Safety
The Study on Permissible Value of Hydrogen Gas Concentration in Purge Gas of Fuel Cell Vehicles
Sep 2019
Publication
Ignition conditions and risks of ignition on a permissible value of hydrogen concentration in purge gas prescribed by HFCV-GTR were reevaluated. Experiments were conducted to investigate burning behavior and thermal influence of continuous evacuation of hydrogen under continuous purge of air / hydrogen premixed gas which is close to an actual purge condition of FCV and thermal evacuation of hydrogen. As a result of the re-evaluation it was shown from the viewpoint of safety that the permissible value of hydrogen concentration in purge gas prescribed by the current HFCV GTR is appropriate.
Impact of Mechanical Ventilation on Build-up and Concentration Distribution Inside a 1-m3 Enclosure Considering Hydrogen Energy
Sep 2019
Publication
Natural ventilation is an efficient and well-known way to mitigate a hydrogen build-up in the case of an accidental release in confined enclosures. However for some hydrogen energy applications natural ventilation is not possible or is not efficient enough to reach defined safety strategy. Thus mechanical or forced ventilation can be interesting means to avoid critical concentration of hydrogen considering degraded operation and associated potential hazardous events. To better understand the impact of mechanical ventilation on the hydrogen build-up and distribution a dedicated study was led. First accidental release scenarios were experimentally simulated with helium in a 1-m3 enclosure. Several configurations of release and ventilation modes were tested and are presented in this study. Secondly analytical and numerical – Computational Fluid Dynamics – calculation approaches were applied and adjusted to propose a simplified methodology taking into account mechanical ventilation for assessment of hydrogen accumulation and for design optimization of the applications.
Compliance Measurements of Fuel Cell Electric Vehicle Exhaust
Sep 2019
Publication
The NREL Sensor Laboratory has been developing an analyzer that can verify compliance to the international United Nations Global Technical Regulation number 13 (GTR 13--Global Technical Regulation on Hydrogen and Fuel Cell Vehicles) prescriptive requirements pertaining to allowable hydrogen levels in the exhaust of fuel cell electric vehicles (FCEV) [1]. GTR 13 prescribes that the FCEV exhaust shall remain below 4 vol% H2 over a 3-second moving average and shall not at any time exceed 8 vol% H2 as verified with an analyzer with a response time (t90) of 300 ms or faster. GTR 13 has been implemented and is to serve as the basis for national regulations pertaining to hydrogen powered vehicle safety in the United States Canada Japan and the European Union. In the U.S. vehicle safety is overseen by the Department of Transportation (DOT) through the Federal Motor Vehicle Safety Standards (FMVSS) and in Canada by Transport Canada through the Canadian Motor Vehicle Safety Standard (CMVSS). The NREL FCEV exhaust analyzer is based upon a low-cost commercial hydrogen sensor with a response time (t90) of less than 250 ms. A prototype analyzer and gas probe assembly have been constructed and tested that can interface to the gas sampling system used by Environment and Climate Change Canada’s (ECCC) Emission Research and Measurement Section (ERMS) for the exhaust gas analysis. Through a partnership with Transport Canada ECCC will analyze the hydrogen level in the exhaust of a commercial FCEV. ECCC will use the NREL FCEV Exhaust Gas analyzer to perform these measurements. The analyzer was demonstrated on a FCEV operating under simulated road conditions using a chassis dynamometer at a private facility.
Experimental Study of Light Gas Dispersion in a Channel
Sep 2019
Publication
Usage of hydrogen as fuel gives rise to possible accidental risks due to leakage and dispersion. A risk from hydrogen leak is the formation of a large volume of the hydrogen-air mixture which could be ignited and leading up to a severe explosion. Prevention and control of formation and ignition of combustible hydrogen cloud necessitate sufficient knowledge of mechanisms of the hydrogen leak dispersion ignition and over-pressures generated during combustion. This paper aims to investigate the momentum-controlled jet the buoyancy-controlled wave and the parameters influencing hydrogen concentration distribution in an elongated space. It demonstrates experimental results and analysis from helium and hydrogen dispersion in a channel. A set of experiments were carried out for the release of helium and hydrogen jets in a 3 m long channel to record their concentrations in the cloud by concentration sensors at different horizontal and vertical positions. Flow visualization technique was applied using shadowgraph to image the mixing process next to the release point and the helium- hydrogen-air cloud shape at the middle of the channel. Moreover results were used for comparison of helium and hydrogen concentration gradients. The results of the experiments show that swift mixing occurs at higher flow rates smaller nozzle sizes and downward release direction. Higher concentration recorded in the channel with negative inclination. Results also confirmed that hydrogen/helium behavior pattern in the channel accords with mutual intrusion theory about gravity currents.
