Transmission, Distribution & Storage
Hydrogen Storage Technology, and Its Challenges: A Review
Mar 2025
Publication
This paper aims to present an overview of the current state of hydrogen storage methods and materials assess the potential benefits and challenges of various storage techniques and outline future research directions towards achieving effective economical safe and scalable storage solutions. Hydrogen is recognized as a clean secure and costeffective green energy carrier with zero emissions at the point of use offering significant contributions to reaching carbon neutrality goals by 2050. Hydrogen as an energy vector bridges the gap between fossil fuels which produce greenhouse gas emissions global climate change and negatively impact health and renewable energy sources which are often intermittent and lack sustainability. However widespread acceptance of hydrogen as a fuel source is hindered by storage challenges. Crucially the development of compact lightweight safe and cost-effective storage solutions is vital for realizing a hydrogen economy. Various storage methods including compressed gas liquefied hydrogen cryocompressed storage underground storage and solid-state storage (material-based) each present unique advantages and challenges. Literature suggests that compressed hydrogen storage holds promise for mobile applications. However further optimization is desired to resolve concerns such as low volumetric density safety worries and cost. Cryo-compressed hydrogen storage also is seen as optimal for storing hydrogen onboard and offers notable benefits for storage due to its combination of benefits from compressed gas and liquefied hydrogen storage by tackling issues related to slow refueling boil-off and high energy consumption. Material-based storage methods offer advantages in terms of energy densities safety and weight reduction but challenges remain in achieving optimal stability and capacities. Both physical and material-based storage approaches are being researched in parallel to meet diverse hydrogen application needs. Currently no single storage method is universally efficient robust and economical for every sector especially for transportation to use hydrogen as a fuel with each method having its own advantages and limitations. Moreover future research should focus on developing novel materials and engineering approaches in order to overcome existing limitations provide higher energy density than compressed hydrogen and cryo-compressed hydrogen storage at 70 MPa enhance costeffectiveness and accelerate the deployment of hydrogen as a clean energy vector.
Modeling the Impact of Hydrogen Embrittlement on the Fracture Toughness of Low-Carbon Steel Using a Machine Learning Approach
May 2025
Publication
This study aims to advance the understanding of hydrogen embrittlement (HE) in low-carbon and low-alloy steels by developing a predictive framework for assessing fracture toughness (FT) a critical parameter for mitigating HE in hydrogen infrastructure. A machine learning (ML) model was constructed by analyzing data from relevant literature to evaluate the fracture toughness of steels exposed to hydrogen environments. Seven ML modeling techniques were initially considered with four selected for detailed evaluation based on predictive accuracy. The chosen modeling techniques were k-nearest neighbors (KNN) random forest (RF) gradient boosting (GB) and decision tree regression (DT). The selected models were further evaluated for their predictive accuracy and reliability and the best model was used to perform parametric studies to investigate the impact of relevant parameters on FT. According to the results the KNN model demonstrated reliable predictive performance supported by high R-squared values and low error metrics. Among the variables considered hydrogen pressure and yield strength emerged as the most influential with hydrogen pressure alone accounting for 32% of the variation in FT. The model revealed a distinct trend in FT behavior showing a significant decline at low hydrogen pressures (0–6.9 MPa) and a plateau at higher pressures (>8 MPa) indicating a saturation point. Alloying element contents specifically those of carbon and phosphorus also played a notable role in FT prediction. Additionally the study confirmed that low concentrations of oxygen (
Technical Feasibility Analysis of Green Energy Storage Options and Hornsea Wind Farms
Apr 2025
Publication
The global transition towards clean energy sources is becoming essential to reduce reliance on conventional fuels and mitigate carbon emissions. In the future the clean energy storage landscape green hydrogen and green ammonia (powered by renewable energy sources) are emerging as key players. This study explores the prospectives and feasibility of producing and storing offshore green hydrogen and green ammonia. The potential power output of Hornsea one and Hornsea two winds farms in the United Kingdom was calculated using real wind data. The usable electricity from the Hornsea one wind farm was 5.83 TWh/year and from the Hornsea two wind farm it was 6.44 TWh/year harnessed to three different scenarios for the production and storage of green ammonia and green hydrogen. Scenario 1 fulfil the requirement of green hydrogen storage for flexible ammonia production but consumes more energy for green hydrogen compression. Scenario 2 does not offer any hydrogen storage which is not favourable in terms of flexibility and market demand. Scenario 3 offers both a direct routed supply of produced hydrogen for green ammonia synthesis and a storage facility for green hydrogen storage. Detailed mathematical calculations and sensitivity analysis was performed based on the total energy available to find out the energy storage capacity in terms of the mass of green hydrogen and green ammonia produced. Sensitivity analysis in the case of scenario 3 was conducted to determine the optimal percentage of green hydrogen going to the storage facility. Based on the cost evaluation of three different presented scenarios the levelized cost of hydrogen (LCOH) is between USD 5.30 and 5.97/kg and the levelized cost of ammonia (LCOA) is between USD 984.16 and USD 1197.11/tonne. These prices are lower compared to the current UK market. The study finds scenario 3 as the most appropriate way in terms of compression energy savings flexibility for the production and storage capacity that depends upon the supply and demand of these green fuels in the market and a feasible amount of green hydrogen storage.
