Transmission, Distribution & Storage
Enhancing the Hydrogen Storage Properties of AxBy Intermetallic Compounds by Partial Substitution: A Short Review
Dec 2020
Publication
Solid-state hydrogen storage covers a broad range of materials praised for their gravimetric volumetric and kinetic properties as well as for the safety they confer compared to gaseous or liquid hydrogen storage methods. Among them AxBy intermetallics show outstanding performances notably for stationary storage applications. Elemental substitution whether on the A or B site of these alloys allows the effective tailoring of key properties such as gravimetric density equilibrium pressure hysteresis and cyclic stability for instance. In this review we present a brief overview of partial substitution in several AxBy alloys from the long-established AB5 and AB2-types to the recently attractive and extensively studied AB and AB3 alloys including the largely documented solid-solution alloy systems. We not only present classical and pioneering investigations but also report recent developments for each AxBy category. Special care is brought to the influence of composition engineering on desorption equilibrium pressure and hydrogen storage capacity. A simple overview of the AxBy operating conditions is provided hence giving a sense of the range of possible applications whether for low- or high-pressure systems.
The Potential of Hydrogen Hydrate as a Future Hydrogen Storage Medium
Dec 2020
Publication
Hydrogen is recognized as the “future fuel” and the most promising alternative of fossil fuels due to its remarkable properties including exceptionally high energy content per unit mass (142 MJ/kg) low mass density and massive environmental and economical upsides. A wide spectrum of methods in H2 production especially carbon-free approaches H2purification and H2storage have been investigated to bring this energy source closer to the technological deployment. Hydrogen hydrates are among the most intriguing material paradigms for H2storage due to their appealing properties such as low energy consumption for charge and discharge safety cost-effectiveness and favorable environmental features. Here we comprehensively discuss the progress in understanding of hydrogen clathrate hydrates with an emphasis on charging/discharging rate of H2 (i.e. hydrate formation and dissociation rates) and the storage capacity. A thorough understanding on phase equilibrium of the hydrates and its variation through different materials is provided. The path toward ambient temperature and pressure hydrogen batteries with high storage capacity is elucidated. We suggest that the charging rate of H2 in this storage medium and long cyclic performance are more immediate challenges than storage capacity for technological translation of this storage medium. This review and provided outlook establish a groundwork for further innovation on hydrogen hydrate systems for promising future of hydrogen fuel.
Australian Hydrogen Hubs Study
Nov 2019
Publication
Arup have conducted interviews with targeted industry and government stakeholders to gather data and perspectives to support the development of this study. Arup have also utilised private and publicly available data sources building on recent work undertaken by Geoscience Australia and Deloitte and the comprehensive stakeholder engagement process to inform our research. This study considers the supply chain and infrastructure requirements to support the development of export and domestic hubs. The study aims to provide a succinct “Hydrogen Hubs” report for presentation to the hydrogen working group.
The hydrogen supply chain infrastructure required to produce hydrogen for export and domestic hubs was identified along with feedback from the stakeholder engagement process. These infrastructure requirements can be used to determine the factors for assessing export and domestic hub opportunities. Hydrogen production pathways transportation mechanisms and uses were also further evaluated to identify how hubs can be used to balance supply and demand of hydrogen.
A preliminary list of current or anticipated locations has been developed through desktop research Arup project knowledge and the stakeholder consultation process. Over 30 potential hydrogen export locations have been identified in Australia through desktop research and the stakeholder survey and consultation process. In addition to establishing export hubs the creation of domestic demand hubs will be essential to the development of an Australian hydrogen economy. It is for this reason that a list of criteria has been developed for stakeholders to consider in the siting and design of hydrogen hubs. The key considerations explored are based on demand supply chain infrastructure and investment and policy areas.
Based on these considerations a list of criteria were developed to assess the viability of export and domestic hydrogen hubs. Criteria relevant to assessing the suitability of export and domestic hubs include:
A framework that includes the assessment criteria has been developed to aid decision making rather than recommending specific locations that would be most appropriate for a hub. This is because there are so many dynamic factors that go into selecting a location of a hydrogen hub that it is not appropriate to be overly prescriptive or prevent stakeholders from selecting the best location themselves or from the market making decisions based on its own research and knowledge. The developed framework rather provides information and support to enable these decision-making processes.
