Transmission, Distribution & Storage
Numerical Estimation of the Structural Integrity in an Existing Pipeline Network for the Transportation of Hydrogen Mixture in the Future
Jan 2025
Publication
Hydrogen is gaining attention due to its potential to address key challenges in the sectors of energy transportation and industry since it is a much cleaner energy source when compared to fossil fuels. The transportation of hydrogen from the point of its production to the point of use can be performed by road rail sea pipeline networks or a combination of the abovementioned. Being in the preliminary stage of hydrogen use the utilization of the already existing natural gas pipeline networks for hydrogen mixtures transportation has been suggested as an efficient means of expanding hydrogen infrastructure. Yet exploring this alternative major challenges such as the pre-existence of cracks in the pipelines and the effect of hydrogen embrittlement on the material of the pipelines exist. In this paper the macroscopic numerical modeling of pipeline segments with the use of the finite element method is performed. In more details the structural integrity of intact and damaged pipeline segments of different geometry and mechanical properties was estimated. The effect of the pipeline geometry and material has been investigated in terms of stress contours with and without the influence of hydrogen. The results suggest that the structural integrity of the pipeline segments is more compromised by pre-existing longitudinal cracks which might lead to an increase in the maximum value of equivalent Von Mises stress by up to four times depending on their length-tothickness ratio. This effect becomes more pronounced with the existence of hydrogen in the pipeline network.
Comparative Analysis of Hydrogen vs. Methane Pipeline Transport Systems with Integrated Methane Pyrolysis for Low-carbon Hydrogen Supply
Jan 2025
Publication
Establishing a climate-neutral energy system is among the most urgent challenges facing humanity with the natural gas network forming a critical component of energy and commodity infrastructure. The hydrogen economy based on climate-neutral hydrogen which serves as both energy source and raw-material for numerous sectors offers a promising pathway for significant reduction in CO2 emissions. However the lack of an extensive hydrogen infrastructure underscores the need for transitional solutions. Given this infrastructure gap and the urgency to establish a reliable and less emission-intensive commodity network methane pyrolysis (MP) emerges as a promising technology for supporting the transition to a climate-neutral energy system. Within this context this study evaluates the intricacies of long-distance pipeline transport of hydrogen (H2) and methane (CH4) focusing on the placement of MP units. The primary goal is to provide “turquoise hydrogen” produced from natural gas via MP along with solid carbon from distant locations to industrial consumers. Two configurations are assessed: Configuration I represents a centralized supply concept transporting molecular hydrogen while Configuration II delivers methane to consumers for on-site hydrogen production. The reference system covers a transport distance of 500 km extending to 4000 km with recompression stations every 125 km. The transport capacity of the hydrogen pipeline is set at 13 GW with the methane mass flow set to match the equivalent hydrogen output chemically bound in methane. A parameter study examines power requirements and global warming impact (GWI) over various transport distances. For distances between 2000 and 4000 km Configuration II requires less power (Δ = 229.4–443.0 MW) and results in GWI savings of 0.25 to 0.37 kgCO2-eq.kgH2−1 owing primarily to the lower specific energy consumption for methane transport compared to hydrogen. The study concludes that the electricity mix of the exporting and importing regions significantly affects the GWI of hydrogen supply with the MP unit contributing a substantial part (6.92 kgCO2-eq.kgH2−1) to the total GWI. The approach of Configuration I is favorable for regions with a low-GWI electricity supply while Configuration II is better suited for regions where the electricity mixes of both the exporting and importing regions are similar.
Review on Onshore and Offshore Large-scale Seasonal Hydrogen Storage for Electricity Generation: Focusing on Improving Compression, Storage, and Roundtrip Efficiency
Jun 2024
Publication
This article presents a comprehensive review of the current landscape and prospects of large-scale hydrogen storage technologies with a focus on both onshore and offshore applications and flexibility. Highlighting the evolving technological advancements it explores storage and compression techniques identifying potential research directions and avenues for innovation. Underwater hydrogen storage and hybrid metal hydride com pressed gas tanks have been identified for offshore buffer storage as well as exploration of using metal hydride slurries to transport hydrogen to/from offshore wind farms coupled with low pressure high flexibility elec trolyser banks. Additionally it explores the role of metal hydride hydrogen compressors and the integration of oxyfuel processes to enhance roundtrip efficiency. With insights into cost-effectiveness environmental and technology considerations and geographical factors this review offers insights for policymakers researchers and industry stakeholders aiming to advance the deployment of large-scale hydrogen storage systems in the transition towards sustainable energy.