The Role of Long-term Hydrogen Storage in Decarbonizing Remote Communities in Canada: An Optimization Framework with Economic, Environmental and Social Objectives
Nov 2024
Publication
Many small Canadian communities lack access to electricity grids relying instead on costly and polluting diesel generators despite the local availability of renewable energies like solar and wind. The intermittent nature of these sources limits reliable power supply; thus hydrogen is proposed as a cost-effective and ecofriendly long-term energy storage solution. However it remains uncertain whether hydrogen storage can significantly contribute to a 100% renewable energy system (100RES) given the diverse characteristics of these communities. Additionally the potential for fully renewable infrastructure to reduce costs mitigate adverse environmental impacts and enhance social impact is still unclear. A multi-period optimization model that balances economic environmental and social objectives to determine the optimal configuration of 100RESs for isolated communities is introduced and utilized to evaluate hydrogen as an energy storage solution to seasonal fluctuations. By identifying the best combinations of technologies tailored to local conditions and priorities this study offers valuable insights for policymakers supporting the transition to sustainable energy and achieving national climate goals. The results demonstrate that hydrogen could serve as an excellent longterm energy storage option to address energy shortages during the winter. Different combinations and sizes of energy generation and storage technologies are selected based on the characteristics of each community. For instance a community in the northern territories with high wind speeds low solar radiation extremely low temperatures and limited biomass resources should optimally rely on wind turbines to meet 80.7% of its total energy demand resulting in a 62.0% cost reduction and a 49.5% decrease in environmental impact compared to the existing diesel-based system. By 2050 all communities are projected to reduce energy costs per capita with northern territories achieving 33% and coastal areas achieving 55% cost reductions eventually leading to the utilization of hydrogen as the main energy storage medium.
Biogeochemical Interactions and Their Role in European Underground Hydrogen Storage
Sep 2025
Publication
Integrating renewable energy requires robust large-scale storage solutions to balance intermittent supply. Underground hydrogen storage (UHS) in geological formations such as salt caverns depleted hydrocarbon reservoirs or aquifers offers a promising way to store large volumes of energy for seasonal periods. This review focuses on the biological aspects of UHS examining the biogeochemical interactions between H2 reservoir minerals and key hydrogenotrophic microorganisms such as sulfate-reducing bacteria methanogens acetogens and iron-reducing bacteria within the gas–liquid–rock–microorganism system. These microbial groups use H2 as an electron donor triggering biogeochemical reactions that can affect storage efficiency through gas loss and mineral dissolution–precipitation cycles. This review discusses their metabolic pathways and the geochemical interactions driven by microbial byproducts such as H2S CH4 acetate and Fe2+ and considers biofilm formation by microbial consortia which can further change the petrophysical reservoir properties. In addition the review maps 76 ongoing European projects focused on UHS showing 71% target salt caverns 22% depleted hydrocarbon reservoirs and 7% aquifers with emphasis on potential biogeochemical interactions. It also identifies key knowledge gaps including the lack of in situ kinetic data limited field-scale monitoring of microbial activity and insufficient understanding of mineral–microbe interactions that may affect gas purity. Finally the review highlights the need to study microbial adaptation over time and the influence of mineralogy on tolerance thresholds. By analyzing these processes across different geological settings and integrating findings from European research initiatives this work evaluates the impact of microbial and geochemical factors on the safety efficiency and long-term performance of UHS.
