Transmission, Distribution & Storage
Hydrogenization of Underground Storage of Natural Gas
Aug 2015
Publication
The intermittent production of the renewable energy imposes the necessity to temporarily store it. Large amounts of exceeding electricity can be stored in geological strata in the form of hydrogen. The conversion of hydrogen to electricity and vice versa can be performed in electrolyzers and fuel elements by chemical methods. The nowadays technical solution accepted by the European industry consists of injecting small concentrations of hydrogen in the existing storages of natural gas. The progressive development of this technology will finally lead to the creation of underground storages of pure hydrogen. Due to the low viscosity and low density of hydrogen it is expected that the problem of an unstable displacement including viscous fingering and gravity overriding will be more pronounced. Additionally the injection of hydrogen in geological strata could encounter chemical reactivity induced by various species of microorganisms that consume hydrogen for their metabolism. One of the products of such reactions is methane produced from Sabatier reaction between H2 and CO2. Other hydrogenotrophic reactions could be caused by acetogenic archaea sulfate-reducing bacteria and iron-reducing bacteria. In the present paper a mathematical model is presented which is capable to reflect the coupled hydrodynamic and bio-chemical processes in UHS. The model has been numerically implemented by using the open source code DuMuX developed by the University of Stuttgart. The obtained bio-chemical version of DuMuX was used to model the evolution of a hypothetical underground storage of hydrogen. We have revealed that the behavior of an underground hydrogen storage is different than that of a natural gas storage. Both the hydrodynamic and the bio-chemical effects contribute to the different characteristics.
The Impact of Rock Morphology on Gas Dispersion in Underground Hydrogen Storage
Jul 2025
Publication
Fluid dispersion directly influences the transport mixing and efficiency of hydrogen storage in depleted gas reservoirs. Pore structure parameters such as pore size throat geometry and connectivity influence the complexity of flow pathways and the interplay between advective and diffusive transport mechanisms. Hence these factors are critical for predicting and controlling flow behavior in the reservoirs. Despite its importance the relationship between pore structure and dispersion remains poorly quantified particularly under elevated flow conditions. To address this gap this study employs pore network modeling (PNM) to investigate the influence of sandstone and carbonate structures on fluid flow properties at the micro-scale. Eleven rock samples comprising seven sandstone and four carbonate were analyzed. Pore network extraction from CT images was used to obtain detailed pore structure parameters and their statistical measures. Pore-scale simulations were conducted across 60 scenarios with varying average interstitial velocities and water as the injected fluid. Effluent hydrogen concentrations were measured to generate elution curves as a function of injected pore volumes (PV). This approach enables the assessment of the relationship between the dispersion coefficient and pore structure parameters across all rock samples at consistent average interstitial velocities. Additionally dispersivity and n-exponent values were calculated and correlated with pore structure parameters.
Optimal Design and Analysis of a Hybrid Hydrogen Energy Storage System for an Island-Based Renewable Energy Community
Oct 2023
Publication
Installations of decentralised renewable energy systems (RES) are becoming increasing popular as governments introduce ambitious energy policies to curb emissions and slow surging energy costs. This work presents a novel model for optimal sizing for a decentralised renewable generation and hybrid storage system to create a renewable energy community (REC) developed in Python. The model implements photovoltaic (PV) solar and wind turbines combined with a hybrid battery and regenerative hydrogen fuel cell (RHFC). The electrical service demand was derived using real usage data from a rural island case study location. Cost remuneration was managed with an REC virtual trading layer ensuring fair distribution among actors in accordance with the European RED(III) policy. A multi-objective genetic algorithm (GA) stochastically determines the system capacities such that the inherent trade-off relationship between project cost and decarbonisation can be observed. The optimal design resulted in a levelized cost of electricity (LCOE) of 0.15 EUR/kWh reducing costs by over 50% compared with typical EU grid power with a project internal rate of return (IRR) of 10.8% simple return of 9.6%/year and return on investment (ROI) of 9 years. The emissions output from grid-only use was reduced by 72% to 69 gCO2 e/kWh. Further research of lifetime economics and additional revenue streams in combination with this work could provide a useful tool for users to quickly design and prototype future decentralised REC systems.