The hydrogen supply chain infrastructure required to produce hydrogen for export and domestic hubs was identified along with feedback from the stakeholder engagement process. These infrastructure requirements can be used to determine the factors for assessing export and domestic hub opportunities. Hydrogen production pathways transportation mechanisms and uses were also further evaluated to identify how hubs can be used to balance supply and demand of hydrogen.
A preliminary list of current or anticipated locations has been developed through desktop research Arup project knowledge and the stakeholder consultation process. Over 30 potential hydrogen export locations have been identified in Australia through desktop research and the stakeholder survey and consultation process. In addition to establishing export hubs the creation of domestic demand hubs will be essential to the development of an Australian hydrogen economy. It is for this reason that a list of criteria has been developed for stakeholders to consider in the siting and design of hydrogen hubs. The key considerations explored are based on demand supply chain infrastructure and investment and policy areas.
Based on these considerations a list of criteria were developed to assess the viability of export and domestic hydrogen hubs. Criteria relevant to assessing the suitability of export and domestic hubs include:
- Health and safety provisions;
- Environmental considerations;
- Economic and social considerations;
- Land availability with appropriate zoning and buffer distances & ownership (new terminals storage solar PV industries etc.);•
- Availability of gas pipeline infrastructure;
- Availability of electricity grid connectivity backup energy supply or co-location of renewables;
- Road & rail infrastructure (site access);
- Community and environmental concerns and weather. Social licence consideration;
- Berths (berthing depth ship storage loading facilities existing LNG and/or petroleum infrastructure etc.);
- Port potential (current capacity & occupancy expandability & scalability);
- Availability of or potential for skilled workers (construction & operation);
- Availability of or potential for water (recycled & desalinated);
- Opportunity for co-location with industrial ammonia production and future industrial opportunities;
- Interest (projects priority ports state development areas politics etc.);
- Shipping distance to target market (Japan & South Korea);
- Availability of demand-based infrastructure (i.e. refuelling stations).
A framework that includes the assessment criteria has been developed to aid decision making rather than recommending specific locations that would be most appropriate for a hub. This is because there are so many dynamic factors that go into selecting a location of a hydrogen hub that it is not appropriate to be overly prescriptive or prevent stakeholders from selecting the best location themselves or from the market making decisions based on its own research and knowledge. The developed framework rather provides information and support to enable these decision-making processes.
Effect of Low-Temperature Sensitization on Hydrogen Embrittlement of 301 Stainless Steel
Feb 2017
Publication
The effect of metastable austenite on the hydrogen embrittlement (HE) of cold-rolled (30% reduction in thickness) 301 stainless steel (SS) was investigated. Cold-rolled (CR) specimens were hydrogen-charged in an autoclave at 300 or 450 °C under a pressure of 10 MPa for 160 h before tensile tests. Both ordinary and notched tensile tests were performed in air to measure the tensile properties of the non-charged and charged specimens. The results indicated that cold rolling caused the transformation of austenite into α′ and ε-martensite in the 301 SS. Aging at 450 °C enhanced the precipitation of M23C6 carbides G and σ phases in the cold-rolled specimen. In addition the formation of α′ martensite and M23C6 carbides along the grain boundaries increased the HE susceptibility and low-temperature sensitization of the 450 °C-aged 301 SS. In contrast the grain boundary α′-martensite and M23C6 carbides were not observed in the as-rolled and 300 °C-aged specimens
Absence of Spillover of Hydrogen Adsorbed on Small Palladium Clusters Anchored to Graphene Vacancies
May 2021
Publication
Experimental evidence exists for the enhancement of the hydrogen storage capacity of porous carbons when these materials are doped with metal nanoparticles. One of the most studied dopants is palladium. Dissociation of the hydrogen molecules and spillover of the H atoms towards the carbon substrate has been advocated as the reason for the enhancement of the storage capacity. We have investigated this mechanism by performing ab initio density functional molecular dynamics (AIMD) simulations of the deposition of molecular hydrogen on Pd6 clusters anchored on graphene vacancies. The clusters are initially near-saturated with atomic and molecular hydrogen. This condition would facilitate the occurrence of spillover since our energy calculations based on density functional theory indicate that migration of preadsorbed H atoms towards the graphene substrate becomes exothermic on Pd clusters with high hydrogen coverages. However AIMD simulations show that the H atoms prefer to intercalate and absorb within the Pd cluster rather than migrate to the carbon substrate. These results reveal that high activation barriers exist preventing the spillover of hydrogen from the anchored Pd clusters to the carbon substrate.