Laboratory Evaluation of Cyclic Underground Hydrogen Storage in the Temblor Sandstone of the San Joaquin Basin, California
Jun 2025
Publication
Underground Hydrogen Storage (UHS) in depleted oil and gas reservoirs could provide a cost-effective solution to balance seasonal fluctuations in renewable energy generation. However data and knowledge on UHS at subsurface conditions are limited so it is difficult to estimate how effective this type of storage could be. In this study we perform high pressure experiment to measure the effectiveness of cyclic hydrogen (H2) storage in a specimen of Temblor sandstone retrieved from the San Joaquin Basin of California. Our experiment mimics reservoir pressure conditions to measure H2-brine relative permeability and fluid-rock interactions over the course of ten charging and discharging cycles. Initial gas breakthrough occurred at 15 % to 25 % H2 saturation in the specimen with 3 % NaCl brine as the resident fluid. Continuing injecting to 4 pore volumes (PV) of H2 yielded an asymptotic H2 saturation of 38 % to 41 % a level often referred to as the irreducible gas saturation based on two-phase flow. The boundary condition in this study mimics the near wellbore region which experiences bidirectional H2 flow. This bi-directional flow led to evaporative drying of the specimen resulting in 94 % H2 saturation at the end of 10th cycle. This indicates that cyclic flow and evaporative drying can lead to more efficient reservoir storage where a larger fraction of the reservoir porosity is usable to store H2. The produced gas stream consisted of H2 mixed with 8 % to 22 % H2O indicating formation dry-out by evaporation. Meanwhile produced water chemistry indicated calcite and silicate dissolution with calcite sourced from fossil fragments. This led to a loss of cementation and weakened the rock sample. Combined our results indicate dry-out compaction increased H2 saturation rock weakening and permeability loss during cyclic UHS. Overall we anticipate that the combined effects should lead to higher than anticipated UHS storage efficiency per volume of sandstone reservoir rock.
Hydrogen Storage with Gravel and Pipes in Lakes and Reservoirs
Sep 2024
Publication
Climate change is projected to have substantial economic social and environmental impacts worldwide. Currently the leading solutions for hydrogen storage are in salt caverns and depleted natural gas reservoirs. However the required geological formations are limited to certain regions. To increase alternatives for hydrogen storage this paper proposes storing hydrogen in pipes filled with gravel in lakes hydropower and pumped hydro storage reservoirs. Hydrogen is insoluble in water non-toxic and does not threaten aquatic life. Results show the levelized cost of hydrogen storage to be 0.17 USD kg−1 at 200 m depth which is competitive with other large scale hydrogen storage options. Storing hydrogen in lakes hydropower and pumped hydro storage reservoirs increases the alternatives for storing hydrogen and might support the development of a hydrogen economy in the future. The global potential for hydrogen storage in reservoirs and lakes is 3 and 12 PWh respectively. Hydrogen storage in lakes and reservoirs can support the development of a hydrogen economy in the future by providing abundant and cheap hydrogen storage.
Design and Analysis of Hydrogen Storage Tank with Different Materials by Ansys
Dec 2019
Publication
Pressure vessels are used for large commercial and industrial applications such as softening filtration and storage. It is expected that high-pressure hydrogen storage vessels will be widely used in hydrogen-fuelled vehicles. Progressive failure properties the burst pressure and fatigue life should be taken into account in the design of composite pressure vessels. In this work the model and analysis of hydrogen storage vessels along with complete structural and thermal analysis. Liquid hydrogen is seen as an outstanding candidate for the fuel of high altitude long-endurance unmanned aircraft. The design of lightweight and super-insulated storage tanks for cryogenic liquid hydrogen is since long identified as crucial to enable the adoption of the liquid hydrogen. The basic structural design of the airborne cryogenic liquid hydrogen tank was completed in this paper. The problem of excessive heat leakage of the traditional support structure was solved by designing and using a new insulating support structure. The thermal performance of the designed tank was evaluated. The structure of the tank was analyzed by the combination of the film container theory and finite element numerical simulation method. The structure of the adiabatic support was analyzed by using the Hertz contact theory and numerical simulation method. A simple and effective structure analysis method for a similar container structure and point-contact support structure was provided. Bases for further structural optimization design of hydrogen tank will be provided also. The analysis will be carried out with different materials like titanium nickel alloy and some coated powders like alumina Titania and zirconium oxide. The results will be compared with that.
