Safety
Gas Detection of Hydrogen/Natural Gas Blends in the Gas Industry
Sep 2019
Publication
A key element in the safe operation of a modern gas distribution system is gas detection. The addition of hydrogen to natural gas will alter the characteristics of the fuel and therefore its impact on gas detection must be considered. It is important that gas detectors remain sufficiently sensitive to the presence of hydrogen and natural gas mixtures and that they do not lead to false readings. This paper presents analyses of work performed as part of the Office for Gas and Energy Markets (OFGEM) funded HyDeploy project on the response of various natural gas industry detectors to blended mixtures up to 20 volume percent (vol%) of hydrogen in natural gas. The scope of the detectors under test included survey instruments and personal monitors that are used in the gas industry. Four blend ratios were analysed (0 10 15 and 20 vol% hydrogen in natural gas). The laboratory testing undertaken investigated the following:
- Flammable response to blends in the ppm range (0-0.2 vol%);
- Flammable response to blends in the lower explosion limit range (0.2-5 vol%);
- Flammable response to blends in the volume percent range (5-100 vol%);
- Oxygen response to blends in the volume percent range (0-25 vol%); and
- Carbon monoxide response to blends in the ppm range (0-1000 ppm).
High Pressure Hydrogen Fires
Sep 2009
Publication
Within the scope of the French national project DRIVE and European project HyPER high pressure jet flames of hydrogen were produced and instrumented.<br/>The experimental technique and measurement strategy are presented. Many aspects are original developments like the direct measurement of the mass flow rate by weighing continuously the hydrogen container the image processing to extract the flame geometry the heat flux measurement device the thermocouples arrangement…<br/>Flames were observed from 900 bar down to 1 bar with orifices ranging from 1 to 3 mm. An original set of data is now available about the main flame characteristics and about some thermodynamic aspects of hydrogen releases under high pressure.<br/>A brief comparison of some available models is presented.
Numerical Study of the Near-field of Highly Under-expanded Turbulent Gas Jets
Sep 2011
Publication
For safety issues related to the storage of hydrogen under high pressure it is necessary to determine how the gas is released in the case of failure. In particular there exist limited quantitative information on the near-field properties of the gas jets which are important for establishing proper decay laws in the far-field. This paper reports recent CFD results for air and helium obtained in the near-field of the highly under-expanded jets. The gas jets are released from a 30-bar tank with the same opening (orifice). The Reynolds number based on the diameter of the orifice and corresponding gas conditions at the exit was well beyond 106 . The 3D Compressible Multi-Component Navier-Stokes equations were solved directly without relying on the compressibility-corrected turbulence models. The numerical model was initially tested on a one-component (air-air) case where a few aerospace-driven data sets are available for validation. The shock geometry is characterized through the Mach disk position and diameter. These are compared to the results known from the literature and to the scaling laws developed based on the dimensional analysis. In the second two-component (helium-air) jet scenario the density field was validated and examined together with other fields in the attempt to suggest potential initial conditions for the forthcoming far-field simulations.
Hydrogen-Air Explosive Envelope Behaviour in Confined Space at Different Leak Velocities
Sep 2009
Publication
The report summarizes experimental results on the mechanisms and kinetics of hydrogen-air flammable gas cloud formation and evolution due to foreseeable (less than 10-3 kg/sec) hydrogen leaks into confined spaces with different shapes sizes and boundary conditions. The goals were - 1) to obtain qualitative information on the basic gas-dynamic patterns of flammable cloud formation at different leak velocities (between 935 and 905 m/sec) for a fixed leak flowrate and 2) to collect quantitative data on spatial and temporal characteristics of the revealed patterns. Data acquisition was performed using a spatially distributed reconfigurable net of 24 hydrogen gauges with short response time. This experimental innovation permits to study spatial features of flammable cloud evolution in detail which previously was attainable only from CFD computations. Two qualitatively different gas dynamic patterns were documented for the same leak flowrate. In one limiting case (sufficiently low speed of leak) the overall gas-dynamic pattern can be described by the well-known “filling box” model. In another limited case (high velocity of leak) it is proposed to describe the peculiarities of gas-dynamic behavior of flammable cloud by the term of a “fading up box” model. From the safety view point the “fading up box” case is more hazardous than the “filling box” case. Differences in macroscopic and kinetic behavior which are essential for safety provision are presented. Empirical non-dimensional criterion for discrimination of the two revealed basic patterns for hydrogen leaks into confined spaces with comparable length scale is proposed. The importance of the revealed “fading up box” gas-dynamic pattern is discussed for development of an advanced hydrogen gauges system design and safety criteria.