Subsurface Porous Media Hydrogen Storage - Scenario Development and Simulation
Aug 2015
Publication
Subsurface porous media hydrogen storage could be a viable option to mitigate shortages in energy supply from renewable sources. In this work a scenario for such a storage is developed and the operation is simulated using a numerical model. A hypothetical storage site is developed based on an actual geological structure. The results of the simulations show that the storage can supply about 20 % of the average demand in electrical energy of the state of Schleswig-Holstein Germany for a week-long period.
Looking Beyond Compressed Hydrogen Storage for Sweden: Opportunities and Barriers for Chemical Hydrides
Jun 2024
Publication
As Sweden takes its first steps towards a hydrogen-based economy a strategic approach to infrastructure development for both storage and delivery becomes necessary. Although compressed hydrogen is currently the state-of-the-art its low volumetric density and associated high capital costs pose challenges to widespread societal deployment of hydrogen. In order to avoid technological lock-in alternatives storage technologies including chemical hydrides e.g. methanol ammonia methane and LOHC must also be explored. These alternatives offer higher hydrogen densities safer handling and compatibility with existing infrastructure. However each hydride has unique chemical and physical properties requires distinct feedstock and conversion processes and interacts with the energy system in different ways all of which influences their suitability for various applications. Therefore a comprehensive evaluation of these alternative hydrogen storage technologies as carried out in this article is vital to allow for informed investment decisions and pave the way towards a successful and sustainable hydrogen economy.
A Multi-period Sustainable Hydrogen Supply Chain Model Considering Pipeline Routing and Carbon Emissions: The Case Study of Oman
Nov 2022
Publication
This paper presents a mathematical model for a multi-period hydrogen supply chain design problem considering several design features not addressed in other studies. The model is formulated as a mixed-integer program allowing the production and storage facilities to be extended over time. Pipeline and tube trailer transport modes are considered for carrying hydrogen. The model also allows finding the optimal pipeline routes and the number of transport units. The objective is to obtain an efficient supply chain design within a given time frame in a way that the demand and carbon dioxide emissions constraints are satisfied and the total cost is minimized. A computer program is developed to ease the problem-solving process. The computer program extracts the geographical information from Google Maps and solves the problem using an optimization solver. Finally the applicability of the proposed model is demonstrated in a case study from Oman.
Lightweight Type-IV Hydrogen Storage Vessel Boss Based on Optimal Sealing Structure
Jun 2024
Publication
The seal and weight of the Type IV hydrogen storage vessel are the key problems restricting the safety and driving range of fuel cell vehicles. The boss as a metal medium connecting the inner liner of the Type IV hydrogen storage vessel with the external pipeline affects the sealing performance of the Type IV hydrogen storage vessel and there is no academic research on the weight of the boss. Therefore according to the force characteristics of the boss this paper divides the upper and lower areas (valve column and plate). The valve column with seal optimization and light weight is manufactured with a 3D printing additive while the plate bearing and transferring the internal pressure load is manufactured by forging. Firstly a two-dimensional axisymmetric simulation model of the sealing ring was established and the effects of different compression rates on its seal performance were analyzed. Then the size and position of the sealing groove were sampled simulated and optimized based on the Latin Hypercube method and the reliability of the optimal seal structure was verified by experiments. Finally the Solid Isotropic Material with Penalization (SIMP) topology method was used to optimize the weight of the boss with optimal sealing structure and the reconstructed model was checked and analyzed. The results show that the weight of the optimized boss is reduced by 9.6%.