Energy Management System for Hybrid PV/Wind/Battery/Fuel Cell in Microgrid-Based Hydrogen and Economical Hybrid Battery/Super Capacitor Energy Storage
Sep 2021
Publication
The present work addresses the modelling control and simulation of a microgrid integrated wind power system with Doubly Fed Induction Generator (DFIG) using a hybrid energy storage system. In order to improve the quality of the waveforms (voltages and currents) supplied to the grid instead of a two level-inverter the rotor of the DFIG is supplied using a three-level inverter. A new adaptive algorithm based on combined Direct Reactive Power Control (DRPC) and fuzzy logic controls techniques is applied to the proposed topology. In this work two topologies are proposed. In the first one the active power injected into the grid is smoothened by using an economical hybrid battery and supercapacitor energy storage system. However in the second one the excess wind energy is used to produce and store the hydrogen and then a solid oxide fuel cell system (SOFC) is utilized to regenerate electricity by using the stored hydrogen when there is not enough wind energy. To avoid overcharging deep discharging of batteries to mitigate fluctuations due to wind speed variations and to fulfil the requirement of the load profile a power management algorithm is implemented. This algorithm ensures smooth output power in the first topology and service continuity in the second. The modelling and simulation results are presented and analysed using Matlab/Simulin.
Planning, Optimisation and Evaluation of Small Power-to-Gas-to-Power Systems: Case Study of a German Dairy
May 2022
Publication
In the course of the energy transition distributed hybrid energy systems such as the combination of photovoltaic (PV) and battery storages is increasingly being used for economic and ecological reasons. However renewable electricity generation is highly volatile and storage capacity is usually limited. Nowadays a new storage component is emerging: the power-to-gas-to-power (PtGtP) technology which is able to store electricity in the form of hydrogen even over longer periods of time. Although this technology is technically well understood and developed there are hardly any evaluations and feasibility studies of its widespread integration into current distributed energy systems under realistic legal and economic market conditions. In order to be able to give such an assessment we develop a methodology and model that optimises the sizing and operation of a PtGtP system as part of a hybrid energy system under current German market conditions. The evaluation is based on a multi-criteria approach optimising for both costs and CO2 emissions. For this purpose a brute-force-based optimal design approach is used to determine optimal system sizes combined with the energy system simulation tool oemof.solph. In order to gain further insights into this technology and its future prospects a sensitivity analysis is carried out. The methodology is used to examine the case study of a German dairy and shows that PtGtP is not yet profitable but promising.
Electrochemical Conversion Technologies for Optimal Design of Decentralized Multi-energy Systems: Modeling Framework and Technology Assessment
Apr 2018
Publication
The design and operation of integrated multi-energy systems require models that adequately describe the behavior of conversion and storage technologies. Typically linear conversion performance or fixed data from technology manufacturers are employed especially for new or advanced technologies. This contribution provides a new modeling framework for electrochemical devices that bridges first-principles models to their simplified implementation in the optimization routine. First thermodynamic models are implemented to determine the on/off-design performance and dynamic behavior of different types of fuel cells and of electrolyzers. Then as such nonlinear models are intractable for use in the optimization of integrated systems different linear approximations are developed. The proposed strategies for the synthesis of reduced order models are compared to assess the impact of modeling approximations on the optimal design of multi-energy systems including fuel cells and electrolyzers. This allows to determine the most suitable level of detail for modeling the underlying electrochemical technologies from an integrated system perspective. It is found that the approximation methodology affects both the design and operation of the system with a significant effect on system costs and violation of the thermal energy demand. Finally the optimization and technology modeling framework is exploited to determine guidelines for the installation of the most suitable fuel cell technology in decentralized multi-energy systems. We show how the installation costs of PEMFC SOFC and MCFC their electrical and thermal efficiencies their conversion dynamics and the electricity price affect the system design and technology selection.
