energy sources in producing green hydrogen. The study mainly focuses on the critical assessment of solar wind and hybrid‐powered electrolysis technologies in producing hydrogen. Furthermore the key challenges and opportunities associated with commercial‐scale deployment are addressed. Finally the potential applications and their scopes are discussed to analyse the important barriers to the overall commercial development of solar‐wind‐based hydrogen production systems. The study found that the production of hydrogen appears to be the best candidate to be employed for multiple purposes blending the roles of fuel energy carrier and energy storage modality. Further studies are recommended to find technical and sustainable solutions to overcome the current issues that are identified in this study.
No more items...