Prediction of Mixing Uniformity of Hydrogen Injection in Natural Gas Pipeline Based on a Deep Learning Model
Nov 2022
Publication
It is economical and efficient to use existing natural gas pipelines to transport hydrogen. The fast and accurate prediction of mixing uniformity of hydrogen injection in natural gas pipelines is important for the safety of pipeline transportation and downstream end users. In this study the computational fluid dynamics (CFD) method was used to investigate the hydrogen injection process in a T-junction natural gas pipeline. The coefficient of variation (COV) of a hydrogen concentration on a pipeline cross section was used to quantitatively characterize the mixing uniformity of hydrogen and natural gas. To quickly and accurately predict the COV a deep neural network (DNN) model was constructed based on CFD simulation data and the main influencing factors of the COV including flow velocity hydrogen blending ratio gas temperature flow distance and pipeline diameter ratio were taken as input nodes of the DNN model. In the model training process the effects of various parameters on the prediction accuracy of the DNN model were studied and an accurate DNN architecture was constructed with an average error of 4.53% for predicting the COV. The computational efficiency of the established DNN model was also at least two orders of magnitude faster than that of the CFD simulations for predicting the COV.
Numerical Research on Leakage Characteristics of Pure Hydrogen/Hydrogen-Blended Natural Gas in Medium- and Low-Pressure Buried Pipelines
Jun 2024
Publication
To investigate the leakage characteristics of pure hydrogen and hydrogen-blended natural gas in medium- and low-pressure buried pipelines this study establishes a three-dimensional leakage model based on Computational Fluid Dynamics (CFD). The leakage characteristics in terms of pressure velocity and concentration distribution are obtained and the effects of operational parameters ground hardening degree and leakage parameters on hydrogen diffusion characteristics are analyzed. The results show that the first dangerous time (FDT) for hydrogen leakage is substantially shorter than for natural gas emphasizing the need for timely leak detection and response. Increasing the hydrogen blending ratio accelerates the diffusion process and decreases the FDT posing greater risks for pipeline safety. The influence of soil hardening on gas diffusion is also examined revealing that harder soils can restrict gas dispersion thereby increasing localized concentrations. Additionally the relationship between gas leakage time and distance is determined aiding in the optimal placement of gas sensors and prediction of leakage timing. To ensure the safe operation of hydrogen-blended natural gas pipelines practical recommendations include optimizing pipeline operating conditions improving leak detection systems increasing pipeline burial depth and selecting materials with higher resistance to hydrogen embrittlement. These measures can mitigate risks associated with hydrogen leakage and enhance the overall safety of the pipeline infrastructure.
Impact of Capillary Pressure Hysteresis and Injection-withdrawal Scehemes on Performance of Underground Hydrogen Storage
Oct 2023
Publication
Underground hydrogen storage in depleted hydrocarbon reservoirs and aquifers has been proposed as a potential long-term solution to storing intermittently produced renewable electricity as the subsurface formations provide secure and large storage space. Various phenomena can lead to hydrogen loss in subsurface systems with the key cause being the trapping especially during the withdrawal cycle. Capillary trapping in particular is strongly related to the hysteresis phenomena observed in the capillary pressure/saturation and relative-permeability/saturation curves. This paper address two key points: (1) the sole impact of hysteresis in capillary pressure on hydrogen trapping during withdrawal cycles and (2) the dependency of optimal operational parameters (injection/withdrawal flow rate) and the reservoir characteristics such as permeability thickness and wettability of the porous medium on the remaining hydrogen saturation.<br/>Model<br/>To study the capillary hysteresis during underground hydrogen storage Killough [1] model was implemented in the MRST toolbox [2]. A comparative study was performed to quantify the impact of changes in capillary pressure behaviour by including and excluding the hysteresis and scanning curves. Additionally this study investigates the impact of injection/withdrawal rates and the aquifer permeability for various capillary and Bond numbers in a homogeneous system.<br/>Findings<br/>It was found that although the hydrogen storage efficiency is not considerably impacted by the inclusion of the capillary-pressure scanning curves the impact of capillary pressure on the well properties (withdrawal rate and pressure) can become significant. Higher injection and withdrawal rates does not necessarily lead to a better performance in terms of productivity. The productivity enhancement depends on the competition between gravitational capillary and viscous forces. The observed water upconing at relatively high capillary numbers resulted in low hydrogen productivity. highlighting the importance of well design and placement.