The Influence of H2 Safety Research on Relevant Risk Assessment
Sep 2019
Publication
Hydrogen is a valuable option of clean fuel to keep the global temperature rise below 2°C. However one of the main barriers in its transport and use is to ensure safety levels that are comparable with traditional fuels. In particular liquid hydrogen accidents may not be fully understood (yet) and excluded by relevant risk assessment. For instance as hydrogen is cryogenically liquefied to increase its energy density during transport Boiling Liquid Expanding Vapor Explosions (BLEVE) is a potential and critical event that is important addressing in the hazard identification phase. Two past BLEVE accidents involving liquid hydrogen support such thesis. For this reason results from consequence analysis of hydrogen BLEVE will not only improve the understanding of the related physical phenomenon but also influence future risk assessment studies. This study aims to show the extent of consequence analysis influence on overall quantitative risk assessment of hydrogen technologies and propose a systematic approach for integration of overall results. The Dynamic Procedure for Atypical Scenario Identification (DyPASI) is used for this purpose. The work specifically focuses on consequence models that are originally developed for other substances and adapted for liquid hydrogen. Particular attention is given to the parameters affecting the magnitude of the accident as currently investigated by a number of research projects on hydrogen safety worldwide. A representative example of consequence analysis for liquid hydrogen release is employed in this study. Critical conditions detected by the numerical simulation models are accurately identified and considered for subsequent update of the overall system risk assessment.
Impact Assessments on People and Buildings for Hydrogen Pipeline Explosions
Sep 2019
Publication
Hydrogen has the potential to act as the energy carrier of the future. It will be then produced in large amounts and will certainly need to be transported for long distances. The safest way to transport hydrogen is through pipelines. Failure of pipelines carrying gaseous hydrogen can have several effects some of which can pose a significant threat of damage to people and buildings in the immediate proximity of the failure location. This paper presents a probabilistic risk assessment procedure for the estimation of damage to people and buildings endangered by high-pressure hydrogen pipeline explosions. The procedure provides evaluation of annual probability of damage to people and buildings under an extreme event as a combination of the conditional probability of damage triggered by an explosion and the probability of occurrence of the explosion as a consequence of the pipeline failure. Physical features such as the gas jet release process flammable cloud size blast generation and explosion effects on people and buildings are considered and evaluated through the SLAB integral model TNO model Probit equations and Pressure-Impulse diagrams. For people both direct and indirect effects of overpressure events are considered. For buildings a comparison of the damage to different types of buildings (i.e. reinforced concrete buildings and tuff stone masonry buildings) is made. The probabilistic procedure presented may be used for designing a new hydrogen pipeline network and will be an advantageous tool for safety management of hydrogen gas pipelines.
Hydrogen Explosion Hazards Limitation in Battery Rooms with Different Ventilation Systems
Sep 2019
Publication
When charging most types of industrial lead-acid batteries hydrogen gas is emitted. A large number of batteries especially in relatively small areas/enclosures and in the absence of an adequate ventilation system may create an explosion hazard. This paper describes full scale tests in confined space which demonstrate conditions that can occur in a battery room in the event of a ventilation system breakdown. Over the course of the tests full scale hydrogen emission experiments were performed to study emission time and flammable cloud formation according to the assumed emission velocity. On this basis the characteristics of dispersion of hydrogen in the battery room were obtained. The CFD model Fire Dynamic Simulator (NIST) was used for confirmation that the lack of ventilation in a battery room can be the cause of an explosive atmosphere developing and leading to a potential huge explosive hazard. It was demonstrated that different ventilation systems provide battery rooms with varying efficiencies of hydrogen removal. The most effective type appeared to be natural ventilation which proved more effective than mechanical means.
