Projects & Initiatives
Hy4Heat Understanding Commercial Appliances - Work Package 5
Nov 2020
Publication
The 'Hydrogen for Heat' (Hy4Heat) programme aims to support the UK Government in its ambitions to decarbonise the UK energy sector in line with the targets of the Climate Change Act 2008 by attempting to evaluate and de-risk the natural gas to hydrogen network conversion option. The impact on the commercial sector is an important factor in understanding the feasibility of utilising hydrogen to decarbonise heat in the UK. The overall objective of the market research study Work Package 5 (WP5) was to determine if it is theoretically possible to successfully convert the commercial sector to hydrogen. This work will contribute to the understanding of the scale type and capacity of gas heating appliances within the sector providing a characterisation of the market and determining the requirements and feasibility for successfully transitioning them to hydrogen in the future.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
Hy4Heat Conversion of Industrial Heating Equipment to Hydrogen - Work Package 6
Jan 2020
Publication
The study focuses on converting current industrial natural gas heating technologies to use 100% hydrogen considering the evidence which must be available before a decision on the UK’s decarbonisation pathway for heating could be made. The aim of the study is to assess the technical requirements and challenges associated with industrial hydrogen conversion and estimate the associated costs and timeframes.
This report and any attachment is freely available on the Hy4Heat website here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report and any attachment is freely available on the Hy4Heat website here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Hy4Heat Hydrogen Odorant - Work Package 2
Nov 2020
Publication
This work programme was focused on identifying a suitable odorant for use in a 100% hydrogen gas grid (domestic use such as boilers and cookers). The research involved a review of existing odorants (used primarily for natural gas) and the selection of five suitable odorants based on available literature. One odorant was selected based on possible suitability with a Polymer Electrolyte Membrane (PEM) based fuel cell vehicle which could in future be a possible end-user of grid hydrogen. NPL prepared Primary Reference Materials containing the five odorants in hydrogen at the relevant amount fraction levels (as would be found in the grid) including ones provided by Robinson Brothers (the supplier of odorants for natural gas in the UK). These mixtures were used by NPL to perform tests to understand the effects of the mixtures on pipeline (metal and plastic) appliances (a hydrogen boiler provided by Worcester Bosch) and PEM fuel cells. HSE investigated the health and environmental impact of these odorants in hydrogen. Olfactory testing was performed by Air Spectrum to characterise the ‘smell’ of each odorant. Finally an economic analysis was performed by E4tech. The results confirm that Odorant NB would be a suitable odorant for use in a 100% hydrogen gas grid for combustion applications but further research would be required if the intention is to supply grid hydrogen to stationery fuel cells or fuel cell vehicles. In this case further testing would need to be performed to measure the extent of fuel cell degradation caused by the non-sulphur odorant obtained as part of this work programme and also other UK projects such as the Hydrogen Grid to Vehicle (HG2V) project[1] would provide important information about whether a purification step would be required regardless of the odorant before the hydrogen purity would be suitable for a PEM fuel cell vehicle. If purification was required it would be fine to use Odorant NB as this would be removed during the purification step.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
HyDeploy Gas Safe Webinar
Nov 2020
Publication
HyDeploy is a pioneering hydrogen energy project designed to help reduce UK CO2 emissions and reach the Government’s net zero target for 2050.
As the first ever live demonstration of hydrogen in homes HyDeploy aims to prove that blending up to 20% volume of hydrogen with natural gas is a safe and greener alternative to the gas we use now. It is providing evidence on how customers don’t have to change their cooking or heating appliances to take the blend which means less disruption and cost for them.
As the first ever live demonstration of hydrogen in homes HyDeploy aims to prove that blending up to 20% volume of hydrogen with natural gas is a safe and greener alternative to the gas we use now. It is providing evidence on how customers don’t have to change their cooking or heating appliances to take the blend which means less disruption and cost for them.
Heat Networks 2020
Dec 2020
Publication
This publication by the Department for Business Energy and Industrial Strategy (BEIS) brings together heat networks investment opportunities in England and Wales. The opportunities present a wide range of projects supported through the development stages by the Heat Networks Delivery Unit (HNDU) and projects seeking capital support from the Heat Networks Investment Project (HNIP).
The publication includes a list of one-page summaries for each of the heat network projects supported by BEIS which set out details of HNDU and HNIP projects where projects have provided enough detail in time for publication.