Underground Storage of Hydrogen and Hydrogen/methane Mixtures in Porous Reservoirs: Influence of Reservoir Factors and Engineering Choices on Deliverability and Storage Operations
Jul 2023
Publication
Seasonal storage of natural gas (NG) which primarily consists of methane (CH4) has been practiced for more than a hundred years at underground gas storage (UGS) facilities that use depleted hydrocarbon reservoirs saline aquifers and salt caverns. To support a transition to a hydrogen (H2) economy similar facilities are envisioned for long-duration underground H2 storage (UHS) of either H2 or H2/CH4 mixtures. Experience with UGS can be used to guide the deployment of UHS so we identify and quantify factors (formation/fluid properties and engineering choices) that influence reservoir behavior (e.g. viscous fingering and gravity override) the required number of injection/withdrawal wells and required storage volume contrasting the differences between the storage of CH4 H2 and H2/CH4 mixtures. The most important engineering choices are found to be the H2 fraction in H2/CH4 mixtures storage depth and injection rate. Storage at greater depths (higher pressure) but with relatively lower temperature is more favorable because it maximizes volumetric energy-storage density while minimizing viscous fingering and gravity override due to buoyancy. To store an equivalent amount of energy storing H2/CH4 mixtures in UHS facilities will require more wells and greater reservoir volume than corresponding UGS facilities. We use our findings to make recommendations about further research needed to guide deployment of UHS in porous reservoirs.
Battery and Hydrogen Energy Storage Control in a Smart Energy Network with Flexible Energy Demand Using Deep Reinforcement Learning
Sep 2023
Publication
Smart energy networks provide an effective means to accommodate high penetrations of variable renewable energy sources like solar and wind which are key for the deep decarbonisation of energy production. However given the variability of the renewables as well as the energy demand it is imperative to develop effective control and energy storage schemes to manage the variable energy generation and achieve desired system economics and environmental goals. In this paper we introduce a hybrid energy storage system composed of battery and hydrogen energy storage to handle the uncertainties related to electricity prices renewable energy production and consumption. We aim to improve renewable energy utilisation and minimise energy costs and carbon emissions while ensuring energy reliability and stability within the network. To achieve this we propose a multi-agent deep deterministic policy gradient approach which is a deep reinforcement learning-based control strategy to optimise the scheduling of the hybrid energy storage system and energy demand in real time. The proposed approach is model-free and does not require explicit knowledge and rigorous mathematical models of the smart energy network environment. Simulation results based on real-world data show that (i) integration and optimised operation of the hybrid energy storage system and energy demand reduce carbon emissions by 78.69% improve cost savings by 23.5% and improve renewable energy utilisation by over 13.2% compared to other baseline models; and (ii) the proposed algorithm outperforms the state-of-the-art self-learning algorithms like the deep-Q network.
Nanomaterials: Paving the Way for the Hydrogen Energy Frontier
Jan 2024
Publication
This comprehensive review explores the transformative role of nanomaterials in advancing the frontier of hydrogen energy specifcally in the realms of storage production and transport. Focusing on key nanomaterials like metallic nanoparticles metal–organic frameworks carbon nanotubes and graphene the article delves into their unique properties. It scrutinizes the application of nanomaterials in hydrogen storage elucidating both challenges and advantages. The review meticulously evaluates diverse strategies employed to overcome limitations in traditional storage methods and highlights recent breakthroughs in nanomaterial-centric hydrogen storage. Additionally the article investigates the utilization of nanomaterials to enhance hydrogen production emphasizing their role as efcient nanocatalysts in boosting hydrogen fuel cell efciency. It provides a comprehensive overview of various nanocatalysts and their potential applications in fuel cells. The exploration extends to the realm of hydrogen transport and delivery specifcally in storage tanks and pipelines ofering insights into the nanomaterials investigated for this purpose and recent advancements in the feld. In conclusion the review underscores the immense potential of nanomaterials in propelling the hydrogen energy frontier. It emphasizes the imperative for continued research aimed at optimizing the properties and performance of existing nanomaterials while advocating for the development of novel nanomaterials with superior attributes for hydrogen storage production and transport. This article serves as a roadmap shedding light on the pivotal role nanomaterials can play in advancing the development of clean and sustainable hydrogen energy technologies.