Numerical Prediction of Cryogenic Hydrogen Vertical Jets
Sep 2019
Publication
Comparison of Computational Fluid Dynamics (CFD) predictions with measurements is presented for cryo-compressed hydrogen vertical jets. The stagnation conditions of the experiments are characteristic of unintended leaks from pipe systems that connect cryogenic hydrogen storage tanks and could be encountered at a fuel cell refuelling station. Jets with pressure up to 5 bar and temperatures just above the saturation liquid temperature were examined. Comparisons are made to the centerline mass fraction and temperature decay rates the radial profiles of mass fraction and the contours of volume fraction. Two notional nozzle approaches are tested to model the under-expanded jet that was formed in the tests with pressures above 2 bar. In both approaches the mass and momentum balance from the throat to the notional nozzle are solved while the temperature at the notional nozzle was assumed equal to the nozzle temperature in the first approach and was calculated by an energy balance in the second approach. The two approaches gave identical results. Satisfactory agreement with the measurements was found in terms of centerline mass fraction and temperature. However for test with 3 and 4 bar release the concentration was overpredicted. Furthermore a wider radial spread was observed in the predictions possibly revealing higher degree of diffusion using the k-ε turbulence model. An integral model for cryogenic jets was also developed and provided good results. Finally a test simulation was performed with an ambient temperature jet and compared to the cold jet showing that warm jets decay faster than cold jets.
An Investigation of Mobile Hydrogen and Fuel Cell Technology Applications
Sep 2019
Publication
Safe practices in the production storage distribution and use of hydrogen are essential for the widespread acceptance of hydrogen and fuel cell technologies. A significant safety incident in any project could damage public perception of hydrogen and fuel cells. A recent incident involving a hydrogen mobile storage trailer in the United States has brought attention to the potential impacts of mobile hydrogen storage and transport. Road transport of bulk hydrogen presents unique hazards that can be very different from those for stationary equipment and new equipment developers may have less experience and expertise than seasoned gas providers. In response to the aforementioned incident and in support of hydrogen and fuel cell activities in California the Hydrogen Safety Panel (HSP) has investigated the safety of mobile hydrogen and fuel cell applications (mobile auxiliary/emergency fuel cell power units mobile fuellers multi-cylinder trailer transport unmanned aircraft power supplies and mobile hydrogen generators). The HSP examined the applications requirements and performance of mobile applications that are being used extensively outside of California to understand how safety considerations are applied. This paper discusses the results of the HSP’s evaluation of hydrogen and fuel cell mobile applications along with recommendations to address relevant safety issues.
Choked Two-phase Flow with Account of Discharge Line Effects
Jan 2019
Publication
An engineering tool is presented to predict steady state two-phase choked flow through a discharge line with variable cross section with account of friction and without wall heat transfer. The tool is able to predict the distribution of all relevant physical quantities along the discharge line. Choked flow is calculated using the possible-impossible flow algorithm implemented in a way to account for possible density discontinuities along the line. Physical properties are calculated using the Helmholtz Free Energy formulation. The tool is verified against previous experiments with water and evaluated against previous experiments with cryogenic two-phase hydrogen.
Hydrogen and Fuel Cell Vehicles UN Global Technical Regulation No. 13: Latest Updates Reflecting Heavy Duty Vehicles
Sep 2019
Publication
This paper provides a detailed technical description of the United Nations Global Technical Regulation No. 13 (UN GTR #13) 1998 Agreement and contracting party obligations phase 2 activity and safety provisions being discussed and developed for heavy duty hydrogen fuel cell vehicles.
Magneto-Electronic Hydrogen Gas Sensors: A Critical Review
Jan 2022
Publication
Devices enabling early detection of low concentrations of leaking hydrogen and precision measurements in a wide range of hydrogen concentrations in hydrogen storage systems are essential for the mass-production of fuel-cell vehicles and more broadly for the transition to the hydrogen economy. Whereas several competing sensor technologies are potentially suitable for this role ultralow fire-hazard contactless and technically simple magneto-electronic sensors stand apart because they have been able to detect the presence of hydrogen gas in a range of hydrogen concentrations from 0.06% to 100% at atmospheric pressure with the response time approaching the industry gold standard of one second. This new kind of hydrogen sensors is the subject of this review article where we inform academic physics chemistry material science and engineering communities as well as industry researchers about the recent developments in the field of magneto-electronic hydrogen sensors including those based on magneto-optical Kerr effect anomalous Hall effect and Ferromagnetic Resonance with a special focus on Ferromagnetic Resonance (FMR)-based devices. In particular we present the physical foundations of magneto-electronic hydrogen sensors and we critically overview their advantages and disadvantages for applications in the vital areas of the safety of hydrogen-powered cars and hydrogen fuelling stations as well as hydrogen concentration meters including those operating directly inside hydrogen-fuelled fuel cells. We believe that this review will be of interest to a broad readership also facilitating the translation of research results into policy and practice.