Using Additives to Control the Decomposition Temperature of Sodium Borohydride
May 2020
Publication
Hydrogen (H2) shows great promise as zero-carbon emission fuel but there are several challenges to overcome in regards to storage and transportation to make it a more universal energy solution. Gaseous hydrogen requires high pressures and large volume tanks while storage of liquid hydrogen requires cryogenic temperatures; neither option is ideal due to cost and the hazards involved. Storage in the solid state presents an attractive alternative and can meet the U.S. Department of Energy (DOE) constraints to find materials containing > 7 % H2 (gravimetric weight) with a maximum H2 release under 125 °C.
While there are many candidate hydrogen storage materials the vast majority are metal hydrides. Of the hydrides this review focuses solely on sodium borohydride (NaBH4) which is often not covered in other hydride reviews. However as it contains 10.6% (by weight) H2 that can release at 133 ± 3 JK−1mol−1 this inexpensive material has received renewed attention. NaBH4 should decompose to H2g) Na(s) and B(s) and could be recycled into its original form. Unfortunately metal to ligand charge transfer in NaBH4 induces high thermodynamic stability creating a high decomposition temperature of 530 °C. In an effort make H2 more accessible at lower temperatures researchers have incorporated additives to destabilize the structure.
This review highlights metal additives that have successfully reduced the decomposition temperature of NaBH4 with temperatures ranging from 522 °C (titanium (IV) fluoride) to 379 °C (niobium (V) fluoride). We describe synthetic methods employed chemical pathways taken and the challenges of boron derivative formation on H2 cycling. Though no trends can be found across all additives it is our hope that compiling the data here will enable researchers to gain a better understanding of the additives’ influence and to determine how a new system might be designed to make NaBH4 a more viable H2 fuel source.
While there are many candidate hydrogen storage materials the vast majority are metal hydrides. Of the hydrides this review focuses solely on sodium borohydride (NaBH4) which is often not covered in other hydride reviews. However as it contains 10.6% (by weight) H2 that can release at 133 ± 3 JK−1mol−1 this inexpensive material has received renewed attention. NaBH4 should decompose to H2g) Na(s) and B(s) and could be recycled into its original form. Unfortunately metal to ligand charge transfer in NaBH4 induces high thermodynamic stability creating a high decomposition temperature of 530 °C. In an effort make H2 more accessible at lower temperatures researchers have incorporated additives to destabilize the structure.
This review highlights metal additives that have successfully reduced the decomposition temperature of NaBH4 with temperatures ranging from 522 °C (titanium (IV) fluoride) to 379 °C (niobium (V) fluoride). We describe synthetic methods employed chemical pathways taken and the challenges of boron derivative formation on H2 cycling. Though no trends can be found across all additives it is our hope that compiling the data here will enable researchers to gain a better understanding of the additives’ influence and to determine how a new system might be designed to make NaBH4 a more viable H2 fuel source.
Adsorption-Based Hydrogen Storage in Activated Carbons and Model Carbon Structures
Jul 2021
Publication
The experimental data on hydrogen adsorption on five nanoporous activated carbons (ACs) of various origins measured over the temperature range of 303–363 K and pressures up to 20 MPa were compared with the predictions of hydrogen density in the slit-like pores of model carbon structures calculated by the Dubinin theory of volume filling of micropores. The highest amount of adsorbed hydrogen was found for the AC sample (ACS) prepared from a polymer mixture by KOH thermochemical activation characterized by a biporous structure: 11.0 mmol/g at 16 MPa and 303 K. The greatest volumetric capacity over the entire range of temperature and pressure was demonstrated by the densest carbon adsorbent prepared from silicon carbide. The calculations of hydrogen density in the slit-like model pores revealed that the optimal hydrogen storage depended on the pore size temperature and pressure. The hydrogen adsorption capacity of the model structures exceeded the US Department of Energy (DOE) target value of 6.5 wt.% starting from 200 K and 20 MPa whereas the most efficient carbon adsorbent ACS could achieve 7.5 wt.% only at extremely low temperatures. The initial differential molar isosteric heats of hydrogen adsorption in the studied activated carbons were in the range of 2.8–14 kJ/mol and varied during adsorption in a manner specific for each adsorbent.