Design, Analysis, and Testing of a Type V Composite Pressure Vessel for Hydrogen Storage
Dec 2024
Publication
Hydrogen as a zero-emission fuel produces only water when used in fuel cells making it a vital contributor to reducing greenhouse gas emissions across industries like transportation energy and manufacturing. Efficient hydrogen storage requires lightweight high-strength vessels capable of withstanding high pressures to ensure the safe and reliable delivery of clean energy for various applications. Type V composite pressure vessels (CPVs) have emerged as a preferred solution due to their superior properties thus this study aims to predict the performance of a Type V CPV by developing its numerical model and calculating numerical burst pressure (NBP). For the validation of the numerical model a Hydraulic Burst Pressure test is conducted to determine the experimental burst pressure (EBP). The comparative study between NBP and EBP shows that the numerical model provides an accurate prediction of the vessel’s performance under pressure including the identification of failure locations. These findings highlight the potential of the numerical model to streamline the development process reduce costs and accelerate the production of CPVs that are manufactured by prepreg hand layup process (PHLP) using carbon fiber/epoxy resin prepreg material.
Gas Storage in Geological Formations: A Comparative Review on Carbon Dioxide and Hydrogen Storage
Feb 2024
Publication
Carbon dioxide and hydrogen storage in geological formations at Gt scale are two promising strategies toward net-zero carbon emissions. To date investigations into underground hydrogen storage (UHS) remain relatively limited in comparison to the more established knowledge body of underground carbon dioxide storage (UCS). Despite their analogous physical processes can be used for accelerating the advancements in UHS technology the existing distinctions possibly may hinder direct applicability. This review therefore contributes to advancing our fundamental understanding on the key differences between UCS and UHS through multi-scale comparisons. These comparisons encompass key factors influencing underground gas storage including storage media trapping mechanisms and respective fluid properties geochemical and biochemical reactions and injection scenarios. They provide guidance for the conversion of our existing knowledge from UCS to UHS emphasizing the necessity of incorporating these factors relevant to their trapping and loss mechanisms. The article also outlines future directions to address the crucial knowledge gaps identified aiming to enhance the utilisation of geological formations for hydrogen and carbon dioxide storage.
Hydrogen Diffusion into Water and Cushion Gases - Relevance for Hydrogen Geo-storage
Dec 2024
Publication
Hydrogen (H2) has been recognized as a promising solution to reduce carbon dioxide (CO2) emissions. H2 is considered a green energy carrier for energy storage transport and usage and it can be produced from renewable energy resources (such as solar hydropower and wind energy). However H2 is a highly diffusive compound compared to other natural gases raising concerns about the possibility of H2 loss in geo-storage (e.g. in underground geological formations such as depleted oil/gas reservoirs aquifers or shale formations) or H2 leak via pipelines when blending H2 with natural gas in existing pipeline systems. Thus understanding H2 diffusion in subsurface formations and pipeline systems is vital. However despite its importance only limited data is available to assess the above situations. Therefore in this study molecular dynamics simulations were used to predict the self-diffusion coefficients of H2 in water and cushion gases (CH4 and N2) at relevant geothermal conditions (i.e. 300 K–373 K and pressures up to 50 MPa). The findings showed that H2 self-diffusion in methane and nitrogen increases with increasing temperature but decreases with increasing pressure. However H2 selfdiffusion in water increases with increasing temperature but is not impacted by increasing or decreasing pres sure. The results also indicated that the rate of H2 self-diffusion in cushion gas is faster than in water about exceeding two-digit times. Furthermore the outcomes reported extended or new data on H2 self-diffusion for the binary system of H2–H2O H2–CH4 and H2–N2. This study is beneficial and contributes to assessing efficiency and safety for executing H2 transportation and underground hydrogen storage (UHS) schemes.