Sustainable Hydrogen Generation and Storage - A Review
Aug 2023
Publication
In 21st century the energy demand has grown incredibly due to globalization human population explosion and growing megacities. This energy demand is being mostly fulfilled by fossil-based sources which are non-renewable and a major cause of global warming. Energy from these fossil-based sources is cheaper however challenges exist in terms of climate change. This makes renewable energy sources more promising and viable for the future. Hydrogen is a promising renewable energy carrier for fulfilling the increasing energy demand due to its high energy density non-toxic and environment friendly characteristics. It is a non-toxic energy carrier as combustion of hydrogen produces water as the byproduct whereas other conventional fuels produce harmful gases and carcinogens. Because of its lighter weight hydrogen leaks are also easily dispersed in the atmosphere. Hydrogen is one of the most abundant elements on Earth yet it is not readily available in nature like other fossil fuels. Hence it is a secondary energy source and hydrogen needs to be produced from water or biomass-based feedstock for it to be considered renewable and sustainable. This paper reviews the renewable hydrogen generation pathways such as water splitting thermochemical conversion of biomass and biological conversion technologies. Purification and storage technologies of hydrogen is also discussed. The paper also discusses the hydrogen economy and future prospects from an Indian context. Hydrogen purification is necessary because of high purity requirements in particular applications like space fuel cells etc. Various applications of hydrogen are also addressed and a cost comparison of various hydrogen generation technologies is also analyzed. In conclusion this study can assist researchers in getting a better grasp of various renewable hydrogen generation pathways it's purification and storage technologies along with applications of hydrogen in understanding the hydrogen economy and its future prospect.
Evaluation and Outlook for Australian Renewable Energy Export via Circular Liquid Hydrogen Carriers
Oct 2023
Publication
To combat global temperature rise we need affordable clean and renewable energy that does not add carbon to the atmosphere. Hydrogen is a promising option because it can be used as a carbon-free energy source. However storing and transporting pure hydrogen in liquid or gaseous forms is challenging. To overcome the limitations associated with conventional compressed and liquefied hydrogen or physio-chemical adsorbents for bulk storage and transport hydrogen can be attached to other molecules known as hydrogen carriers. Circular carriers which involve the production of CO2 or nitrogen during the hydrogen recovery process include substances such as methanol ammonia or synthetic natural gas. These carriers possess higher gravimetric and volumetric hydrogen densities (i.e. 12.5 wt% and 11.88 MJ/L for methanol) than cyclic carriers (i.e. 6.1 wt% and 5.66 MJ/L for methylcyclohexane (MCH)) which produce cyclic organic chemicals during dehydrogenation. This makes circular carriers particularly appealing for the Australian energy export market. Furthermore the production-decomposition cycle of circular carriers can be made carbon-neutral if they are derived from renewable H2 sources and combined with atmospheric or biomass-based CO2 or nitrogen. The key parameters are investigated in this study focusing on circular hydrogen carriers relevant to Australia. The parameters are ranked from 0 (worst) to 10 (best) depending on the bandwidth of the parameter in this review. Methanol shows great potential as a cost-effective solution for long-distance transport of renewable energy being a liquid at standard conditions with a boiling point of 64.7 °C. Methane is also an important hydrogen carrier due to the availability of natural gas infrastructure and its role as a significant export product for Australia.
Exploring European Hydrogen Demand Variations under Tactical Uncertainty with Season Hydrogen Storage
Aug 2025
Publication
Achieving a net-zero energy system in Europe by 2050 will likely require large-scale deployment of hydrogen and seasonal energy storage to manage variability in renewable supply and demand. This study addresses two key objectives: (1) to develop a modeling framework that integrates seasonal storage into a stochastic multihorizon capacity expansion model explicitly capturing tactical uncertainty across timescales; and (2) to assess the impact of seasonal hydrogen storage on long-term investment decisions in European power and hydrogen infrastructure under three hydrogen demand scenarios. To this end the multi-horizon stochastic programming model EMPIRE is extended with tactical stages within each investment period enabling operational decisions to be modeled as a multi-stage stochastic program. This approach captures short-term uncertainty while preserving long-term investment foresight. Results show that seasonal hydrogen storage considerably enhances system flexibility displacing the need for up to 600 TWh/yr of dispatchable generation in Europe after 2040 and sizing down cross-border hydrogen transmission capacities by up to 12%. Storage investments increase by factors of 5–14 which increases the investments in variable renewables and improve utilization particularly solar. Scenarios with seasonal storage also show up to 6% lower total system costs and more balanced infrastructure deployment across regions. These findings underline the importance of modeling temporal uncertainty and seasonal dynamics in long-term energy system planning.