Assessment of the Effects of Inert Gas and Hydrocarbon Fuel Dilution on Hydrogen Flames
Sep 2009
Publication
To advance hydrogen into the energy market it is necessary to consider risk assessment for scenarios that are complicated by accidental hydrogen release mixing with other combustible hydrocarbon fuels. The paper is aimed at examining the effect of mixing the hydrocarbon and inert gas into the hydrogen flame on the kinetic mechanisms the laminar burning velocity and the flame stability. The influences of hydrogen concentration on the flame burning velocity were determined for the hydrogen/propane (H2-C3H8) hydrogen/ethane (H2-C2H6) hydrogen/methane (H2-CH4) and hydrogen/carbon dioxide (H2-CO2) mixtures. Experimental tests were carried out to determine the lift-off blow-out and blowoff stability limits of H2 H2-C3H8 H2-C2H6 H2-CH4 and H2-CO2 jet flames in a 2 mm diameter burner. The kinetic mechanisms of hydrogen interacting with C3 C2 and C1 fuels is analysed using the kinetic mechanisms for hydrocarbon combustion.
Experimental Study of the Effects of Vent Geometry on the Dispersion of a Buoyant Gas in a Small Enclosure
Sep 2011
Publication
We present an experimental study on the dispersion of helium in an enclosure of 1 m3 with natural ventilation through one vent. Three vent geometries have been studied. Injection parameters have been varied so that the injection Richardson number ranges from 2·10−6 to 9 and the volume Richardson number which gives the ability of the release to mix the enclosure content ranges from 8·10−4 to 900. It has been found that the vertical distribution of helium volume fraction can exhibit significant gradient. Nevertheless the results are compared to the simple analytical model based on the homogenous mixture hypothesis which gives fairly good estimates of the maximum helium volume fraction.
Lagrangian Reaction-Diffusion Model for Predicting the Ignitability of Pressurized Hydrogen Releases
Sep 2009
Publication
Previous experiments demonstrated that the accidental release of high pressure hydrogen into air can lead to the possibility of spontaneous ignition. It is believed that this ignition is due to the heating of the mixing layer between hydrogen and air that is caused by the shock wave driven by the pressurized hydrogen during the release. Currently this problem is poorly understood and not amenable to direct numerical simulation. This is due to the presence of a wide range of scales between the sizes of the blast wave driven and the very thin mixing layer. The present study addresses this fundamental ignition problem and develops a solution framework in order to predict the ignition event for given hydrogen storage pressures and dimension of the release hole. In this problem only the mixing layer between the hydrogen and air is considered. This permits us to use much higher resolution than previous studies. This mixing layer at the jet head is advected as a Lagrangian fluid particle. The key physical processes in the problem are identified to be the mixing of the two gases at the mixing layer the initial heating by the shock wave and a cooling effect due to the expansion of the mixing layer. The results of the simulations indicate that for every storage pressure there exists a critical hole size below which ignition is prevented during the release process. Close inspection of the results indicate that this limit is due to the competition between the heating provided by the shock wave and the cooling due to expansion. Furthermore the results also indicate that the details of the mixing process do not play a significant role to leading order. The limiting ignition criteria were found to be well approximated by the Homogeneous Ignition Model of Cuenot and Poinsot supplemented by a heat loss term due to expansion. Therefore turbulent mixing occurring in reality is not likely to affect the ignition limits derived in the present study. Comparison with existing experiments showed very good agreement.
