United Kingdom
Experimental Investigation of the Effects of Simultaneous Hydrogen and Nitrogen Addition on the Emissions and Combustion of a Diesel Engine
Jan 2014
Publication
Overcoming diesel engine emissions trade-off effects especially NOx and Bosch smoke number (BSN) requires investigation of novel systems which can potentially serve the automobile industry towards further emissions reduction. Enrichment of the intake charge with H2 þ N2 containing gas mixture obtained from diesel fuel reforming system can lead to new generation low polluting diesel engines. This paper investigates the effect of simultaneous H2 þ N2 intake charge enrichment on the emissions and combustion of a compression ignition engine. Bottled H2 þ N2 was simultaneously admitted into the intake pipe of the engine in 4% steps starting from 4% (2% H2 þ 2% N2) up to 16% (v/v). The results showed that under specific operating conditions H2 þ N2 enrichment can offer simultaneous NOx BSN and CO emissions reduction. Apart from regulated emissions nitrogen exhaust components were measured. Marginal N2O and zero NH3 emissions were obtained. NO/NO2 ratio increases when speed or load increases. Under low speed low load operation the oxidation of NO is enhanced by the addition of H2 þ N2 mixture. Finally admission of H2 þ N2 has a detrimental effect on fuel consumption
Integrating Housing Stock and Energy System Models as a Strategy to Improve Heat Decarbonisation Assessments
Aug 2014
Publication
The UK government heat strategy is partially based on decarbonisation pathways from the UK MARKAL energy system model. We review how heat provision is represented in UK MARKAL identifying a number of shortcomings and areas for improvement. We present a completely revised model with improved estimations of future heat demands and a consistent representation of all heat generation technologies. This model represents all heat delivery infrastructure for the first time and uses dynamic growth constraints to improve the modelling of transitions according to innovation theory. Our revised model incorporates a simplified housing stock model which is used produce highly-refined decarbonisation pathways for residential heat provision. We compare this disaggregated model against an aggregated equivalent which is similar to the existing approach in UK MARKAL. Disaggregating does not greatly change the total residential fuel consumption in two scenarios so the benefits of disaggregation will likely be limited if the focus of a study is elsewhere. Yet for studies of residential heat disaggregation enables us to vary consumer behaviour and government policies on different house types as well as highlighting different technology trends across the stock in comparison with previous aggregated versions of the model.
Flame Characteristics of Ignited under-expanded Cryogenic Hydrogen Jets
Sep 2021
Publication
The anticipated upscaling of hydrogen energy applications will involve the storage and transport of hydrogen in a cryogenic state. Understanding the potential hazard arising from small leaks in pressurized storage and transport systems is needed to assist safety analysis and development of mitigation measures. The current knowledge of the ignited pressurized cryogenic hydrogen jet flame is limited. Large eddy simulation (LES) with detailed hydrogen chemistry is applied for the reacting flow. The effects of ignition locations are considered and the initial development of the transient flame kernel from the ignition hot spots is analysed. The flame structures namely side flames and envelop flames are observed in the study which are due to the complex interactions between turbulence fuel-air mixing at cryogenic temperature and chemical reactions.
Environmentally-Assisted Cracking of Type 316L Austenitic Stainless Steel in Low Pressure Hydrogen Steam Environments
Aug 2019
Publication
A low pressure superheated hydrogen-steam system has been used to accelerate the oxidation kinetics while keeping the electrochemical conditions similar to those of the primary water in a pressurized water reactor. The initiation has been investigated using a Constant Extension Rate Tensile (CERT) test. Tests were performed on flat tapered specimens made from Type 316L austenitic stainless steel with strain rates of 2×10-6 and 2×10-8 ms-1 at room temperature and at an elevated temperature of 350 °C. R = 1/6 was chosen as a more oxidizing environment and R = 6 was selected as a more reducing environment where the parameter R represents the ratio between the oxygen partial pressure at the Ni/NiO transition and the oxygen partial pressure. Different exposures (1 day and 5 days) prior to loading were investigated post-test evaluation by scanning electron microscopy.