Monitoring H2 Bubbles by Real Time H2 Sensor
Sep 2017
Publication
Portable H2 sensor was made by using mass spectrometer for the outside monitoring experiment: the leak test the replacement test of gas pipe line the combustion test the explosion experiment the H2 diffusion experiment and the recent issue of the exhaust gas of Fuel Cell Vehicle. In order to check the real time concentration of H2 in various conditions even in the highly humid condition the system volume of the sampling route was minimized with attaching the humidifier. Also to calibrate H2 concentration automatically the specific concentration H2 small cylinder was mounted in the system. In the experiment when H2 gas was introduced in the N2 flow or air in the tube or the high-pressure bottle highly concentrated H2 phases were observed by this sensor without diffusion. This H2 sensor can provide the real time information of the hydrogen molecules and the clouds. The basic characterization of this sensor showed 0-100% H2 concentrations within 2ms. Our observation showed the size of the high concentration phase of H2 and the low concentration phase after mixing process. The mixed and unmixed H2 unintended concentration of cloud gas the high speed small cluster of hydrogen molecules in purged gas were explored by this real time monitoring system.
Update on Regulation Review for HRS Construction and Operations in Japan
Oct 2015
Publication
In 2005 the Japanese High-pressure Gas Safety Act the Fire Service Act and the Building Standards Act were revised to establish the requirements for 35 MPa hydrogen stations. And in 2012-2014 revisions were made to the High-pressure Gas Safety Act and the Fire Service Act to provide the regulatory requirements for 70 MPa hydrogen stations. We conducted a study on materials that may contribute to prepare technical standards concerning the major 4 items 12 additional items and 13 new items which may affect the costs from the point of view of promoting the hydrogen infrastructure.
Hazid for CO2-free Hydrogen Supply Chain Feed (Front End Engineering Design)
Oct 2015
Publication
We at Kawasaki have proposed a “CO2 free H2 chain” using the abundant brown coal of Australia as a hydrogen source. We developed the basic design package and finished the Front End Engineering Design (FEED) in 2014. There are not only the hazards of the processing plant system but also the characteristic hazards of a hydrogen plant system. We considered and carried out Hazard Identification (HAZID) as the most appropriate approach for safety design in this stage. This paper describes the safety design and HAZID which we practiced for the CO2-Free Hydrogen Supply Chain FEED.
Multistage Risk Analysis and Safety Study of a Hydrogen Energy Station
Sep 2017
Publication
China has plenty of renewable energy like wind power and solar energy especially in the northwest part of the country. Due to the volatile and intermittent characters of the green powers high penetration level of renewable resources could arise grid stabilization problem. Therefore electricity storage is considered as a solution and hydrogen energy storage is proposed. Instead of storing the electricity directly it converts electricity into hydrogen and the energy in hydrogen will be released as needed from gas to electricity and heat. The transformed green power can be fed to the power grid and heat supply network. State Grid Corporation of China carried out its first hydrogen demonstration project. In the demonstration project an alkaline electrolyzer and a PEM hydrogen fuel cell stack are decided as the hydrogen producer and consumer respectively. Hydrogen safety issue is always of significant importance to secure the property. In order to develop a dedicated safety analysis method for hydrogen energy storage system in power industry the risk analysis for the power-to-gas-topower&heat facility was made. The hazard and operability (HAZOP) study and the failure mode and effects analysis (FMEA) are performed sequentially to the installation to identify the most problematic parts of the system in view of hydrogen safety and possible failure modes and consequences. At the third step the typical hydrogen leak accident scenarios are simulated by using computational fluid dynamics (CFD) computer code. The resulted pressure loads of the possibly ignited hydrogen-air mixture in the facility container are estimated conservatively. Important safeguards and mitigation measures are proposed based on the three-stage risk and safety studies.
Freeze of Nozzle & Receptacle During Hydrogen Fueling
Oct 2015
Publication
We conducted a fuelling test with hydrogen gas for a safety evaluation of the nozzle/receptacle at a controlled temperature and humidity. Test results confirmed that the nozzle/receptacle froze under specific conditions. However freezing did not cause apparatus damage nor hydrogen leakage. The nozzle/receptacle is thus able to fuel safely even if the nozzle/receptacle is stuck due to ice. In addition we quantified the water volume that causes freezing.