Light-Driven Hydrogen Evolution Assisted by Covalent Organic Frameworks
Jun 2021
Publication
Covalent organic frameworks (COFs) are crystalline porous organic polymers built from covalent organic blocks that can be photochemically active when incorporating organic semiconducting units such as triazine rings or diacetylene bridges. The bandgap charge separation capacity porosity wettability and chemical stability of COFs can be tuned by properly choosing their constitutive building blocks by extension of conjugation by adjustment of the size and crystallinity of the pores and by synthetic post-functionalization. This review focuses on the recent uses of COFs as photoactive platforms for the hydrogen evolution reaction (HER) in which usually metal nanoparticles (NPs) or metallic compounds (generally Pt-based) act as co-catalysts. The most promising COF-based photocatalytic HER systems will be discussed and special emphasis will be placed on rationalizing their structure and light-harvesting properties in relation to their catalytic activity and stability under turnover conditions. Finally the aspects that need to be improved in the coming years will be discussed such as the degree of dispersibility in water the global photocatalytic efficiency and the robustness and stability of the hybrid systems putting emphasis on both the COF and the metal co-catalyst.
SimSES: A Holistic Simulation Framework for Modeling and Analyzing Stationary Energy Storage Systems
Feb 2022
Publication
The increasing feed-in of intermittent renewable energy sources into the electricity grids worldwide is currently leading to technical challenges. Stationary energy storage systems provide a cost-effective and efficient solution in order to facilitate the growing penetration of renewable energy sources. Major technical and economical challenges for energy storage systems are related to lifetime efficiency and monetary returns. Holistic simulation tools are needed in order to address these challenges before investing in energy storage systems. One of these tools is SimSES a holistic simulation framework specialized in evaluating energy storage technologies technically and economically. With a modular approach SimSES covers various topologies system components and storage technologies embedded in an energy storage application. This contribution shows the capabilities and benefits of SimSES by providing in-depth knowledge of the implementations and models. Selected functionalities are demonstrated with two use cases showing the easy-to-use simulation framework while providing detailed technical analysis for expert users. Hybrid energy storage systems consisting of lithium-ion and redox-flow batteries are investigated in a peak shaving application while various system topologies are analyzed in a frequency containment reserve application. The results for the peak shaving case study show a benefit in favor of the hybrid system in terms of overall cost and degradation behavior in applications that have a comparatively low energy throughput during lifetime. In terms of system topology a cascaded converter approach shows significant improvements in efficiency for the frequency containment reserve application.
Hydrogen-Based Energy Storage Systems for Large-Scale Data Center Applications
Nov 2021
Publication
Global demand for data and data access has spurred the rapid growth of the data center industry. To meet demands data centers must provide uninterrupted service even during the loss of primary power. Service providers seeking ways to eliminate their carbon footprint are increasingly looking to clean and sustainable energy solutions such as hydrogen technologies as alternatives to traditional backup generators. In this viewpoint a survey of the current state of data centers and hydrogen-based technologies is provided along with a discussion of the hydrogen storage and infrastructure requirements needed for large-scale backup power applications at data centers.