An Efficient Renewable Hybridization Based on Hydrogen Storage for Peak Demand Reduction: A Rule-based Energy Control and Optimisation Using Machine Learning Techniques
Dec 2022
Publication
The present study proposes and thoroughly examines a novel approach for the effective hybridization of solar and wind sources based on hydrogen storage to increase grid stability and lower peak load. The parabolic trough collector vanadium chloride thermochemical cycle hydrogen storage tank alkaline fuel cells thermal energy storage and absorption chiller make up the suggested smart system. Additionally the proposed system includes a wind turbine to power the electrolyzer unit and minimize the size of the solar system. A rule-based control technique establishes an intelligent two-way connection with energy networks to compensate for the energy expenses throughout the year. The transient system simulation (TRNSYS) tool and the engineering equation solver program are used to conduct a comprehensive techno-economic-environmental assessment of a Swedish residential building. A four-objective optimization utilizing MATLAB based on the grey wolf algorithm coupled with an artificial neural network is used to determine the best trade-off between the indicators. According to the results the primary energy saving carbon dioxide reduction rate overall cost and purchased energy are 80.6 % 219 % 14.8 $/h and 24.9 MWh at optimal conditions. From the scatter distribution it can be concluded that fuel cell voltage and collector length should be maintained at their lowest domain and the electrode area is an ineffective parameter. The suggested renewable-driven smart system can provide for the building’s needs for 70 % of the year and sell excess production to the local energy network making it a feasible alternative. Solar energy is far less effective in storing hydrogen over the winter than wind energy demonstrating the benefits of combining renewable energy sources to fulfill demand. By lowering CO2 emissions by 61758 kg it is predicted that the recommended smart renewable system might save 7719 $ in environmental costs equivalent to 6.9 ha of new reforestation.
Underground Hydrogen Storage in Sandstone Reservoirs: Effects of Geochemical Reactivity of Hydrogen on Reservoir Performance
Jan 2025
Publication
Underground hydrogen storage in porous rocks is a promising method to stabilize renewable energy fluctuations. However data on the geochemical reactivity of hydrogen with reservoir rocks and its potential effects on reservoir performance are limited. This study investigates the geochemical reactivity of hydrogen with Bunt sandstein reservoir sandstones from northern Germany collected at a depth of about 2.5 km. Experiments were performed at 100 ◦C and 150 bar hydrogen partial pressure for four weeks examining scenarios with dry hydrogen synthetic saline fluid with hydrogen synthetic saline fluid with helium (as a control) and an oxidation environment (air). We measured permeability porosity magnetic susceptibility and fluid element concentration before and after the experiments. Results showed no significant mineral changes attributed to hydrogen. Mag netic susceptibility indicated no formation of magnetic minerals such as magnetite and pyrrhotite. Minor var iations in permeability and porosity were attributed to anhydrite dissolution from fluid chemistry nonequilibrium. Overall our findings suggest hydrogen interactions with Buntsandstein sandstone (no pyrite content) at temperatures up to 100 ◦C do not risk hydrogen loss or reservoir performance degradation.
Evaluating the Hydrogen Storage Potential of Shut Down Oil and Gas Fields Along the Norwegian Continental Shelf
Apr 2023
Publication
The underground hydrogen storage (UHS) capacities of shut down oil and gas (O&G) fields along the Norwegian continental shelf (NCS) are evaluated based on the publicly available geological and hydrocarbon production data. Thermodynamic equilibrium and geochemical models are used to describe contamination of hydrogen loss of hydrogen and changes in the mineralogy. The contamination spectrum of black oil fields and retrograde gas fields are remarkably similar. Geochemical models suggest limited reactive mineral phases and meter-scale hydrogen diffusion into the caprock. However geochemical reactions between residual oil reservoir brine host rock and hydrogen are not yet studied in detail. For 23 shut down O&G fields a theoretical maximum UHS capacity of ca. 642 TWh is estimated. We conclude with Frigg Nordost Frigg and Odin as the best-suited shut down fields for UHS having a maximum UHS capacity of ca. 414 TWh. The estimates require verification by site-specific dynamic reservoir models.