Experimental Study of Explosion Wave Propagation in Hydrogen-Air Mixtures of Variable Compositions
Sep 2009
Publication
Results are given of experimental study of propagation of explosion waves in hydrogen-air mixtures of different compositions under conditions of cumulation. The investigations are performed in a setup consisting of two parts namely the upper part in the form of a metal cone and the lower part in the form of a rubber envelope hermetically attached to the cone. The upper and lower parts of the experimental setup are separated by a thin rubber film and may be filled with hydrogen-air mixtures of different compositions.
Risk Assessment of Hydrogen Explosion for Private Car with Hydrogen-driven Engine
Sep 2009
Publication
The aim of the study is to identify and quantify the additional risks related to hydrogen explosions during the operation of a hydrogen-driven car. In a first attempt the accidents or failures of a simple one-tank hydrogen storage system have been studied as a main source of risk. Three types of initiators are taken into account: crash accidents fire accidents without crash (no other cars are involved) and hydrogen leakages in normal situation with following ignition. The consequences of hydrogen ignition and/or explosion depend strongly on environmental conditions (geometry wind etc.) therefore the different configurations of operational and environmental conditions are specified.<br/>Then Event Tree/Fault Tree methods are applied for the risk assessment.<br/>The results of quantification permit to draw conclusions about the overall added risk of hydrogen technology as well as about the main contributors to the risk. Results of this work will eventually contribute to the on-going pre-normative research in the field of hydrogen safety.
Dynamics of Vented Hydrogen-air Deflagrations
Sep 2011
Publication
The use of hydrogen as an energy carrier is a real perspective for Europe since a number of breakthroughs now enable to envision a deployment at the industrial scale. However some safety issues need to be further addressed but experimental data are still lacking especially about the explosion dynamics in realistic dimensions. A set of hydrogen-air vented explosions were thus performed in two medium scale chambers (1 m3 and 10 m3). Homogeneous mixtures were used (10% to 30% vol.). The explosion overpressure was measured inside the chamber and outside on the axis of the discharge from the vent. The incidence of the external explosion is clearly seen. All the results in this paper and the predictions from the standards differ greatly meaning that a significant effort is still required. It is the purpose of the French project DIMITRHY to help progressing.
The Effect of Tube Internal Geometry on the Propensity to Spontaneous Ignition in Pressurized Hydrogen Release
Sep 2013
Publication
Spontaneous ignition of compressed hydrogen release through a length of tube with different internal geometries is numerically investigated using our previously developed model. Four types of internal geometries are considered: local contraction local enlargement abrupt contraction and abrupt enlargement. The presence of internal geometries was found to significantly increase the propensity to spontaneous ignition. Shock reflections from the surfaces of the internal geometries and the subsequent shock interactions further increase the temperature of the combustible mixture at the contact region. The presence of the internal geometry stimulates turbulence enhanced mixing between the shock-heated air and the escaping hydrogen resulting in the formation of more flammable mixture. It was also found that forward-facing vertical planes are more likely to cause spontaneous ignition by producing the highest heating to the flammable mixture than backward-facing vertical planes.
Estimation of Uncertainty in Risk Assessment of Hydrogen Applications
Sep 2011
Publication
Hydrogen technologies such as hydrogen fuelled vehicles and refuelling stations are being tested in practice in a number of projects (e.g. HyFleet-Cute and Whistler project) giving valuable information on the reliability and maintenance requirements. In order to establish refuelling stations the permitting authorities request qualitative and quantitative risk assessments to show the safety and acceptability in terms of failure frequencies and respective consequences. For new technologies not all statistical data can be established or are available in good quality causing assumptions and extrapolations to be made. Therefore the risk assessment results contain varying degrees of uncertainty as some components are well established while others are not. The paper describes a methodology to evaluate the degree of uncertainty in data for hydrogen applications based on the bias concept of the total probability and the NUSAP concept to quantify uncertainties of new not fully qualified hydrogen technologies and implications to risk management.