A Model-based Parametric and Optimal Sizing of a Battery/Hydrogen Storage of a Real Hybrid Microgrid Supplying a Residential Load: Towards Island Operation
Jun 2021
Publication
In this study the optimal sizing of a hybrid battery/hydrogen Energy Storage System “ESS” is assessed via a model-based parametric analysis in the context of a real hybrid renewable microgrid located in Huelva Spain supplying a real-time monitored residential load (3.5 kW; 5.6 MWh/year) in island mode. Four storage configurations (battery-only H2-only hybrid battery priority and hybrid H2 priority) are assessed under different Energy Management Strategies analysing system performance parameters such as Loss of Load “LL” (kWh;%) Over Production “OP” (kWh;%) round-trip storage efficiency ESS (%) and total storage cost (€) depending on the ESS sizing characteristics. A parallel approach to the storage optimal sizing via both multi-dimensional sensitivity analysis and PSO is carried out in order to address both sub-optimal and optimal regions respectively. Results show that a hybridised ESS capacity is beneficial from an energy security and efficiency point of view but can represent a substantial additional total cost (between 100 and 300 k€) to the hybrid energy system especially for the H2 ESS which presents higher costs. Reaching 100% supply from renewables is challenging and introducing a LL threshold induces a substantial relaxation of the sizing and cost requirements. Increase in battery capacity is more beneficial for the LL abatement while increasing H2 capacity is more useful to absorb large quantities of excess energy. The optimal design via PSO technique is complemented to the parametric study.
Role of Hydrogen-Charging on Nucleation and Growth of Ductile Damage in Austenitic Stainless Steels
May 2019
Publication
Hydrogen energy is a possible solution for storage in the future. The resistance of packaging materials such as stainless steels has to be guaranteed for a possible use of these materials as containers for highly pressurized hydrogen. The effect of hydrogen charging on the nucleation and growth of microdamage in two different austenitic stainless steels AISI316 and AISI316L was studied using in situ tensile tests in synchrotron X-ray tomography. Information about damage nucleation void growth and void shape were obtained. AISI316 was found to be more sensitive to hydrogen compared to AISI316L in terms of ductility loss. It was measured that void nucleation and growth are not affected by hydrogen charging. The effect of hydrogen was however found to change the morphology of nucleated voids from spherical cavities to micro-cracks being oriented perpendicular to the tensile axis.
Phase Field Modelling of Formation and Fracture of Expanding Precipitates
May 2017
Publication
It is a common belief that embedded expanding inclusions are subjected to an internal homogeneous compressive hydrostatic stress. Still cracks that appear in precipitates that occupy a larger volume than the original material are frequently observed. The appearance of cracks has since long been regarded as a paradox. In the present study it is shown that matrix materials that increases its volume even several percent during the precipitation process develop a tensile hydrostatic stress in the centre of the precipitate. This is the result of a complicated mechanical-chemical phase transformation process. The process is here studied using a Landau phase feld model. Before the material is transformed and incorporated in a precipitate it undergoes stretching beyond the elastic strain limit because of the presence of already expanded material. During the phase transformation the accompanying volumetric expansion cannot be fully accommodated which instead creates an internal compressive stress and adds tension in the surrounding material. As the growth of the precipitate proceeds a region with increasing tensile stress develops in the interior of the precipitate. This is suggested to be the most probable cause of the observed cracks. First the mechanics that lead to the tension is computed. The infuence of elastic-plastic properties is studied both for cases both with and without cracks. The growth history from microscopic to macroscopic precipitates is followed and the result is compared with observations of so called hydride blisters that are formed on surfaces of zirconium alloys in the presence of hydrogen. A common practical situation is when the zirconium is in contact with an object of lower temperature. Then the cooled spot attracts hydrogen that make the zirconium transform to a metal hydride with the shape of a blister. The simulations predicts a final size and position of the growing crack that compares well with the experimental observations.