Optimal Design of Hydrogen-based Storage with a Hybrid Renewable energy System Considering Economic and Environmental Uncertainties
Dec 2023
Publication
Hydrogen and electricity derived from renewable sources present feasible alternative energy options for the decarbonisation of the transportation and power sectors. This study presents the utilisation of hydrogen generated from solar and wind energy resources as a clean fuel for mobility and backup storage for stationary applications under economic and environmental uncertainties. This is achieved by developing a detailed technoeconomic model of an integrated system consisting of a hydrogen refuelling station and an electric power generation system using Mixed Integer Quadratic Constrained Programming (MIQCP) which is further relaxed to Mixed Integer Linear Programming (MILP). The model is implemented in the Advanced Interactive Multidi mensional Modelling Software (AIMMS) and considering the inherent uncertainties in the wind resource solar resource costs and discount rate the total cost of the three configurations (Hybrid PV-Wind Standalone PV and Standalone wind energy system) was minimised using robust optimisation technique and the corresponding optimal sizes of the components levelised cost of energy (LCOE) excess energy greenhouse emission avoided and carbon tax were evaluated. The levelised cost of the deterministic optimisation solution for all the config uration ranges between 0.0702 $/kWh to 0.0786 $/kWh while the levelised cost of the robust optimisation solution ranges between 0.07188 $/kWh to 0.1125 $/kWh. The proposed integration has the advantages of affordable hydrogen and electricity prices minimisation of carbon emissions and grid export of excess energy.
A Review on the Factors of Liner Collapse in Type IV Hydrogen Storage Vessels
Sep 2023
Publication
The on-board hydrogen storage of mobile applications is a key area of global industrial transformation to hydrogen technology. The research work provides an overview about the principle of hydrogen fuel cell vehicles with a focus on the widespread on-board hydrogen storage technologies. In this work type IV composite pressure vessels in particular are reviewed. The key challenges of polymeric liners are deeply investigated and liner collapse was identified as a critical failure of type IV vessels. Different factors of liner collapse were categorized and relevant material properties - such as permeability physical characteristics and surface properties - were explained in more detail to lay the foundation for further research on high barrier durable polymeric liner materials.
Solid Air Hydrogen Liquefaction, the Missing Link of the Hydrogen Economy
Mar 2023
Publication
The most challenging aspect of developing a green hydrogen economy is long-distance oceanic transportation. Hydrogen liquefaction is a transportation alternative. However the cost and energy consumption for liquefaction is currently prohibitively high creating a major barrier to hydrogen supply chains. This paper proposes using solid nitrogen or oxygen as a medium for recycling cold energy across the hydrogen liquefaction supply chain. When a liquid hydrogen (LH2) carrier reaches its destination the regasification process of the hydrogen produces solid nitrogen or oxygen. The solid nitrogen or oxygen is then transported in the LH2 carrier back to the hydrogen liquefaction facility and used to reduce the energy consumption cooling gaseous hydrogen. As a result the energy required to liquefy hydrogen can be reduced by 25.4% using N2 and 27.3% using O2. Solid air hydrogen liquefaction (SAHL) can be the missing link for implementing a global hydrogen economy.