For HNIP this represents projects which have submitted at least a pre-application to the Delivery Partner Triple Point Heat Networks Investment Management since the scheme opened in February 2019. As a number of the projects are at different stages of development some of the costs aren’t currently available or will be subject to project consent and change as they progress through the project lifecycle.
Related Document: Heat Network Detailed Project Development Resource: Guidance on Strategic and Commercial Case
The publication includes a list of one-page summaries for each of the heat network projects supported by BEIS which set out details of HNDU and HNIP projects where projects have provided enough detail in time for publication.
For HNIP this represents projects which have submitted at least a pre-application to the Delivery Partner Triple Point Heat Networks Investment Management since the scheme opened in February 2019. As a number of the projects are at different stages of development some of the costs aren’t currently available or will be subject to project consent and change as they progress through the project lifecycle.
Related Document: Heat Network Detailed Project Development Resource: Guidance on Strategic and Commercial Case
H21- Public Perceptions of Converting the Gas Network to Hydrogen - Social Sciences Sudy
Jun 2020
Publication
The next decade will see fundamental changes in how people heat their homes. The global energy system is changing in response to the need to transition away from fossil-based generation towards more environmentally sustainable alternatives.
Hydrogen offers one such alternative but currently there is limited understanding of public perceptions of hydrogen the information that people need in order to make an informed choice about using hydrogen in their homes and how misunderstandings could present barriers to the uptake of hydrogen technology. This is crucial to ensure the success of future policy and investment. The H21 concept is to convert the UK gas distribution network to 100% hydrogen over time thereby decarbonising heat and supporting decarbonisation of electric large industrials and transport. This would be achieved using the existing UK gas grid network and technology available across the world today whilst maintaining the benefits of gas and the gas networks in the energy mix for the long-term future. Additionally this would maintain choice of energy for customers i.e. they would be able to use both gas and electricity. The H21 project is being delivered by the UK gas distribution networks Northern Gas Networks Cadent Wales & West Utilities and SGN. As part of the H21 project Leeds Beckett University has been working with Northern Gas Networks to gain insight into public perceptions of hydrogen as a domestic fuel. Using innovative social science methods the research team has explored for the first time public perceptions of moving the UK domestic fuel supply to 100% hydrogen. We identify what people think and feel about a potential conversion the concerns and questions that they have and how to address them clearly. The findings presented in this report will ensure that issues around the current perception of hydrogen are identified and addressed prior to any large-scale technology rollout.
The first stage of the project comprised a series of discovery interviews which explored how to talk to people about hydrogen and the H21 project. We interviewed 12 participants selected to ensure we included people with a range of experiences and domestic settings for example people who live in urban and rural areas those who live alone those who live with children or a partner those who live in their own home and those who rent. Most participants had given very little thought about where their gas and electric comes from and other than switching supplier to get a better tariff had very little interest in it. They had not previously considered their domestic heating as a source of carbon emissions and were surprised that there may be a need in the future to change their gas supply. From the discovery interviews we identified several key areas to explore in the next stage of the work:
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Hydrogen offers one such alternative but currently there is limited understanding of public perceptions of hydrogen the information that people need in order to make an informed choice about using hydrogen in their homes and how misunderstandings could present barriers to the uptake of hydrogen technology. This is crucial to ensure the success of future policy and investment. The H21 concept is to convert the UK gas distribution network to 100% hydrogen over time thereby decarbonising heat and supporting decarbonisation of electric large industrials and transport. This would be achieved using the existing UK gas grid network and technology available across the world today whilst maintaining the benefits of gas and the gas networks in the energy mix for the long-term future. Additionally this would maintain choice of energy for customers i.e. they would be able to use both gas and electricity. The H21 project is being delivered by the UK gas distribution networks Northern Gas Networks Cadent Wales & West Utilities and SGN. As part of the H21 project Leeds Beckett University has been working with Northern Gas Networks to gain insight into public perceptions of hydrogen as a domestic fuel. Using innovative social science methods the research team has explored for the first time public perceptions of moving the UK domestic fuel supply to 100% hydrogen. We identify what people think and feel about a potential conversion the concerns and questions that they have and how to address them clearly. The findings presented in this report will ensure that issues around the current perception of hydrogen are identified and addressed prior to any large-scale technology rollout.