Experimental Study of Hydrogen Releases in the Passenger Compartment of a Piaggio Porter
Sep 2011
Publication
There are currently projects and demonstration programs aiming at introducing Hydrogen powered Fuel Cell (HFC) vehicles into the market. Regione Toscana has been cofounder of the project “H2 Filiera Idrogeno” whose goal is to achieve a clean and sustainable mobility through HFC vehicle studies covering their production storage and use. Among the goals of the project was the substitution of the electric propulsion system with a hydrogen fuel cells propulsion system. This work presents a brief overview of the necessary modifications of the electric propulsion version of a Piaggio Porter to host a H2 fuel cell and experimental studies of realistic H2 releases from the vehicle. The scenarios covered H2 unintended releases underneath the vehicle when at rest and focused on three types of releases diffusive major and minor that might reach the interior of the vehicle and potentially pose a direct risk to the passengers.
Numerical Study of Hydrogen Explosions in a Vehicle Refill Environment
Sep 2009
Publication
Numerical simulations have been carried out for pressurised hydrogen release through a nozzle in a simulated vehicle refilling environment of an experiment carried out in a joint industry project by Shell bp Exxon and the UK HSE Shirvill[1]. The computational domain mimics the experimental set up for a vertical downwards release in a vehicle refuelling environment. Due to lack of detailed data on pressure decay in the storage cylinder following the release a simple analytical model has also been developed to provide the transient pressure conditions at nozzle exit. The modelling is carried out using the traditional Computational fluid dynamics (CFD) approach based on Reynolds averaged Navier Stokes equations. The Pseudo diameter approach is used to bypass the shock-laden flow structure in the immediate vicinity of the nozzle. For combustion the Turbulent Flame Closure (TFC) model is used while the shear stress transport (SST) model is used for turbulence
Safety Strategy for the First Deployment of a Hydrogen- Based Green Public Building in France
Sep 2011
Publication
HELION a subsidiary of AREVA in charge of the business unit Hydrogen and energy storage is deploying for the first time in a French public building a hydrogen-based energy storage system the Greenergy Box™. The 50 kWe system is coupled with a photovoltaic farm to ensure up to 45% electrical autonomy and power backup to the building. The safety system and siting measures of the complete hydrogen chain are described. The paper also highlights the work accomplished with Fire Authorities and Public to gain the acceptance of the project and allow the deployment of four other hydrogen-based green buildings.
LES Modelling Of Hydrogen Release and Accumulation Within a Non-Ventilated Ambient Pressure Garage Using The Adrea-HF CFD Code
Sep 2011
Publication
Computational Fluid Dynamics (CFD) has already proven to be a powerful tool to study the hydrogen dispersion and help in the hydrogen safety assessment. In this work the Large Eddy Simulation (LES) recently incorporated into the ADREA-HF CFD code is evaluated against the INERIS-6C experiment of hydrogen leakage in a supposed garage which provides detailed experimental measurements visualization of the flow and availability of previous CFD results from various institutions (HySafe SBEP-V3). The short-term evolution of the hydrogen concentrations in this confined space is examined and comparison with experimental data is provided along with comments about the ability of LES to capture the transient phenomena occurring during hydrogen dispersion. The influence of the value of the Smagorinsky constant on the resolved and on the unresolved turbulence is also presented. Furthermore the renormalization group (RNG) LES methodology is also tested and its behaviour in both highly-turbulent and less-turbulent parts of the flow is highlighted.
Natural and Forced Ventilation of Buoyant Gas Released In a Full-Scale Garage, Comparison of Model Predictions and Experimental Data
Sep 2011
Publication
An increase in the number of hydrogen-fuelled applications in the marketplace will require a better understanding of the potential for fires and explosion associated with the unintended release of hydrogen within a structure. Predicting the temporally evolving hydrogen concentration in a structure with unknown release rates leak sizes and leak locations is a challenging task. A simple analytical model was developed to predict the natural and forced mixing and dispersion of a buoyant gas released in a partially enclosed compartment with vents at multiple levels. The model is based on determining the instantaneous compartment over-pressure that drives the flow through the vents and assumes that the helium released under the automobile mixes fully with the surrounding air. Model predictions were compared with data from a series of experiments conducted to measure the volume fraction of a buoyant gas (at 8 different locations) released under an automobile placed in the center of a full-scale garage (6.8 m × 5.4 m × 2.4 m). Helium was used as a surrogate gas for safety concerns. The rate of helium released under an automobile was scaled to represent 5 kg of hydrogen released over 4 h. CFD simulations were also performed to confirm the observed physical phenomena. Analytical model predictions for helium volume fraction compared favourably with measured experimental data for natural and forced ventilation. Parametric studies are presented to understand the effect of release rates vent size and location on the predicted volume fraction in the garage. Results demonstrate the applicability of the model to effectively and rapidly reduce the flammable concentration of hydrogen in a compartment through forced ventilation.