Brittle Fracture Manifestation in Gas Pipeline Steels after Long-term Operation
Dec 2020
Publication
Gas pipelines are exposed to operational loads combined with corrosive environment action during their long-term service. Complicated service conditions lead to a worsening of steel properties a reduction of serviceability of the whole object therefore a risk of its premature failure rises. Aware of the importance of the existing problem the aim of this study is the analysis of various mechanical properties of steels after their long-term operation on gas pipelines and detecting and evaluating fractographic signs of this degradation.<br/>Mechanical properties of operated pipe steels characterizing their brittle fracture resistance were significantly decreased. Delamination areas as one of a feature of brittle fracture were identified on the fracture surfaces of specimens after SSRT of the operated steels in corrosive environment. Fracture was initiated from the outer surface of the specimens along the boundaries of ferrite and pearlite grains with significant secondary cracking.<br/>The obvious texture in the steels affects noticeably the results of the impact tests. Higher KCV values for the specimens cut in the longitudinal direction relative to the pipe axis comparing with the specimens of transversal orientation were obtained. This was explained by different length of narrow pearlite strips alternated by wide ferrite bands and interrupted by individual ferrite grains depending on the orientation of the specimen fracture surface relative to the pipe axis. Thus a proper direction of specimen cutting to achieve the maximum sensitivity of KCV parameter to operational degradation of steels is discussed. The effect of specimen orientation on the results of the Charpy testing becomes much more pronounced with steel operation. Defects accumulated in steels during their service are preferentially oriented in the pipe axial direction along the boundaries between ferrite and pearlite strips. Analyzing the fracture surfaces of the Charpy specimens after their impact testing certain signs of embrittlement were found for long term operated steels in the form of delaminations varying in size and shape and some cleavage fragments. Furthermore their percentage of total fracture surface (generally formed by dimples) correlates well with a drop in the impact toughness. The established relationship could be the basis for the introduction of fractographic criteria of the steel serviceability.
Recent Research Progress in Hybrid Photovoltaic–Regenerative Hydrogen Fuel Cell Microgrid Systems
May 2022
Publication
Hybrid photovoltaic–regenerative hydrogen fuel cell (PV-RHFC) microgrid systems are considered to have a high future potential in the effort to increase the renewable energy share in the form of solar PV technology with hydrogen generation storage and reutilization. The current study provides a comprehensive review of the recent research progress of hybrid PV-RHFC microgrid systems to extract conclusions on their characteristics and future prospects. The different components that can be integrated (PV modules electrolyzer and fuel cell stacks energy storage units power electronics and controllers) are analyzed in terms of available technology options. The main modeling and optimization methods and control strategies are discussed. Additionally various application options are provided which differentiate in terms of scale purpose and further integration with other power generating and energy storage technologies. Finally critical analysis and discussion of hybrid PV-RHFC microgrid systems were conducted based on their current status. Overall the commercialization of hybrid PV-RHFC microgrid systems requires a significant drop in the RHFC subsystem capital cost. In addition it will be necessary to produce complete hybrid PV-RHFC microgrid systems with integrated energy management control capabilities to avoid operational issues and ensure flexibility and reliability of the energy flow in relation to supply storage and demand.
A Numerical and Graphical Review of Energy Storage Technologies
Dec 2014
Publication
More effective energy production requires a greater penetration of storage technologies. This paper takes a looks at and compares the landscape of energy storage devices. Solutions across four categories of storage namely: mechanical chemical electromagnetic and thermal storage are compared on the basis of energy/power density specific energy/power efficiency lifespan cycle life self-discharge rates capital energy/power costs scale application technical maturity as well as environmental impact. It’s noted that virtually every storage technology is seeing improvements. This paper provides an overview of some of the problems with existing storage systems and identifies some key technologies that hold promise.
Research on Carbide Characteristics and Their Influence on the Properties of Welding Joints for 2.25Cr1Mo0.25V Steel
Feb 2021
Publication
The carbide characteristics of 2.25Cr1Mo0.25V steel have an extremely important influence on the mechanical properties of welding joints. In addition hydrogen resistance behavior is crucial for steel applied in hydrogenation reactors. The carbide morphology was observed by scanning electron microscopy (SEM) and the carbide microstructure was characterized by transmission electron microscopy (TEM). Tensile and impact tests were carried out and the influence of carbides on properties was studied. A hydrogen diffusion test was carried out and the hydrogen brittleness resistance of welding metal and base metal was studied by tensile testing of hydrogenated samples to evaluate the influence of hydrogen on the mechanical properties. The research results show that the strength of the welding metal was slightly higher and the Charpy impact value was significantly lower compared to the base metal. The hydrogen embrittlement resistance of the welding metal was stronger than that of the base metal. The presence of more carbides and inclusions was the main cause of the decreased impact property and hydrogen brittleness resistance of the welding metal. These conclusions have certain reference value for designing and manufacturing hydrogenation reactors. View Full-Text
No more items...