The first stage of the project comprised a series of discovery interviews which explored how to talk to people about hydrogen and the H21 project. We interviewed 12 participants selected to ensure we included people with a range of experiences and domestic settings for example people who live in urban and rural areas those who live alone those who live with children or a partner those who live in their own home and those who rent. Most participants had given very little thought about where their gas and electric comes from and other than switching supplier to get a better tariff had very little interest in it. They had not previously considered their domestic heating as a source of carbon emissions and were surprised that there may be a need in the future to change their gas supply. From the discovery interviews we identified several key areas to explore in the next stage of the work:
- Beliefs about the environment
- Beliefs about inconvenience and cost
- Beliefs about safety
- Beliefs about the economic impact
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Hydrogen – Analysis
Jun 2020
Publication
Hydrogen technologies maintained strong momentum in 2019 awakening keen interest among policy makers. It was a record year for electrolysis capacity becoming operational and several significant announcements were made for upcoming years. The fuel cell electric vehicle market almost doubled owing to outstanding expansion in China Japan and Korea. However low-carbon production capacity remained relatively constant and is still off track with the SDS. More efforts are needed to: scale up to reduce costs; replace high-carbon with low-carbon hydrogen in current applications; and expand hydrogen use to new applications.
Link to Document on IEA Website
Link to Document on IEA Website
H21- Hydrogen Boilers Installed in Demonstration Houses
Nov 2020
Publication
Hydrogen boilers have been developed by Worcester Bosch and Baxi and are being trialled in demonstration houses. They look and feel just like the boilers we use today. Hydrogen produces no carbon when used and a hydrogen gas network could provide the least disruptive route to a net zero carbon future.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2011 Final Report
Apr 2012
Publication
The Fuel Cells and Hydrogen Joint Undertaking (FCH JU) has the ambitious objective to place Europe at the forefront of the development commercialization and deployment of fuel cells and hydrogen technologies as of 2015. About €470 million over a six year period have been granted by the European Union to achieve this and private funds are being attracted to support the same ambition as part of the global European effort embedded in the multi-annual implementation plan MAIP (2008-2013).
Hy4Heat Progress Report
Jan 2021
Publication
Hy4Heat’s mission is to establish if it is technically possible safe and convenient to replace natural gas (methane) with hydrogen in residential and commercial buildings and gas appliances. This will enable the government to determine whether to proceed to a community trial.
There is growing international consensus that hydrogen will be essential to successfully tackling climate change. So BEIS is working to develop hydrogen as a strategic decarbonised energy carrier for the UK which will be an essential element of the UK’s efforts to transform and decarbonise our energy system in line with our legally binding 2050 net zero commitment. Hydrogen can be used across multiple end-use sectors including industry transport heat and power. BEIS is looking to support and develop low carbon hydrogen production methods which will position hydrogen as a highly effective decarbonisation option particularly in hard-to electrify sectors and processes.
At the end of 2017 BEIS appointed Arup to be the programme manager for the Hy4Heat programme. Arup partnered with technical and industry specialists: Kiwa Gastec Progressive Energy Embers and Yo Energy and together the team oversees the programme and technical management of all the work packages. For the past three years Hy4Heat has been exploring whether replacing natural gas (methane) with hydrogen for domestic heating and cooking is feasible and could be part of a plausible potential pathway to help meet heat decarbonisation targets. To do this the programme has been seeking to provide the technical performance usability and safety evidence to demonstrate whether hydrogen can be used for heat in buildings.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above.
There is growing international consensus that hydrogen will be essential to successfully tackling climate change. So BEIS is working to develop hydrogen as a strategic decarbonised energy carrier for the UK which will be an essential element of the UK’s efforts to transform and decarbonise our energy system in line with our legally binding 2050 net zero commitment. Hydrogen can be used across multiple end-use sectors including industry transport heat and power. BEIS is looking to support and develop low carbon hydrogen production methods which will position hydrogen as a highly effective decarbonisation option particularly in hard-to electrify sectors and processes.
At the end of 2017 BEIS appointed Arup to be the programme manager for the Hy4Heat programme. Arup partnered with technical and industry specialists: Kiwa Gastec Progressive Energy Embers and Yo Energy and together the team oversees the programme and technical management of all the work packages. For the past three years Hy4Heat has been exploring whether replacing natural gas (methane) with hydrogen for domestic heating and cooking is feasible and could be part of a plausible potential pathway to help meet heat decarbonisation targets. To do this the programme has been seeking to provide the technical performance usability and safety evidence to demonstrate whether hydrogen can be used for heat in buildings.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above.