Geomechanical and Geochemical Considerations for Hydrogen Storage in Shale and Tight Reservoirs
Aug 2025
Publication
Underground hydrogen storage (UHS) in shale and tight reservoirs offers a promising solution for large-scale energy storage playing a critical role in the transition to a hydrogenbased economy. However the successful deployment of UHS in these low-permeability formations depends on a thorough understanding of the geomechanical and geochemical factors that affect storage integrity injectivity and long-term stability. This review critically examines the geomechanical aspects including stress distribution rock deformation fracture propagation and caprock integrity which govern hydrogen containment under subsurface conditions. Additionally it explores key geochemical challenges such as hydrogen-induced mineral alterations adsorption effects microbial activity and potential reactivity with formation fluids to evaluate their impact on storage feasibility. A comprehensive analysis of experimental studies numerical modeling approaches and field applications is presented to identify knowledge gaps and future research directions.
A Review of Hydrogen Storage and Transportation: Progresses and Challenges
Aug 2024
Publication
This review aims to summarize the recent advancements and prevailing challenges within the realm of hydrogen storage and transportation thereby providing guidance and impetus for future research and practical applications in this domain. Through a systematic selection and analysis of the latest literature this study highlights the strengths limitations and technological progress of various hydrogen storage methods including compressed gaseous hydrogen cryogenic liquid hydrogen organic liquid hydrogen and solid material hydrogen storage as well as the feasibility efficiency and infrastructure requirements of different transportation modes such as pipeline road and seaborne transportation. The findings reveal that challenges such as low storage density high costs and inadequate infrastructure persist despite progress in high-pressure storage and cryogenic liquefaction. This review also underscores the potential of emerging technologies and innovative concepts including metal–organic frameworks nanomaterials and underground storage along with the potential synergies with renewable energy integration and hydrogen production facilities. In conclusion interdisciplinary collaboration policy support and ongoing research are essential in harnessing hydrogen’s full potential as a clean energy carrier. This review concludes that research in hydrogen storage and transportation is vital to global energy transformation and climate change mitigation.
Mechanical Testing Methods for Assessing Hydrogen Embrittlement in Pipeline Steels: A Review
Oct 2025
Publication
As the transport of gaseous hydrogen and its use as a low carbon-footprint energy vector become increasingly likely scenarios both the scientific literature and technical standards addressing the compatibility of pipeline steels with high-pressure hydrogen environments are rapidly expanding. This work presents a detailed review of the most relevant hydrogen embrittlement testing methodologies proposed in standards and the academic literature. The focus is placed on testing approaches that support design-oriented assessments rather than simple alloy qualification for hydrogen service. Particular attention is given to tensile tests (conducted on smooth and notched specimens) as well as to J-integral and fatigue tests performed following the fracture mechanics’ approach. The influences of hydrogen partial pressure and deformation rate are critically examined as these parameters are essential for ensuring meaningful comparisons across different studies.
Prioritization of the Critical Factors of Hydrogen Transportation in Canada Using the Intuitionistic Fuzzy AHP Method
Jun 2025
Publication
Hydrogen is a potential source of imminent clean energy in the future with its transportation playing a crucial role in allowing large-scale deployment. The challenge lies in selecting an effective sustainable and scalable transportation alternative. This study develops a multi-criteria decision-making (MCDM) framework based on the intuitionistic fuzzy analytic hierarchy process (IF-AHP) to evaluate land-based hydrogen transportation alternatives across Canada. The framework includes uncertainty and decision-maker hesitation through the application of triangular intuitionistic fuzzy numbers (TIFNs). Seven factors their subsequent thirty-three subfactors and three alternatives to hydrogen transportation were identified through a literature review. Pairwise comparison was aggregated among factors subfactors and alternatives from three decision makers using an intuitionistic fuzzy weighted average and priority weights were computed using entropy-based weight. The results show that safety and economic efficiency emerged as the most influential factors in the evaluation of hydrogen transportation alternatives followed by environmental impact security and social impact and public health in ascending order. Among the alternatives tube truck transport obtained the highest overall weight (0.3551) followed by pipelines (0.3272) and rail lines (0.3251). The findings suggest that the tube ruck is currently the most feasible transport option for land-based hydrogen distribution that aims to provide a transition of Canada’s energy mix.