Full Scale Experimental Campaign to Determine the Actual Heat Flux Produced by Fire on Composite Storages - Calibration Tests on Metallic Vessels
Oct 2015
Publication
If Hydrogen is expected to be highly valuable some improvements should be conducted mainly regarding the storage safety. To prevent from high pressure hydrogen composite tanks bursting the comprehension of the thermo-mechanics phenomena in the case of fire should be improved. To understand the kinetic of strength loss the heat flux produced by fire of various intensities should be assessed. This is the objective of this real scale experimental campaign which will allow studying in future works the strength loss of composite high-pressure vessels in similar fire conditions to the ones determined in this study. Fire calibration tests were performed on metallic cylinder vessels. These tests with metallic cylinders are critical in the characterization of the thermal load of various fire sources (pool fire propane gas fire hydrogen gas fire) so as to evaluate differences related to different thermal load. Radiant panels were also used as thermal source for reference of pure radiation heat transfer. The retained thermal load might be representative of accidental situations in worst case scenarios and relevant for a standardized testing protocol. The tests performed show that hydrogen gas fires and heptane pool fire allow reaching the target in terms of absorbed energy regarding the results of risk analysis performed previously. Other considerations can be taken into account that will led to retain an hydrogen gas fire for further works. Firstly hydrogen gas fire is the more realistic scenario: Hydrogen is the combustible that we every time find near an hydrogen storage. Secondly as one of the objectives of the project is to make recommendations for standardization issues it’s important to note that gas fires are not too complex to calibrate control and reproduce. Finally due to previous considerations Hydrogen gas fire will be retained for thermal load of composite cylinders in future works.
Quantitative Risk Assessment Methodology for Hydrogen Tank Rupture in a Tunnel Fire
Dec 2022
Publication
This study presents a methodology of a quantitative risk assessment for the scenario of an onboard hydrogen storage tank rupture and tunnel fire incident. The application of the methodology is demonstrated on a road tunnel. The consequence analysis is carried out for the rupture of a 70 MPa 62.4-litre hydrogen storage tank in a fire that has a thermally activated pressure relief device (TPRD) failed or blocked during an incident. Scenarios with two states of charge (SoC) of the tank i.e. SoC = 99% and SoC = 59% are investigated. The risks in terms of fatalities per vehicle per year and the cost per incident are assessed. It is found that for the reduction in the risk with the hydrogen-powered vehicle in a road tunnel fire incident to the acceptable level of 10−5 fatality/vehicle/year the fireresistance rating (FRR) of the hydrogen storage tank should exceed 84 min. The FRR increase to this level reduces the societal risk to an acceptable level. The increase in the FRR to 91 min reduces the risk in terms of the cost of the incident to GBP 300 following the threshold cost of minor injury published by the UK Health and Safety Executive. The Frequency–Number (F–N) of the fatalities curve is developed to demonstrate the effect of mitigation measures on the risk reduction to socially acceptable levels. The performed sensitivity study confirms that with the broad range of input parameters including the fire brigade response time the risk of rupture of standard hydrogen tank-TPRD systems inside the road tunnel is unacceptable. One of the solutions enabling an inherently safer use of hydrogen-powered vehicles in tunnels is the implementation of breakthrough safety technology—the explosion free in a fire self-venting (TPRD-less) tanks.
Investigation on Cooling Effect of Water Sprays on Tunnel Fires of Hydrogen
Sep 2021
Publication
As one of the most promising renewable green energies hydrogen power is a popularly accepted option to drive automobiles. Commercial application of fuel cell vehicles has been started since 2015. More and more hydrogen safety concerns have been considered for years. Tunnels are an important part of traffic infrastructure with a mostly confined feature. Hydrogen leak followed possibly by a hydrogen fire is a potential accident scenario which can be triggered trivially by a car accident while hydrogen powered vehicles operate in a tunnel. Water spray is recommended traditionally as a mitigation measure against tunnel fires. The interaction between water spray and hydrogen fire is studied in a way of numerical simulations. By using the computer program of Fire Dynamics Simulator (FDS) tunnel fires of released hydrogen in different scales are simulated coupled with water droplet injections featured in different droplet sizes or varying mass flow rates. The cooling effect of spray on hot gases of hydrogen fires is apparently observed in the simulations. However in some circumstance the turbulence intensified by the water injection can prompt hydrogen combustion which is a negative side-effect of the spray.
No more items...