HyDeploy Report: Summary of Procedural Changes During Trial
Aug 2018
Publication
The assessment of appropriate operational procedures to govern the injection of a hydrogen/natural gas blend into the Keele University G3 gas distribution network was a requirement as part of the HyDeploy project. To perform this assessment a group of gas industry experts (from Cadent Northern Gas Networks and Keele University Estates Team) along with scientists and engineers from the Health & Safety Laboratory came together to form an Operational Procedures Forum. This forum came together periodically in various workshops to explore and assess the impact of hydrogen blended gas on all the relevant and current operational procedures that govern the safe transportation and utilisation of natural gas within the Keele University G3 gas distribution network.
The operational procedures assessment has led to a determination as to whether a change is or is not required for relevant operational procedures where a basis of concern existed with respect to the injection of hydrogen blended gas. The report essentially summarises the key points of the basis of concern for different operational procedures by highlighting the key points of the existing procedure and whether this procedure requires modification for the hydrogen blended gas injection trial. Any requirements to modify an existing procedure have been given in this report referencing the source as to where the detailed analysis for the change/no change recommendation has been given.
The forum took into account the associated experimental and research carried out as part of the HyDeploy project such as the assessment of gas characteristics materials impact asset survey of assets on the Keele G3 GDN and impact of hydrogen blended gas on gas detection equipment references to these studies have been given accordingly to associated impacted operational procedures.
The conclusion of the assessment is that there are some operational procedures that are unchanged some that require an increase in the frequency as to how often they are performed and some procedures which require a fundamental modification. Therefore it is necessary that an appropriate training package is built off the back of the results presented in this report and disseminated accordingly to all relevant Operatives that will be responsible for the safety operation and maintenance of the Keele G3 GDN during the hydrogen blend injection period.
Click on Supplements to see the other documents from this report
The operational procedures assessment has led to a determination as to whether a change is or is not required for relevant operational procedures where a basis of concern existed with respect to the injection of hydrogen blended gas. The report essentially summarises the key points of the basis of concern for different operational procedures by highlighting the key points of the existing procedure and whether this procedure requires modification for the hydrogen blended gas injection trial. Any requirements to modify an existing procedure have been given in this report referencing the source as to where the detailed analysis for the change/no change recommendation has been given.
The forum took into account the associated experimental and research carried out as part of the HyDeploy project such as the assessment of gas characteristics materials impact asset survey of assets on the Keele G3 GDN and impact of hydrogen blended gas on gas detection equipment references to these studies have been given accordingly to associated impacted operational procedures.
The conclusion of the assessment is that there are some operational procedures that are unchanged some that require an increase in the frequency as to how often they are performed and some procedures which require a fundamental modification. Therefore it is necessary that an appropriate training package is built off the back of the results presented in this report and disseminated accordingly to all relevant Operatives that will be responsible for the safety operation and maintenance of the Keele G3 GDN during the hydrogen blend injection period.
Click on Supplements to see the other documents from this report
HyDeploy Report: Trial Management
Aug 2018
Publication
The trial management philosophy of HyDeploy has been developed to enable the overall objectives of the project to be achieved; the safe demonstration of operating a Gas Distribution Network (GDN) on a blend of natural gas and hydrogen. This document provides an overview of the management and governance processes associated with the trial itself. The operational and safety related undertakings before during and after the trial are summarised within this report as well as the intrial experimental programme. The detailed operational procedures are covered in HyD-Rep09.<br/>The programme structure of HyDeploy consists of three phases: Phase 1: Enabling work for preparation of GS(M)R Exemption Phase 2: Construction and installation of process equipment and Phase 3: Safe injection of hydrogen – the trial.<br/>This report focuses on Phase 3 which has two parts; the Proving Trial and; the Trial. As Statutory Duty Holder Keele is accountable for operation of the network it owns over the course of the trial. Operation and maintenance of the network will be undertaken according to the provisions of the Exemption on the basis of agreed revised procedures (HyD-Rep09) by Keele and Cadent. A governance process is in place to manage the blending of hydrogen into the network. This isdescribed in Sections 2 and 3.<br/>Safety related undertakings will be actioned before during and after the trial to mitigate risks identified through the house-to-house testing (HyD-Rep06) procedural review (HyD-Rep09) and quantitative risk assessment (HyD-Rep02). This scope of the undertakings includes actions associated with the end appliances the network itself and the process equipment to be installed.<br/>The detail of these undertakings is given in Section 4.<br/>As part of the trial an experimental programme has been designed to provide further evidence relating to the interactions of a hydrogen blend on network materials and end appliances. The experimental programme is detailed in Section 5.<br/>Click the supplements tab to see the other documents from this report
Hy4Heat Domestic Hydrogen Purge Procedures - Work Package 4
Jun 2021
Publication
The aim of this project was to review the current purge standards for UK domestic installations in particular IGEM/UP/1B and carry out experiments to assess the validity of those standards for use in hydrogen in order to understand and recommend safe purge practices for hydrogen in a domestic environment.