A Multi-Stage Resilience Enhancement Method for Distribution Networks Employing Transportation and Hydrogen Energy Systems
Sep 2025
Publication
The resilience and sustainable development of modern power distribution systems faces escalating challenges due to increasing renewable integration and extreme events. Traditional single-system approaches often overlook the spatiotemporal coordination of cross-domain restoration resources. In this paper we propose a multi-stage resilience enhancement method that employs transportation and hydrogen energy systems. This approach coordinates the pre-event preventive allocation and multi-stage collaborative scheduling of diverse restoration resources including remote-controlled switches (RCSs) mobile hydrogen emergency resources (MHERs) and hydrogen production and refueling stations (HPRSs). The proposed framework supports cross-stage dynamic optimization scheduling enabling the development of adaptive resource dispatch strategies tailored to the characteristics of different stages including prevention fault isolation and service restoration. The model is applicable to complex scenarios involving dynamically changing network topologies and is formulated as a mixed-integer linear programming (MILP) problem. Case studies based on the IEEE 33-bus system show that the proposed method can restore a distribution system’s resilience to approximately 87% of its normal level following extreme events.
Altering Carbonate Wettability for Hydrogen Storage: The Role of Surfactant and CO2 Floods
Oct 2025
Publication
Underground hydrogen storage (UHS) in depleted oil and gas fields is pivotal for balancing large-scale renewable-energy systems yet the wettability of reservoir rocks in contact with hydrogen after decades of Enhanced Oil Recovery (EOR) operations remains poorly quantified. This work experimentally investigates how two common EOR legacies cationic surfactant (city-trimethyl-ammonium bromide CTAB) and supercritical carbon dioxide (SC–CO2) flooding alter rock–water–Hydrogen (H2) wettability in carbonate formations. Contact angles were measured on dolomite and limestone rock slabs at 30–75 ◦C and 3.4–17.2 MPa using a high-pressure captive-bubble cell. Crude-oil aging shifted clean dolomite from strongly water-wet (θ ~ 28–29◦) to intermediate-wet (θ ≈ 84◦). Subsequent immersion in dilute CTAB solutions (0.5–2 wt %) fully reversed this effect restoring or surpassing the original water-wetness (θ ≈ 21–28◦). Limestone samples exposed to SC-CO2 at 60–80 ◦C became more hydrophilic (θ ≈ 18–30◦) relative to untreated controls; moderate carbonate dissolution (≤6 × 103 ppm Ca2+) produced the most significant improvement in water-wetness whereas severe dissolution yielded diminishing returns. These findings show that many mature reservoirs are already water-wet (post-CO2) or can be easily re-wetted (via residual CTAB). Across all scenarios sample wettability showed little sensitivity to pressure but higher temperature consistently promoted stronger water-wetness. Future work should include dynamic core-flooding experiments with realistic reservoir.
Evaluating the Potential for Underground Hydrogen Storage (UHS) in Lithuania: A Review of Geological Viability and Storage Integrity
Feb 2025
Publication
The aim of this study is to review and identify H2 storage suitability in geological reservoirs of the Republic of Lithuania. Notably Lithuania can store clean H2 effectively and competitively because of its wealth of resources and well-established infrastructure. The storage viability in Lithuanian geological contexts is highlighted in this study. In addition when it comes to injectivity and storage capacity salt caverns and saline aquifers present less of a challenge than other kinds of storage medium. Lithuania possesses sizable subterranean reservoirs (Cambrian rocks) that can be utilized to store H2. For preliminary assessment the cyclic H2 injection and production simulation is performed. A 10-year simulation of hydrogen injection and recovery in the Syderiai saline aquifer demonstrated the feasibility of UHS though efficiency was reduced by nearly 50% when using a single well for both injection and production. The study suggests using separate wells to improve efficiency. However to guarantee economic injectivity and containment security a detailed assessment of the geological structures is required specifically at the pore scale level. The volumetric approach estimated a combined storage capacity of approximately 898.5 Gg H2 (~11 TWh) for the Syderiai and Vaskai saline aquifers significantly exceeding previous estimates. The findings underscore the importance of detailed geological data and further research on hydrogen-specific factors to optimize UHS in Lithuania. Addressing technical geological and environmental challenges through multidisciplinary research is essential for advancing UHS implementation and supporting Lithuania’s transition to a sustainable energy system. UHS makes it possible to maximize the use of clean energy reduce greenhouse gas emissions and build a more sustainable and resilient energy system. Hence intensive research and advancements are needed to optimize H2 energy for broader applications in Lithuania.
