Safety
The NREL Sensor Laboratory: Status and Future Directions for Hydrogen Detection
Sep 2021
Publication
The NREL Hydrogen Sensor Laboratory was commissioned in 2010 as a resource for the national and international hydrogen community to ensure the availability and proper use of hydrogen sensors. Since then the Sensor Laboratory has provided unbiased verification of hydrogen sensor performance for sensor developers end-users and regulatory agencies and has also provided active support for numerous code and standards development organizations. Although sensor performance assessment remains a core capability the mission of the NREL Sensor Laboratory has expanded toward a more holistic approach regarding the role of hydrogen detection and its implementation strategy for both assurance of facility safety and for process control applications. Active monitoring for detection of unintended releases has been identified as a viable approach for improving facility safety and lowering setbacks. The current research program for the Sensor Laboratory addresses both conventional and advanced developing detection strategies in response to the emerging large-scale hydrogen markets such as those envisioned by H2@Scale. These emerging hydrogen applications may require alternative detection strategies that supplement and may ultimately supplant the use of traditional sensors for monitoring hydrogen releases. Research focus areas for the NREL Sensor Laboratory now encompass the characterization of released hydrogen behavior to optimize detection strategies for both indoor and outdoor applications assess advanced methods of hydrogen leak detection such as hydrogen wide area monitoring for large scale applications implement active monitoring as a risk reduction strategy to improve safety at hydrogen facilities and to provide continuing support of hydrogen safety codes and standards. In addition to assurance of safety detection will be critical for process control applications such as hydrogen fuel quality verification for fuel cell vehicle applications and for monitoring and controlling of hydrogen-natural gas blend composition.
Development of Risk Mitigation Guidance for Hydrogen Sensor Placement Indoors and Outdoors
Sep 2021
Publication
Guidance on Sensor Placement remains one of the top priorities for the safe deployment of hydrogen and fuel cell equipment in the commercial marketplace. Building on the success of Phase l work reported at TCHS20l9 and published in TJHE this paper discusses the consecutive steps to further develop and validate such guidance for mechanically ventilated enclosures. The key step included a more in-depth analysis of sensitivity to variation of physical parameters in a small enclosure. and finally expansion of the developed approach to confined spaces in an outdoor environment.
Shock Tube Experiments on Flame Propagation Regimes and Critical Conditions for Flame Acceleration and Detonation Transition for Hydrogen-air Mixtures at Cryogenic Temperatures
Sep 2021
Publication
A series of more than 100 experiments with hydrogen-air mixtures at cryogenic temperatures have been performed in a shock tube in the frame of the PRESLHY project. A wide range of hydrogen concentrations from 8 to 60%H2 in the shock tube of the length of 5 m and 50 mm id was tested at cryogenic temperatures from 80 to 130K at ambient pressure. Flame propagation regimes were investigated for all hydrogen compositions in the shock tube at three different blockage ratios (BR) 0 0.3 and 0.6 as a function of initial temperature. Pressure sensors and InGaAs-photodiodes have been applied to monitor the flame and shock propagation velocity of the process. The experiments at ambient pressure and temperature were conducted as the reference data for cryogenic experiments. A critical expansion ratio for an effective flame acceleration to the speed of sound was experimentally found at cryogenic temperatures. The detonability criterion for smooth and obstructed channels was used to evaluate the detonation cell sizes at cryogenic temperatures as well. The main peculiarities of cryogenic combustion with respect to the safety assessment were that the maximum combustion pressure was several times higher compared to ambient temperature and the run-up-distance to detonation was several times shorter independent of lower chemical reactivity at cryogenic conditions.
An Analysis on the Compressed Hydrogen Storage System for the Fast-Filling Process of Hydrogen Gas at the Pressure of 82 MPa
May 2021
Publication
During the fast-filling of a high-pressure hydrogen tank the temperature of hydrogen would rise significantly and may lead to failure of the tank. In addition the temperature rise also reduces hydrogen density in the tank which causes mass decrement into the tank. Therefore it is of practical significance to study the temperature rise and the amount of charging of hydrogen for hydrogen safety. In this paper the change of hydrogen temperature in the tank according to the pressure rise during the process of charging the high-pressure tank in the process of a 82-MPa hydrogen filling system the final temperature the amount of filling of hydrogen gas and the change of pressure of hydrogen through the pressure reducing valve and the performance of heat exchanger for cooling high-temperature hydrogen were analyzed by theoretical and numerical methods. When high-pressure filling began in the initial vacuum state the condition was called the “First cycle”. When the high-pressure charging process began in the remaining condition the process was called the “Second cycle”. As a result of the theoretical analysis the final temperatures of hydrogen gas were calculated to be 436.09 K for the first cycle of the high-pressure tank and 403.55 for the second cycle analysis. The internal temperature of the buffer tank increased by 345.69 K and 32.54 K in the first cycle and second cycles after high-pressure filling. In addition the final masses were calculated to be 11.58 kg and 12.26 kg for the first cycle and second cycle of the high-pressure tank respectively. The works of the paper can provide suggestions for the temperature rise of 82 MPa compressed hydrogen storage system and offer necessary theory and numerical methods for guiding safe operation and construction of a hydrogen filling system.