This report provides the results and conclusions relating to the relative safety of purging domestic installations to hydrogen compared to Natural Gas and the implications of releasing any purged gas
into an enclosed volume representing a small room.
The two high-level findings from this work are:
The risks with hydrogen are associated with a wide range of flammability with methane the risks are smaller and mainly in lower concentrations of gas in air. Because of this it is particularly important to ensure hydrogen pipes are appropriately purged.
This report provides the results and conclusions relating to the relative safety of purging domestic installations to hydrogen compared to Natural Gas and the implications of releasing any purged gas
into an enclosed volume representing a small room.
The two high-level findings from this work are:
- changeover to hydrogen will result in an increased risk of flammability inside the installation pipework
- changeover to hydrogen will result in a reduced risk of a build-up of flammable gas in any room where purging occurs.
The risks with hydrogen are associated with a wide range of flammability with methane the risks are smaller and mainly in lower concentrations of gas in air. Because of this it is particularly important to ensure hydrogen pipes are appropriately purged.
Establishing the State of the Art for the Definition of Safety Distances for Hydrogen Refuelling Stations
Sep 2021
Publication
Hydrogen is widely considered a clean source of energy from the viewpoint of reduction in carbon dioxide emissions as a countermeasure against global warming and air pollution. Various efforts have been made to develop hydrogen as a viable energy carrier including the implementation of fuel cell vehicles (FCVs) and hydrogen refuelling stations (HRSs). A good network of hydrogen refuelling stations is essential for operating FCVs and several hydrogen refuelling stations have been constructed and are in operation worldwide [1]. However despite the potential benefits of hydrogen its flammability creates significant safety concerns. Furthermore even though the energy density of hydrogen is lower than that of gasoline and there is no carbon present which means the amount of radiant heat flux released during combustion is relatively small hydrogen must be handled at high pressure in order to make the cruising range of a fuel cell vehicle (FCV) equal to that of gasoline-powered vehicles. Therefore it is essential to properly evaluate these safety concerns and take reasonable and effective countermeasures. Approximately 50 accidents and incidents involving HRSs have been reported globally [2]. Sakamoto et al. [2] analysed accidents and incidents at HRSs in Japan and the USA to identify the safety issues. Most types of accidents and incidents are small leakages of hydrogen but some have led to serious consequences such as fire and explosion. Recently there was a serious incident in Norway at Kjørbo where a strong explosion was observed [3] – indeed this was within a short time of two other serious incidents in the USA and South Korea showing that the frequency of such incidents may be higher as deployments increase. Use of hydrogen forklifts (and the associated refuelling infrastructure) is another challenge to consider. Hydrogen refuelling stations are often installed in urban areas facing roads and are readily accessible to everyone. Therefore a key measure to approve the hydrogen refuelling stations is safety distances between the hydrogen infrastructure and the surrounding structures such as office buildings or residential dwellings. Whilst a lot of work has been carried out on safety distances (see e.g. [4-6) the accident scenario assumptions and safety distances varied widely in those studies. As a result no consensus has yet emerged on the safety distances to be used and efforts are still needed to bridge the gap between international standards and local regulations (see e.g. [7-8]). The paper analyses this issue and provides guidance on the way forward.
Delivering Clean Growth: CCUS Cost Challenge Taskforce Report
Jul 2018
Publication
An independent report by the CCUS Cost Challenge Taskforce setting out the industry’s view on how best to progress carbon capture usage and storage (CCUS) in the UK in order to enable the UK to have the option of deploying CCUS at scale during the 2030s subject to costs coming down sufficiently.