Wind–Photovoltaic–Electrolyzer-Underground Hydrogen Storage System for Cost-Effective Seasonal Energy Storage
Nov 2024
Publication
Photovoltaic (PV) and wind energy generation result in low greenhouse gas footprints and can supply electricity to the grid or generate hydrogen for various applications including seasonal energy storage. Designing integrated wind–PV–electrolyzer underground hydrogen storage (UHS) projects is complex due to the interactions between components. Additionally the capacities of PV and wind relative to the electrolyzer capacity and fluctuating electricity prices must be considered in the project design. To address these challenges process modelling was applied using cost components and parameters from a project in Austria. The hydrogen storage part was derived from an Austrian hydrocarbon gas field considered for UHS. The results highlight the impact of the renewable energy source (RES) sizing relative to the electrolyzer capacity the influence of different wind-to-PV ratios and the benefits of selling electricity and hydrogen. For the case study the levelized cost of hydrogen (LCOH) is EUR 6.26/kg for a RES-to-electrolyzer capacity ratio of 0.88. Oversizing reduces the LCOH to 2.61 €/kg when including electricity sales revenues or EUR 4.40/kg when excluding them. Introducing annually fluctuating electricity prices linked to RES generation results in an optimal RES-to-electrolyzer capacity ratio. The RES-to-electrolyzer capacity can be dynamically adjusted in response to market developments. UHS provides seasonal energy storage in areas with mismatches between RES production and consumption. The main cost components are compression gas conditioning wells and cushion gas. For the Austrian project the levelized cost of underground hydrogen storage (LCHS) is 0.80 €/kg with facilities contributing EUR 0.33/kg wells EUR 0.09/kg cushion gas EUR 0.23/kg and OPEX EUR 0.16/kg. Overall the analysis demonstrates the feasibility of integrated RES–hydrogen generation-seasonal energy storage projects in regions like Austria with systems that can be dynamically adjusted to market conditions.
The Impact of Impurity Gases on the Hydrogen Embrittlement Behavior of Pipeline Steel in High-Pressure H2 Environments
May 2024
Publication
The use of hydrogen-blended natural gas presents an efficacious pathway toward the rapid large-scale implementation of hydrogen energy with pipeline transportation being the principal method of conveyance. However pipeline materials are susceptible to hydrogen embrittlement in high-pressure hydrogen environments. Natural gas contains various impurity gases that can either exacerbate or mitigate sensitivity to hydrogen embrittlement. In this study we analyzed the mechanisms through which multiple impurity gases could affect the hydrogen embrittlement behavior of pipeline steel. We examined the effects of O2 and CO2 on the hydrogen embrittlement behavior of L360 pipeline steel through a series of fatigue crack growth tests conducted in various environments. We analyzed the fracture surfaces and assessed the fracture mechanisms involved. We discovered that CO2 promoted the hydrogen embrittlement of the material whereas O2 inhibited it. O2 mitigated the enhancing effect of CO2 when both gases were mixed with hydrogen. As the fatigue crack growth rate increased the influence of impurity gases on the hydrogen embrittlement of the material diminished.
A Thermodynamic Model for Cryogenic Liquid Hydrogen Fuel Tanks
Apr 2024
Publication
Hydrogen is used as a fuel in various fields such as aviation space and automobiles due to its high specific energy. Hydrogen can be stored as a compressed gas at high pressure and as a liquid at cryogenic temperatures. In order to keep liquid hydrogen at a cryogenic temperature the tanks for storing liquid hydrogen are required to have insulation to prevent heat leakage. When liquid hydrogen is vaporized by heat inflow a large pressure is generated inside the tank. Therefore a technology capable of predicting the tank pressure is required for cryogenic liquid hydrogen tanks. In this study a thermodynamic model was developed to predict the maximum internal pressure and pressure behavior of cryogenic liquid hydrogen fuel tanks. The developed model considers the heat inflow of the tank due to heat transfer the phase change from liquid to gas hydrogen and the fuel consumption rate. To verify the accuracy of the proposed model it was compared with the analyses and experimental results in the referenced literature and the model presented good results. A cryogenic liquid hydrogen fuel tank was simulated using the proposed model and it was confirmed that the storage time along with conditions such as the fuel filling ratio of liquid hydrogen and the fuel consumption rate should be considered when designing the fuel tanks. Finally it was confirmed that the proposed thermodynamic model can be used to sufficiently predict the internal pressure and the pressure behavior of cryogenic liquid hydrogen fuel tanks.