Effect of Mechanical Ventilation on Accidental Hydrogen Releases - Large Scale Experiments
Sep 2021
Publication
This paper presents a series of experiments on the effectiveness of existing mechanical ventilation systems during accidental hydrogen releases in confined spaces like underground garages. The purpose was to find the mass flow rate limit hence the TPRD diameter limit that will not require a change in the ventilation system. The experiments were performed in a 40 ft ISO container in Norway and hydrogen gas was used in all experiments. The forced ventilation system was installed with a standard outlet 315 mm diameter. The ventilation parameters during the investigation were British Standard with 10 ACH and British Standard with 6 ACH. The hydrogen releases were obtained through 0.5 mm and 1 mm nozzle from different hydrogen reservoir pressures. Both types of mass flow: constant and blowdown were included in the experimental matrix. The analysis of hydrogen concentration of created hydrogen cloud in the container shows the influence of the forced ventilation on hydrogen releases together with TPRD diameter and reservoir pressure. The generated experimental data will be used to validate a CFD model in the next step.
Fire Spread Scenarios Involving Hydrogen Vehicles
Sep 2021
Publication
Fire spread between vehicles provides a potential risk in parking areas with many vehicles. Several reported very large fires caused the loss of a great number of vehicles. These fires seem to be in contradiction to the European design rules for car parks assuming only a very limited number of vehicles may be on fire at the same time. The fire spread in a car park environment is dependent on many factors of both the vehicles and the structure e.g. the latter has an impact on the rate of fire spread due to reradiation of the vehicles heat release. Therefore a CFD model is established to develop a tool to assess vehicles and better understand fire scenarios in different structures. Further the model enables testing of building design to prevent and mitigate such fires scenarios involving hydrogen vehicles. In this study a real layout of a car park is modelled to investigate the effects of hydrogen emergency releases that have used different TPRD diameters. The results provide insight into the behaviour of hydrogen cars and the release pattern of the TPRD's as well as the temperature development of the concrete ceiling and concrete beams above the cars. It shows that the TPRD diameter has a little effect on the TPRD activation time of the no.1 vehicle when the amount of H2 in the tank is the same. For the surface temperature of the ceiling and beam the peak temperature for a 1mm diameter TPRD release is found highest.
Hydrogen Leakage Simulation and Risk Analysis of Hydrogen Fueling Station in China
Sep 2022
Publication
Hydrogen is a renewable energy source with various features clean carbon-free high energy density which is being recognized internationally as a “future energy.” The US the EU Japan South Korea China and other countries or regions are gradually clarifying the development position of hydrogen. The rapid development of the hydrogen energy industry requires more hydrogenation infrastructure to meet the hydrogenation need of hydrogen fuel cell vehicles. Nevertheless due to the frequent occurrence of hydrogen infrastructure accidents their safety has become an obstacle to large-scale construction. This paper analyzed five sizes (diameters of 0.068 mm 0.215 mm 0.68 mm 2.15 mm and 6.8 mm) of hydrogen leakage in the hydrogen fueling station using Quantitative Risk Assessment (QRA) and HyRAM software. The results show that unignited leaks occur most frequently; leaks caused by flanges valves instruments compressors and filters occur more frequently; and the risk indicator of thermal radiation accident and structure collapse accident caused by over-pressure exceeds the Chinese individual acceptable risk standard and the risk indicator of a thermal radiation accident and head impact accident caused by overpressure is below the Chinese standard. On the other hand we simulated the consequences of hydrogen leak from the 45 MPa hydrogen storage vessels by the physic module of HyRAM and obtained the ranges of plume dispersion jet fire radiative heat flux and unconfined overpressure. We suggest targeted preventive measures and safety distance to provide references for hydrogen fueling stations’ safe construction and operation.