Uncomfortable Home Truths - Why Britain Urgently Needs a Low Carbon Heat Strategy Future Gas Series Part 3
Nov 2019
Publication
UK homes are primarily heated by fossil fuels and contribute 13% of UK’s carbon footprint (equivalent to all the UK’s 38.4m cars). The report says this is incompatible with UK climate legislation targeting net-zero economy by 2050. New polling finds that consumers are open to cleaner greener ways to heat their homes into the future but that they are “still in the dark about smarter greener heating solutions and lack access to independent advice to help them make better decisions for their homes pockets and the planet”.<br/><br/>The report – Uncomfortable Home Truths: why Britain urgently needs a low carbon heat strategy – says a bold new national roadmap is needed by 2020 which puts consumers and households at the heart of a revolution in green heat innovation. It recommends the creation of an Olympic-style delivery body to catalyse and coordinate regional innovation and local leadership tailored to different parts of the UK and the nation’s diverse housing stock.<br/><br/>This report is the third in the Future Gas Series which has explored the opportunities and challenges associated with using low carbon gas in the energy system and is backed by cross-party parliamentary co-Chairs
Thermal Management System Architecture for Hydrogen-Powered Propulsion Technologies: Practices, Thematic Clusters, System Architectures, Future Challenges, and Opportunities
Jan 2022
Publication
The thermal management system architectures proposed for hydrogen-powered propulsion technologies are critically reviewed and assessed. The objectives of this paper are to determine the system-level shortcomings and to recognise the remaining challenges and research questions that need to be sorted out in order to enable this disruptive technology to be utilised by propulsion system manufacturers. Initially a scientometrics based co-word analysis is conducted to identify the milestones for the literature review as well as to illustrate the connections between relevant ideas by considering the patterns of co-occurrence of words. Then a historical review of the proposed embodiments and concepts dating back to 1995 is followed. Next feasible thermal management system architectures are classified into three distinct classes and its components are discussed. These architectures are further extended and adapted for the application of hydrogen-powered fuel cells in aviation. This climaxes with the assessment of the available evidence to verify the reasons why no hydrogen-powered propulsion thermal management system architecture has yet been approved for commercial production. Finally the remaining research challenges are identified through a systematic examination of the critical areas in thermal management systems for application to hydrogen-powered air vehicles’ engine cooling. The proposed solutions are discussed from weight cost complexity and impact points of view by a system-level assessment of the critical areas in the field.
Facile Synthesis of Palladium Phosphide Electrocatalysts and their Activity for the Hydrogen Oxidation, Hydrogen Evolutions, Oxygen Reduction and Formic Acid Oxidation Reactions
Nov 2015
Publication
We demonstrate a new approach for producing highly dispersed supported metal phosphide powders with small particle size improved stability and increased electrocatalytic activity towards some useful reactions. The approach involves a one-step conversion of metal supported on high surface area carbon to the metal phosphide utilising a very simple and scalable synthetic process. We use this approach to produce PdP2 and Pd5P2 particles dispersed on carbon with a particle size of 4.5–5.5 nm by converting a commercially available Pd/C powder. The metal phosphide catalysts were tested for the oxygen reduction hydrogen oxidation and evolution and formic acid oxidation reactions. Compared to the unconverted Pd/C material we find that alloying the P at different levels shifts oxide formation on the Pd to higher potentials leading to greater stability during cycling studies (20% more ECSA retained 5k cycles) and in thermal treatment under air. Hydrogen absorption within the PdP2 and Pd5P2 particles is enhanced. The phosphides compare favourably to the most active catalysts reported to date for formic acid oxidation especially PdP2 and there is a significant decrease in poisoning of the surface compared to Pd alone. The mechanistic changes in the reactions studied are rationalised in terms of increased water activation on the surface phosphorus atoms of the catalyst. One of the catalysts PdP2/C is tested in a fuel cell as anode and cathode catalyst and shows good performance.
Analysing Long-term Opportunities for Offshore Energy System Integration in the Danish North Sea
Aug 2021
Publication
This study analyzes future synergies between the Oil and Gas (O&G) and renewables sectors in a Danish context and explores how exploiting these synergies could lead to economic and environmental benefits. We review and highlight relevant technologies and related projects and synthesize the state of the art in offshore energy system integration. All of these preliminary results serve as input data for a holistic energy system analysis in the Balmorel modeling framework. With a timeframe out to 2050 and model scope including all North Sea neighbouring countries this analysis explores a total of nine future scenarios for the North Sea energy system. The main results include an immediate electrification of all operational Danish platforms by linking them to the shore and/or a planned Danish energy island. These measures result in cost and CO2 emissions savings compared to a BAU scenario of 72% and 85% respectively. When these platforms cease production this is followed by the repurposing of the platforms into hydrogen generators with up to 3.6 GW of electrolysers and the development of up to 5.8 GW of floating wind. The generated hydrogen is assumed to power the future transport sector and is delivered to shore in existing and/or new purpose-built pipelines. The contribution of the O&G sector to this hydrogen production amounts to around 19 TWh which represents about 2% of total European hydrogen demand for transport in 2050. The levelized costs (LCOE) of producing this hydrogen in 2050 are around 4 €2020/kg H2 which is around twice those expected in similar studies. But this does not account for energy policies that may incentivize green hydrogen production in the future which would serve to reduce this LCOE to a level that is more competitive with other sources.