Solubility of Water in Hydrogen at High Pressures: A Molecular Simulation Study
Aug 2019
Publication
Hydrogen is one of the most popular alternatives for energy storage. Because of its low volumetric energy density hydrogen should be compressed for practical storage and transportation purposes. Recently electrochemical hydrogen compressors (EHCs) have been developed that are capable of compressing hydrogen up to P = 1000 bar and have the potential of reducing compression costs to 3 kWh/kg. As EHC compressed hydrogen is saturated with water the maximum water content in gaseous hydrogen should meet the fuel requirements issued by the International Organization for Standardization (ISO) when refuelling fuel cell electric vehicles. The ISO 14687−2:2012 standard has limited the water concentration in hydrogen gas to 5 μmol water per mol hydrogen fuel mixture. Knowledge on the vapor liquid equilibrium of H2O−H2 mixtures is crucial for designing a method to remove H2O from compressed H2. To the best of our knowledge the only experimental high pressure data (P > 300 bar) for the H2O−H2 phase coexistence is from 1927 [J. Am. Chem. Soc. 1927 49 65−78]. In this paper we have used molecular simulation and thermodynamic modeling to study the phase coexistence of the H2O−H2 system for temperatures between T = 283 K and T = 423 K and pressures between P = 10 bar and P = 1000 bar. It is shown that the Peng-Robinson equation of state and the Soave Redlich-Kwong equation of state with van der Waals mixing rules fail to accurately predict the equilibrium coexistence compositions of the liquid and gas phase with or without fitted binary interaction parameters. We have shown that the solubility of water in compressed hydrogen is adequately predicted using force-field-based molecular simulations. The modeling of phase coexistence of H2O−H2 mixtures will be improved by using polarizable models for water. In the Supporting Information we present a detailed overview of available experimental vapor−liquid equilibrium and solubility data for the H2O−H2 system at high pressures.
Safe Pipelines for Hydrogen Transport
Jun 2024
Publication
The hydrogen compatibility of two X65 pipeline steels for transport of hydrogen gas is investigated through microstructural characterization hydrogen permeation measurements and fracture mechanical testing. The investigated materials are a quenched and tempered pipeline steel with a fine-grained homogeneously distributed ferrite-bainite microstructure and hot rolled pipeline steel with a ferrite-pearlite banded microstructure. All tests are performed both under electrochemical and gaseous hydrogen charging conditions. A correlation between electrochemical hydrogen charging and gaseous charging is determined. The results point to inherent differences in the interaction between hydrogen and the two material microstructures. Further research is needed to unveil the influence of material microstructure on hydrogen embrittlement.
Lifecycle Management of Hydrogen Pipelines: Design, Maintenance, and Rehabilitation Strategies for Canada’s Clean Energy Transition
Jan 2025
Publication
This paper examines the crucial elements of pipeline-based hydrogen transportation highlighting the particular difficulties and technical developments required to guarantee the sustainable effective and safe supply of hydrogen. This study lists the essential phases of hydrogen pipeline management from design to repair as the relevance of hydrogen infrastructure in the worldwide energy transition continues to rise. It discusses the upkeep monitoring operation and rehabilitation procedures for aged pipelines with an emphasis on the cutting-edge techniques and technology used to mitigate the dangers related to hydrogen’s unique features such as leakage and embrittlement. Together with highlighting the legislative and regulatory frameworks that enable the infrastructure this paper also discusses the material economic and environmental difficulties related to hydrogen pipelines. Lastly it emphasizes how crucial it is to fund research create cutting-edge materials and implement sophisticated monitoring systems to guarantee the long-term dependability and safety of hydrogen pipelines. These initiatives will be crucial in allowing hydrogen’s contribution to the future of renewable energy together with international collaboration on regulatory standards.
No more items...