Annealing Effects on SnO2 Thin Film for H2 Gas Sensing
Sep 2022
Publication
Hydrogen (H2 ) is attracting attention as a renewable energy source in various fields. However H2 has a potential danger that it can easily cause a backfire or explosion owing to minor external factors. Therefore H2 gas monitoring is significant particularly near the lower explosive limit. Herein tin dioxide (SnO2 ) thin films were annealed at different times. The as-obtained thin films were used as sensing materials for H2 gas. Here the performance of the SnO2 thin film sensor was studied to understand the effect of annealing and operating temperature conditions of gas sensors to further improve their performance. The gas sensing properties exhibited by the 3-h annealed SnO2 thin film showed the highest response compared to the unannealed SnO2 thin film by approximately 1.5 times. The as-deposited SnO2 thin film showed a high response and fast response time to 5% H2 gas at 300 ◦C of 257.34% and 3 s respectively.
Hydrogen Storage: Recent Improvements and Industrial Perspectives
Sep 2021
Publication
Efficient storage of hydrogen is crucial for the success of hydrogen energy markets. Hydrogen can be stored either as a compressed gas a refrigerated liquefied gas a cryo-compressed gas or in hydrides. This paper gives an overview of compressed hydrogen storage technologies focusing on high pressure storage tanks in metal and in composite materials. It details specific issues and constraints related to the materials and structure behavior in hydrogen and conditions representative of hydrogen energy uses. This paper is an update of the 2019 version that was presented in Australia. It especially covers recent progress made regarding regulations codes and standards for the design manufacturing periodic inspection and plastic materials’ evaluation of compressed hydrogen storage.
Numerical Simulations of Suppression Effect of Water Mist on Hydrogen Deflagration in Confined Spaces
Sep 2021
Publication
Hydrogen safety issues attract focuses increasingly as more and more hydrogen powered vehicles are going to be operated in traffic infrastructures of different kinds like tunnels. Due to the confinement feature of traffic tunnels hydrogen deflagration may pose a risk when a hydrogen leak event occurs in a tunnel e.g. failure of the hydrogen storage system caused by a car accident in a tunnel. A water injection system can be designed in tunnels as a mitigation measure to suppress the pressure and thermal loads of hydrogen combustion in accident scenarios. The COM3D is a fully verified three-dimensional finite-difference turbulent flow combustion code which models gas mixing hydrogen combustion and detonation in nuclear containment with mitigation device or other confined facilities like vacuum vessel of fusion and semi-confined hydrogen facilities in industry such as traffic tunnels hydrogen refueling station etc. Therefore by supporting of the European HyTunnel-CS project the COM3D is applied to simulate numerically the hydrogen deflagration accident in a tunnel model being suppressed by water mist injection. The suppression effect of water mist and the suppression mechanism is elaborated and discussed in the study.
Effect of State of Charge on Type IV Hydrogen Storage Tank Rupture in a Fire
Sep 2021
Publication
The use of hydrogen storage tanks at 100% of nominal working pressure NWP is expected only after refuelling. Driving between refuellings is characterised by the state of charge SoC<100%. There is experimental evidence that Type IV tanks tested in a fire at initial pressures below one-third of its NWP depending on a fire source were leaking without rupture. This paper aims at understanding this phenomenon and the development of a predictive model. The numerical research has demonstrated that the heat transfer from fire through the composite overwrap is sufficient to melt the polymer liner. This initiates hydrogen microleaks through the composite wall before it loses the load-bearing ability when the resin degrades deep enough to cause the tank to rupture. The dependence of tank fire-resistance rating (FRR) on the SoC is presented for tanks of volume in the range 36-244 L. The tank wall thickness non-uniformity i.e. thinner composite at the dome area is identified as a serious issue for tank’s fire resistance that must be addressed by tank manufacturers and OEMs. The effect of the burst pressure ratio on FRR is investigated. It is concluded that thermal parameters of the composite wall i.e. decomposition heat and temperatures play a vital role in simulations of tank failure and thus FRR.