Development of an Experimental Setup for Testing X52 Steel SENT Specimens in Electrolytic Hydrogen to Explore Repurposing Potential of Pipelines
Apr 2025
Publication
Hydrogen is considered a key alternative to fossil fuels in the broader context of ecological transition. Repurposing natural gas pipelines for hydrogen transport is one of the challenges of this approach. However hydrogen can diffuse into metallic lattices leading to hydrogen embrittlement (HE). For this reason typically ductile materials can experience unexpected brittle fractures and it is therefore necessary to assess the HE propensity of the current pipeline network to ensure its fitness for hydrogen transport. This study examines the relationship between the microstructure of the circumferential weld joint in X52 pipeline steel and hydrogen concentration introduced electrolytically. Base material heat affected zone and fused zone were subjected to 1800 3600 7200 and 14400 s of continuous charging with a current density J = − 10 mA/cm2 in an acid solution. Results showed that the fusion zone absorbed the most hydrogen across all charging times while the base material absorbed more hydrogen than the heat-affected zone due to the presence of non-metallic inclusions. Fracture toughness was assessed using single edge notch tension specimens (SENT) in air and electrolytic hydrogen. Results indicate that the base material is particularly vulnerable to hydrogen environments exhibiting the greatest reduction in toughness when exposed to hydrogen compared to air.
Hydrogen Storage Potential in Underground Coal Gasification Cavities: A MD Simulation of Hydrogen Adsorption and Desorption Behavior in Coal Nanopores
May 2025
Publication
Underground hydrogen storage (UHS) in geological formations presents a viable option for long-term large-scale H2 storage. A physical coal model was constructed based on experimental tests and a MD simulation was used to investigate the potential of UHS in underground coal gasification (UCG) cavities. We investigated H2 behavior under various conditions including temperatures ranging from 278.15 to 348.15 K pressures in the range of 5–20 MPa pore sizes ranging from 1 to 20 nm and varying water content. We also examined the competitive adsorption dynamics of H2 in the presence of CH4 and CO2 . The findings indicate that the optimal UHS conditions for pure H2 involve low temperatures and high pressures. We found that coal nanopores larger than 7.5 nm optimize H2 diffusion. Additionally higher water content creates barriers to hydrogen diffusion due to water molecule clusters on coal surfaces. The preferential adsorption of CO2 and CH4 over H2 reduces H2 -coal interactions. This work provides a significant understanding of the microscopic behaviors of hydrogen in coal nanopores at UCG cavity boundaries under various environmental factors. It also confirms the feasibility of underground hydrogen storage (UHS) in UCG cavities.
The Link Between Microstructural Heterogeneity and Hydrogen Redistribution
Jul 2025
Publication
Green hydrogen is likely to play a major role in decarbonising the aviation industry. It is crucial to understand the effects of microstructure on hydrogen redistribution which may be implicated in the embrittlement of candidate fuel system metals. We have developed a multiscale finite element modelling framework that integrates micromechanical and hydrogen transport models such that the dominant microstructural effects can be efficiently accounted for at millimetre length scales. Our results show that microstructure has a significant effect on hydrogen localisation in elastically anisotropic materials which exhibit an interesting interplay between microstructure and millimetre-scale hydrogen redistribution at various loading rates. Considering 316L stainless steel and nickel a direct comparison of model predictions against experimental hydrogen embrittlement data reveals that the reported sensitivity to loading rate may be strongly linked with rate-dependent grain scale diffusion. These findings highlight the need to incorporate microstructural characteristics in hydrogen embrittlement models.
Modeling and Simulation of Coupled Biochemical and Two-phase Compositional Flow in Underground Hydrogen Storage
Aug 2025
Publication
Integrating microbial activity into underground hydrogen storage models is crucial for simulating longterm reservoir behavior. In this work we present a coupled framework that incorporates bio-geochemical reactions and compositional flow models within the Matlab Reservoir Simulation Toolbox (MRST). Microbial growth and decay are modeled using a double Monod formulation with populations influenced by hydrogen and carbon dioxide availability. First a refined Equation of State (EoS) is employed to accurately capture hydrogen dissolution thereby improving phase behavior and modeling of microbial activity. The model is then discretized using a cell-centered finite-volume method with implicit Euler time discretization. A fully coupled fully implicit strategy is considered. Our implementation builds upon MRST’s compositional module by incorporating the Søreide–Whitson EoS microbial reaction kinetics and specific effects such as bio-clogging and molecular diffusion. Through a series of 1D 2D and 3D simulations we analyze the effects of microbialinduced bio-geochemical transformations on underground hydrogen storage in porous media.These results highlight that accounting for bio-geochemical effects can substantially impact hydrogen loss purity and overall storage performance.