Evaluation of Hydrogen, Propane and Methane-air Detonations Instability and Detonability
Sep 2013
Publication
In this paper the detonation propensity of different compositions of mixtures of hydrogen propane and methane with air has been evaluated over a wide range of compositions. We supplement the conventional calculations of the induction delay with calculations of the characteristic acceleration parameter recently suggested by Radulescu Sharpeand Bradley(RSB) to characterize the instability of detonations. While it is well established that the ignition delay provides a good measure for detonability the RSB acceleration or its non-dimensionalform provides a further discriminant between mixtures with similar ignition delays. The present assessment of detonability reveals that while a stoichiometric mixture of hydrogen-air has an ignition delay one and two orders of magnitude shorter than respectively propane and methane hydrogen also has a parameter smaller by respectively one and two orders of magnitude. Its smaller propensity for instability is reflected by an RSB acceleration parameter similar to the two hydrocarbons. The predictions however indicate that lean hydrogen mixtures are likely to be much more unstable than stoichiometric ones. The relation between the parameter and potential to amplify an unstable transverse wave structure has been further determined through numerical simulation of decaying reactive Taylor-Sedov blast waves. Using a simplified two-step model calibrated for these fuels we show that methane mixtures develop cellular structures more readily than propane and hydrogen when observed on similar induction time scales. Future work should be devoted towards a quantitative inclusion of the RSB parameter in assessing the detonability of a given mixture.
Comparison of Numerical and Algebraic Models of Low and High Pressure Hydrogen Jet Flows with Ideal and Real Gas Models
Sep 2013
Publication
Hydrogen transportation systems require very high pressure hydrogen storage containers to enable sufficient vehicle range for practical use. Current proposed designs have pressures up to 70 MPa with leakage due to damage or deterioration at such high pressures a great safety concern. Accurate models are needed to predict the flammability envelopes around such leaks which rapidly vary with time. This paper compares CFD predictions of jet flows for low pressure jets with predictions using the integral turbulent buoyant jet model. The results show that the CFD model predicts less entrainment and that the turbulent Schmidt number should be smaller with 0.55 giving better results. Then CFD predictions for very high pressure flows are compared with analytical models for choked flows that generate underexpanded jets into the ambient to evaluate the effects of the model assumptions and the effects of real exit geometries. Real gas effects are shown to accelerate the blowdown process and that real flow effects in the CFD model slow the flow rate and increase the exit temperature.
Effect of Plastic Deformation at Room Temperature on Hydrogen Diffusion of Hot-rolled S30408
Sep 2017
Publication
The influence of plastic deformation on hydrogen diffusion is of critical significance for hydrogen embrittlement (HE) studies. In this work thermal desorption spectroscope (TDS) slow strain rate test (SSRT) feritscope transmission electron microscope (TEM) and TDS model are used to establish the relationship between plastic deformation and hydrogen diffusion aiming at unambiguously elucidating the effect of pre-existing traps on hydrogen diffusion of hot-rolled S30408. An effective way is developed to deduce hydrogen apparent diffusivity in this paper. Results indicate apparent diffusivities decrease firstly and then increase with increasing plastic strain at room temperature. Hydrogen diffusion changing with plastic deformation is a complicated process involving multiple factors. It is suggested to be divided into two processes controlled by dislocations and strain-induced martensite respectively and the transformation strain is about 20% demonstrated by experiments.
No more items...