Experimental Study on Flame Characteristics of Cryogenic Hydrogen Jet Fire
Sep 2021
Publication
In this work cryogenic hydrogen fires at fixed pressures and various initial temperatures were investigated experimentally. Flame length width heat fluxes and temperatures in down-stream regions were measured for the scenarios with 1.6-3 mm jet nozzle 106 to 273 K 2-5 barabs. The results show that the flame size is related to not only the jet nozzle diameter but also the release pressure and initial temperature. The correlations of normalized flame length and width are proposed with the stagnation pressure and the ratio of ambient and stagnation temperatures. Under constant pressure the flame size total radiative power and radiation fraction increase with the decrease of temperature due to lower choked flow velocity and higher density of cryogenic hydrogen. The correlation of radiation fraction proposed by Molina et al. at room temperature is not suitable to predict the cryogenic hydrogen jet fires. Based on piecewise polynomial law
Explosive Phase Transition in LH2
Sep 2021
Publication
This paper describes two models for analysing and simulating the physical effects of explosive phase transition of liquid hydrogen (LH2) also known as cold BLEVE. The present work is based on theoretical and experimental work for liquefied CO2. A Rankine Hugoniot analysis for evaporation waves that was previously developed for CO2 is now extended to LH2. A CFD-method for simulating two-phase flow with mass transfer between the phases is presented and compared with the Rankine Hugoniot analysis results. The Rankine Hugoniot method uses real fluid equations of state suited for LH2 while the CFD method uses linear equations of state suited for shock capturing methods. The results show that there will be a blast from a catastrophic rupture of an LH2 vessel and that the blast waves will experience a slow decay due to the large positive pressure phase.
Effect of Flow Speed on Ignition Characteristics of Hydrogen/air Mixtures
Sep 2021
Publication
A fuel cell vehicle has a purging system for exhausting contaminated hydrogen gas. Notwithstanding the allowable hydrogen emissions levels in the purging system are regulated by the GTR a further research on the safety requirement of emissions concentrations is therefore needed for the vehicle design into a more rational system. In the present study the effects of flow speed concentration humidity on ignition characteristics of hydrogen/air mixtures were experimentally investigated. The results demonstrate that the value of Lower Flammable Limit increased with an increase in the velocity of hydrogen/air mixtures and slightly increased with a decrease in oxygen concentration.
Safe Ventilation Methods against Leaks in Hydrogen Fuel Cell Rooms in Homes
Jul 2022
Publication
Hydrogen which has a high energy density and does not emit pollutants is considered an alternative energy source to replace fossil fuels. Herein we report an experimental study on hydrogen leaks and ventilation methods for preventing damage caused by leaks from hydrogen fuel cell rooms in homes among various uses of hydrogen. This experiment was conducted in a temporary space with a volume of 11.484 m3 . The supplied pressure leak-hole size and leakage amount were adjusted as the experimental conditions. The resulting hydrogen concentrations which changed according to the operation of the ventilation openings ventilation fan and supplied shutoff valve were measured. The experimental results showed that the reductions in the hydrogen concentration due to the shutoff valve were the most significant. The maximum hydrogen concentration could be reduced by 80% or more if it is 100 times that of the leakage volume or higher. The shutoff valve ventilation fan and ventilation openings were required to reduce the concentrations of the fuel cell room hydrogen in a spatially uniform manner. Although the hydrogen concentration in a small hydrogen fuel cell room for home use can rapidly increase a rapid reduction in the concentration of hydrogen with an appropriate ventilation system has been experimentally proven.
Assessment of Hydrogen Flame Length Full Bore Pipeline Rupture
Sep 2021
Publication
The study aims at the development of a safety engineering methodology for the assessment of flame length after full-bore rupture of hydrogen pipeline. The methodology is validated using experimental data on hydrogen jet flame from full-bore pipeline rupture by Acton et al. (2010). The experimental pressure dynamics in the hydrogen pipeline system is simulated using previously developed adiabatic and “isothermal” blowdown models. The hydrogen release area is taken as equal similar to the experiment to doubled pipeline cross-section as hydrogen was coming out from both sides of the ruptured pipe. The agreement with the experimental pressure decay in the piping system was achieved using discharge coefficient CD=0.26 and CD=0.21 for adiabatic and “isothermal” blowdown model respectively that indicates significant friction and minor pressure losses. The hydrogen flame length was calculated using the dimensionless correlation by Molkov and Saffers (2013). The correlation relies on the density of hydrogen in the choked flow at the pipe exit. The maximum experimental flame length between 92 m and 111 m was recorded at 6 s after the pipe rupture under the ground. The calculated by the dimensionless correlation flame length is 110 m and 120 m for the “isothermal” and adiabatic blowdown model respectively. This is an acceptable accuracy for such a large-scale experiment. It is concluded that the methodology can be applied as an engineering tool to assess flame length resulting from ruptured hydrogen pipelines.