HyNet North West- from Vision to Reality
Jan 2018
Publication
HyNet North West (NW) is an innovative integrated low carbon hydrogen production distribution and carbon capture utilisation and storage (CCUS) project. It provides hydrogen distribution and CCUS infrastructure across Liverpool Manchester and parts of Cheshire in support of the Government’s Clean Growth Strategy (CGS) and achievement of the UK’s emissions reduction targets.<br/>Hydrogen will be produced from natural gas and sent via a new pipeline to a range of industrial sites for injection as a blend into the existing natural gas network and for use as a transport fuel. Resulting carbon dioxide (CO2) will be captured and together with CO2 from local industry which is already available sent by pipeline for storage offshore in the nearby Liverpool Bay gas fields. Key data for the Project are presented in Table ES1.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2013 Final Report
Mar 2014
Publication
The 2013 Programme Review is the third annual review of the FCH JU portfolio of projects. This edition covers over 100 projects funded through annual calls for proposals from 2008 to 2012.<br/>The Programme Review serves to evaluate the achievements of the portfolio of FCH JU-funded projects against FCH JU strategic objectives in terms of advancing technological progress addressing horizontal activities and promoting cooperation with other projects both within the FCH JU portfolio as well as externally.<br/>The 2013 Review confirms that the portfolio of projects supported within energy and transport pillars and within its cross-cutting activities is a solid one aligned with the FCH JU strategic objectives. Industry and research collaboration is strong with SMEs making up 30% of total participants. The continued expansion of demonstration activities in both pillars answers to a greater emphasis on addressing the commercialisation challenge which is bolstered by activities in basic and breakthrough research.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2019 Final Report
Nov 2020
Publication
The 2019 Programme Review Report presents the findings of a review into activities supported by the FCH 2 JU under the EU’s Seventh Framework Programme and Horizon 2020 by the European Commission’s Joint Research Centre (JRC ). It pays particular attention to the added value effectiveness and techno-economic efficiency of FCH 2 JU projects assigned to six review panels under two main pillars:<br/>Transport and Energy (TRANSPORT: a.trials and deployment of fuel cell applications and b.the next generation of products) (ENERGY: a.trials and deployment of fuel cell applications b.next generation of products and c.hydrogen for sectoral integration)<br/>Support for market uptake (cross-cutting activities such as standards and consumer awareness)<br/>This report covers all 81 projects that were ongoing for any time between April and October 2018 and assesses the strengths and accomplishments of each panel and areas that would benefit from further attention.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2015 Final Report
Apr 2016
Publication
The 2015 Programme Review Report refers to the fifth review of the FCH JU project portfolio and covers 100 projects funded through annual calls for proposals from 2009 to 2013.<br/>The reviews began in 2011 following a recommendation arising from the interim evaluation of the FCH JU which identified the need to ensure that the overall project portfolio fulfilled the objectives of the FCH JU Multi-Annual Implementation and Work Plans.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2012 Final Report
Mar 2013
Publication
Initiated in 2011 the 2012 programme review edition covered 71‘live’ projects from the 2008 2009 and 2010 calls for proposals together with some projects from the 2011 call. Total funding for these projects stands at close to € 450 million 50% of which comes from FCH JU financial contributions and 50% of which comes from industry and research in-kind contributions.