Materials on the Frontier: A Review on Groundbreaking Solutions for Hydrogen Storage Applications
Mar 2025
Publication
As global energy shifts toward sustainable solutions switching to sustainable energy particularly those involving energy storage from hydrogen relies on effective storage technologies. This is necessary for harnessing the potential of hydrogen as a clean energy carrier. This review discussed the latest advancements in materials designed to improve hydrogen storage efficiency safety and scalability. The articles reported different storage materials such as metal hydrides chemical hydrides advanced adsorbents and their challenges and prospects. Developing innovations like nanostructured and hybrid materials are explained showing how these cutting-edge approaches improve hydrogen kinetics. However despite the advancements challenges like feasibility and sustainability remain. Hence this study discusses these barriers through life cycle assessments and recycling. Moreover the study offers an understanding of the applications of these materials illustrating their prospects to simplify a hydrogen economy. Through examining current research and identifying important trends the article aims to illuminate the way forward for materials science in hydrogen storage applications. The findings highlight the importance of material development and emphasise the collaborative efforts researchers require to realise the potential of hydrogen as a keystone of sustainable energy systems.
Well Integrity in Salt Cavern Hydrogen Storage
Jul 2024
Publication
Underground hydrogen storage (UHS) in salt caverns is a sustainable energy solution to reduce global warming. Salt rocks provide an exceptional insulator to store natural hydrogen as they have low porosity and permeability. Nevertheless the salt creeping nature and hydrogeninduced impact on the operational infrastructure threaten the integrity of the injection/production wells. Furthermore the scarcity of global UHS initiatives indicates that investigations on well integrity remain insufficient. This study strives to profoundly detect the research gap and imperative considerations for well integrity preservation in UHS projects. The research integrates the salt critical characteristics the geomechanical and geochemical risks and the necessary measurements to maintain well integrity. The casing mechanical failure was found as the most challenging threat. Furthermore the corrosive and erosive effects of hydrogen atoms on cement and casing may critically put the well integrity at risk. The research also indicated that the simultaneous impact of temperature on the salt creep behavior and hydrogen-induced corrosion is an unexplored area that has scope for further research. This inclusive research is an up-to-date source for analysis of the previous advancements current shortcomings and future requirements to preserve well integrity in UHS initiatives implemented within salt caverns.
Potential Hydrogen Storage Complexes: Short-time Microwave-assisted Synthesis, Characterization, Thermodynamic, and International Relations
Feb 2025
Publication
This work included preparing and characterizing new platinum complexes with the ligand 345 -trimethoxybenzoic acid (TMB). The reactions were carried out using a n autoclave in microwave within 3 minutes only in an alkali medium of triethylamine where two moles of TMB reacted with one mole of platinum ion and two moles of PPh 3 or with one mole of diphosphines (Bis(diphenylphosphino)x; x=methane (dppm) ethane (dppe) propane (dppp) ferrocene (dppf)). The prepared complexes were characterized by measuring melting points and by the techniques of (C.H.N) molar electrical conductivity FT -IR and 1 H -NMR. The characterization results demonstrated that the TMB ligand behaves as a bidentate ligand through the oxygen atom of the carboxylic groups and its geometric shape is a square planar around the platinum ion. The complex formed with high yield ([Pt(TMB) 2(dppf)]) was used in hydrogen storage application. The storage isotherm showed that the complex has a high storage capacity of about 4.2 wt% at 61 bar under low temperature (77 K). The study showed that the thermodynamic functions were -0.67KJ/mol and -3.6 J/mol H 2 for enthalpy and entropy indicating the occurrence of physical hydrogen storage.
Comparative Study of Hydrogen Storage and Metal Hydride Systems: Future Energy Storage Solutions
May 2025
Publication
Hydrogen is a key energy carrier playing a vital role in sustainable energy systems. This review provides a comparative analysis of physical chemical and innovative hydrogen storage methods from technical environmental and economic perspectives. It has been identified that compressed and liquefied hydrogen are predominantly utilized in transportation applications while chemical transport is mainly supported by liquid organic hydrogen carriers (LOHC) and ammonia-based systems. Although metal hydrides and nanomaterials offer high hydrogen storage capacities they face limitations related to cost and thermal management. Furthermore artificial intelligence (AI)- and machine learning (ML)-based optimization techniques are highlighted for their potential to enhance energy efficiency and improve system performance. In conclusion for hydrogen storage systems to achieve broader applicability it is recommended that integrated approaches be adopted—focusing on innovative material development economic feasibility and environmental sustainability
No more items...