Analysis of a Large Balloon Explosion Incident
Sep 2021
Publication
On December 19 2017 a large balloon containing about 22 thousand cubic meters of hydrogen was deliberately torn open to initiate deflation at the completion of a filling test. An inadvertent ignition occurred after about two seconds and caused an explosion that produced extensive light damage to a large building near the balloon test pad. The analysis described here includes an estimate of the buoyancy induced mixing into the torn balloon and the blast wave produced by assumed constant flame speed combustion of the 55% to 65% hydrogen-in-air mixture. Comparisons of calculated blast wave pressures are consistent with estimates of the pressure needed to cause the observed building damage for flame speeds in the range 85 m/s to about 100 m/s.
Numerical Study on Shockwave Attenuation by Water Mist in Confined Spaces
Sep 2021
Publication
Hydrogen safety has become the first consideration especially after fuel cell automobiles were pushed into commercial auto market. Tunnels are important parts of traffic infrastructure featured in confinement or semi-confinement. Hydrogen detonation is a potential accident scenario while hydrogen fuel cell vehicles are operated in a traffic tunnel with a confined space. Pressure shockwaves are mostly produced by hydrogen detonation and propagate along the tunnel. As a designed safety measure water mist injection is hopefully to mitigate the pressure loads of such shocks. To model the interaction between shockwaves and water droplets a droplet breakup model has been developed for the COM3D code which is a highly validated three-dimensional hydrogen explosion simulation code. By using the model the hydrogen detonation shockwave propagation in confined volumes is simulated in the study. The attenuation effects of water mist on the pressure shocks in the simulations are elaborated and discussed based on the simulation results.
Quantitive Risk Assessment of the Model Representing Latest Japanese Hydrogen Refuelling Stations
Sep 2021
Publication
Current safety codes and technical standards related to Japanese hydrogen refueling stations (HRSs) have been established based on qualitative risk assessment and quantitative effectiveness validation of safety measures for more than ten years. In the last decade there has been significant development in the technologies and significant increment in operational experience related to HRSs. We performed a quantitative risk assessment (QRA) of the HRS model representing Japanese HRSs with the latest information in the previous study. The QRA results were obtained by summing risk contours derived from each process unit. They showed that the risk contours of 10-3 and 10-4 per year were confined within the HRS boundaries whereas those of 10-5 and 10-6 per year are still present outside the HRS boundaries. Therefore we analyzed the summation of risk contours derived from each unit and identified the largest risk scenarios outside the station. The HRS model in the previous study did not consider fire and blast protection walls which could reduce the risks outside the station. Therefore we conducted a detailed risk analysis of the identified scenarios using 3D structure modeling. The heat radiation and temperature rise of jet fire scenarios that pose the greatest risk to the physical surroundings in the HRS model were estimated in detail based on computational fluid dynamics with 3D structures including fire protection walls. Results show that the risks spreading outside the north- west- and east-side station boundaries are expected to be acceptable by incorporating the fire protection wall into the Japanese HRS model.
Review on the Hydrogen Dispersion and the Burning Behavior of Fuel Cell Electric Vehicles
Oct 2022
Publication
The development of a hydrogen energy-based society is becoming the solution for more and more countries. Fuel cell electric vehicles are the best carriers for developing a hydrogen energy-based society. The current research on hydrogen leakage and the diffusion of fuel cell electric vehicles has been sufficient. However the study of hydrogen safety has not reduced the safety concerns for society and government management departments concerning the large-scale promotion of fuel cell electric vehicles. Hydrogen safety is both a technical and psychological issue. This paper aims to provide a comprehensive overview of fuel cell electric vehicles’ hydrogen dispersion and the burning behavior and introduce the relevant work of international standardization and global technical regulations. The CFD simulations in tunnels underground car parks and multistory car parks show that the hydrogen escape performance is excellent. At the same time the research verifies that the flow the direction of leakage and the vehicle itself are the most critical factors affecting hydrogen distribution. The impact of the leakage location and leakage pore size is much smaller. The relevant studies also show that the risk is still controllable even if the hydrogen leakage rate is increased ten times the limit of GTR 13 to 1000 NL/min and then ignited. Multi-vehicle combustion tests of fuel cell electric vehicles showed that adjacent vehicles were not ignited by the hydrogen. This shows that as long as the appropriate measures are taken the risk of a hydrogen leak or the combustion of fuel cell electric vehicles is controllable. The introduction of relevant standards and regulations also indirectly proves this point. This paper will provide product design guidelines for R&D personnel offer the latest knowledge and guidance to the regulatory agencies and increase the public’s acceptance of fuel cell electric vehicles.
No more items...