SGN Project Report - Flame Visibility Risk Assessment
Feb 2021
Publication
This report contains information on the relative risks of natural gas and hydrogen fires particularly regarding their visibility. The fires considered are those that could occur on the H100 Fife trial network. The H100 Fife project will connect a number of residential houses to 100% hydrogen gas supply. The project includes hydrogen production storage and a new distribution network. From a review of large and small-scale tests and incidents it is concluded that hydrogen flames are likely to be clearly visible for releases above 2 bar particularly for larger release rates. At lower pressures hydrogen flame visibility will be affected by ambient lighting background colour and release orientation although this is also the case for natural gas. Potential safety implications from lack of flame visibility are that SGN workers other utility workers or members of the public could inadvertently come into contact with an ignited release. However some releases would be detected through noise thrown soil or interaction with objects. From a workshop and review of risk reduction measures and analysis of historical interference damage incidents it is concluded that flames with the potential for reduced visibility are adequately controlled. This is due to the likelihood of such scenarios occurring being low and that the consequences of coming into contact with such a flame are unlikely to be severe. These conclusions are supported by cost-benefit analysis that shows that no additional risk mitigation measures are justified for the H100 project. It is recommended that the cost-benefit analysis is revisited before applying the approach to a network wider than the H100 project. It was observed that the addition of odorant at relevant concentrations did not have an effect on the visibility of hydrogen flames.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
H21- Leeds City Gate Project Report
Jul 2016
Publication
The H21 Leeds City Gate project is a study with the aim of determining the feasibility from both a technical and economic viewpoint of converting the existing natural gas network in Leeds one of the largest UK cities to 100% hydrogen. The project has been designed to minimise disruption for existing customers and to deliver heat at the same cost as current natural gas to customers. The project has shown that:
The project has provided costs for the scheme and has modelled these costs in a regulatory finance model. In addition the availability of low-cost bulk hydrogen in a gas network could revolutionise the potential for hydrogen vehicles and via fuel cells support a decentralised model of combined heat and power and localised power generation.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
- The gas network has the correct capacity for such a conversion
- It can be converted incrementally with minimal disruption to customers
- Minimal new energy infrastructure will be required compared to alternatives
- The existing heat demand for Leeds can be met via steam methane reforming and salt cavern storage using technology in use around the world today
The project has provided costs for the scheme and has modelled these costs in a regulatory finance model. In addition the availability of low-cost bulk hydrogen in a gas network could revolutionise the potential for hydrogen vehicles and via fuel cells support a decentralised model of combined heat and power and localised power generation.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
HyDeploy2: Materials Summary and Interpretation
May 2021
Publication
During the exemption application process the original report was evaluated as part of a regulatory review and responses to questions submitted for further consideration. These have been addressed in this revised version (revision 1) in the form of an addendum. The addendum includes the question raised its number and the response to it. The area of the main body of the report to which each question and response refers is indicated by square brackets and the addendum number e.g. [A1].<br/>Through analysis of the literature and results of the practical testing the susceptibility of materials present in the Winlaton trial site to hydrogen degradation has been assessed with consideration of the Winlaton operating conditions (up to 20% H2 at total blend pressures of 20 mbar – 2 bar). The aim of this report has been to determine whether there are any components which have been identified at the Winlaton trial site which could have a significantly increased risk of failure due to their exposure to hydrogen during the one year trial. Where possible direct supporting data has been used to make assessments on the likelihood of failure; in other cases the assessment was aided by collaborative expert opinion in the fields of mechanical engineering materials science and the domestic gas industry.<br/>Click on the supplements tab to view the other documents from this report
Blended Hydrogen: The UK Public’s Perspective
Nov 2019
Publication
Hydrogen is increasingly being positioned as an important component of the UK’s Net Zero ambitions and commitments. In particular hydrogen could be an appropriate way to decarbonise the heat produced for domestic and industrial buildings. It is possible that hydrogen could replace natural gas in the UK gas network achieving key carbon emissions reduction targets while enabling homes to be heated to a similar level and standard as they currently are.<br/>In the interim small amounts of hydrogen will soon be blended into current natural gas supplies. The premise of this idea is to blend hydrogen into the existing gas network in small enough quantities to not require any adjustments to domestic cookers boilers and other gas-fired appliances but in large enough quantities to generate significant immediate reductions in carbon emissions. Three trials will take place between 2019 and 2022 as part of the HyDeploy project with the aim of demonstrating that hydrogen blending can occur at scale with no safety implications and no disruption to users.<br/>Public perceptions and acceptance of hydrogen will be pivotal in this scenario. At present there is very little indication of how acceptable hydrogen will be for heating homes and questions around safety cost and performance are only beginning to be understood and addressed.<br/>This report investigates public perceptions of blended hydrogen as a fuel for UK homes. In March 2019 we administered a survey to a sample (n=742) representative of the UK adult population in terms of age sex ethnicity and personal income. Our survey covered initial perceptions values and knowledge of hydrogen; the possibilities and pitfalls of hydrogen blending; public trust; and participants’ overall support for hydrogen. Key Findings and Conclusions and Recommendations for Policy and Practice follow immediately with the full report beginning on p.6.
Hydrogen Europe's Position Paper on the Sustainable and Smart Mobility Strategy
Dec 2020
Publication
The document highlights the role of hydrogen in the decarbonisation of the transport sector. It also provides a series of policy recommendations covering all modes of transport hydrogen distribution and infrastructure and hydrogen as a fuel.
No more items...