Hydrogen Storage Potential of Unlined Granite Rock Caverns: Experimental and Numerical Investigations on Geochemical Interactions
Jun 2025
Publication
Underground Hydrogen Storage (UHS) offers a promising solution for large-scale energy storage yet suitable geological formations are often scarce. Unlined rock caverns (URCs) constructed in crystalline rocks like granite present a novel alternative particularly in regions where salt caverns or porous media are unsuitable. Despite their potential URCs remain largely unexplored for hydrogen storage. This study addresses this gap by providing one of the first comprehensive investigations into the geochemical interactions between hydrogen and granite host rock using a combined experimental and numerical approach. Granite powder samples were exposed to hydrogen and inert gas (N₂) in brine at room temperature and 5 MPa pressure for 14 weeks. Results showed minimal reactivity of silicate minerals with hydrogen indicated by negligible differences in elemental concentrations between H₂ and N₂ atmospheres. A validated geochemical model demonstrated that existing thermodynamic databases can accurately predict silicate‑hydrogen interactions. Additionally a kinetic batch model was developed to simulate long-term hydrogen storage under commercial URC conditions at Haje. The model predicts a modest 0.65 % increase in mineral volume over 100 years due to mineral precipitation which decreases net porosity and potentially enhances hydrogen containment by limiting leakage pathways. These findings support the feasibility of granite URCs for UHS providing a stable long-term storage option in regions lacking traditional geological formations. By filling a critical knowledge gap this study advances scalable hydrogen storage solutions contributing to the development of resilient renewable energy infrastructure.
A Cost-Optimizing Analysis of Energy Storage Technologies and Transmission Lines for Decarbonizing the UK Power System by 2035
Mar 2025
Publication
The UK net zero strategy aims to fully decarbonize the power system by 2035 anticipating a 40–60% increase in demand due to the growing electrification of the transport and heating sectors over the next thirteen years. This paper provides a detailed technical and economic analysis of the role of energy storage technologies and transmission lines in balancing the power system amidst large shares of intermittent renewable energy generation. The analysis is conducted using the cost-optimizing energy system modelling framework REMix developed by the German Aerospace Center (DLR). The obtained results of multiple optimization scenarios indicate that achieving the lowest system cost with a 73% share of electricity generated by renewable energy sources is feasible only if planning rules in England and Wales are flexible enough to allow the construction of 53 GW of onshore wind capacity. This flexibility would enable the UK to become a net electricity exporter assuming an electricity trading market with neighbouring countries. Depending on the scenario 2.4–11.8 TWh of energy storage supplies an average of 11% of the electricity feed-in with underground hydrogen storage representing more than 80% of that total capacity. In terms of storage converter capacity the optimal mix ranges from 32 to 34 GW of lithium-ion batteries 13 to 22 GW of adiabatic compressed air energy storage 4 to 24 GW of underground hydrogen storage and 6 GW of pumped hydro. Decarbonizing the UK power system by 2035 is estimated to cost $37–56 billion USD with energy storage accounting for 38% of the total system cost. Transmission lines supply 10–17% of the total electricity feed-in demonstrating that when coupled with energy storage it is possible to reduce the installed capacity of conventional power plants by increasing the utilization of remote renewable generation assets and avoiding curtailment during peak generation times.
A Multi-objective Decision-making Framework for Renewable Energy Transportation
Aug 2025
Publication
The mismatch in renewable energy generation potential levelized cost and demand across different geographies highlight the potential of a future global green energy economy through the trade of green fuels. This potential and need call for modeling frameworks to make informed decisions on energy investments operations and regulations. In this work we present a multi-objective optimization framework for modeling and optimizing energy transmission strategies considering different generation locations transportation modes and often conflicting objectives of cost environmental impact and transportation risk. An illustrative case study on supplying renewable energy to Germany demonstrates the utility of the framework across diverse options and trade-offs. Sensitivity analysis reveals that the optimal energy carrier and transmission strategy depend on distance demand and existing infrastructure that can be re-purposed. The framework is adaptable across geographies and scales to offer actionable insights to guide investment operational and regulatory decisions in renewable energy and hydrogen supply chains.
No more items...