Hydrogen Non-premixed Combustion in Enclosure with One Vent and Sustained Release: Numerical Experiments
Sep 2013
Publication
Numerical experiments are performed to understand different regimes of hydrogen non-premixed combustion in an enclosure with passive ventilation through one horizontal or vertical vent located at the top of a wall. The Reynolds averaged Navier–Stokes (RANS) computational fluid dynamics (CFD) model with a reduced chemical reaction mechanism is described in detail. The model is based on the renormalization group (RNG) k-ε turbulence model the eddy dissipation concept (EDC) model for simulation of combustion coupled with the 18-step reduced chemical mechanism (8 species) and the in-situ adaptive tabulation (ISAT) algorithm that accelerates the reacting flow calculations by two to three orders of magnitude. The analysis of temperature and species (hydroxyl hydrogen oxygen water) concentrations in time as well as the velocity through the vent shed a light on regimes and dynamics of indoor hydrogen fires. A well-ventilated fire is simulated in the enclosure at a lower release flow rate and complete combustion of hydrogen within the enclosure. Fire becomes under-ventilated at higher release flow rates with two different modes observed. The first mode is the external flame stabilised at the enclosure vent at moderate release rates and the second mode is the self-extinction of combustion inside and outside the enclosure at higher hydrogen release rates. The simulations demonstrated a complex reacting flow dynamics in the enclosure that leads to formation of the external flame or the self-extinction. The air intake into the enclosure at later stages of the process through the whole vent area is a characteristic feature of the self-extinction regime. This air intake is due to faster cooling of hot combustion products by sustained colder hydrogen leak compared to the generation of hot products by the ceasing chemical reactions inside the enclosure and hydrogen supply. In general an increase of hydrogen sustained release flow rate will change fire regime from the well-ventilated combustion within the enclosure through the external flame stabilised at the vent and finally to the self-extinction of combustion throughout the domain.
Lowest Cost Decarbonisation for the UK: The Critical Role of CCS
Sep 2016
Publication
A new report to the Secretary of State for Business Energy and Industrial Strategy from the Parliamentary Advisory Group on Carbon Capture and Storage (CCS) advises that that the UK should kickstart CCS in order to save consumers billions a year from the cost of meeting climate change targets.
Decarbonising Heat in Buildings: Putting Consumers First
Apr 2021
Publication
From an evaluation of the GB housing stock it is clear that a mosaic of low carbon heating technologies will be needed to reach net zero. While heat pumps are an important component of this mix our analysis shows that it is likely to be impractical to heat many GB homes with heat pumps only. A combination of lack of exterior space and/or the thermal properties of the building fabric mean that a heat pump is not capable of meeting the space heating requirement of 8 to 12m homes (or 37% to 54% of the 22.7m homes assessed in this report) or can do so only through the installation of highly disruptive and intrusive measures such as solid wall insulation. Hybrid heat pumps that are designed to optimise efficiency of the system do not have the same requirements of a heat pump and may be a suitable solution for some of these homes. This is likely to mean that decarbonised gas networks are therefore critical to delivery of net zero. 3 to 4m homes1 (or 14% to 18% of homes assessed in our analysis) could be made suitable for heat pump retrofit through energy efficiency measures such as cavity wall insulation. For 7 to 10m homes there are no limiting factors and they require minimal/no upgrade requirements to be made heat pump-ready. Nevertheless given firstly the levels of disruption to the floors and interiors of homes caused by the installation of heat pumps and secondly the cost and disruption associated with the requirement to significantly upgrade the electricity distribution networks to cope with large numbers of heat pumps operating at peak demand times - combined with the availability of a decarbonised gas network which requires a simple like-for-like boiler replacement - is likely to mean that many of these ‘swing’ properties will be better served through a gas based technology such as hydrogen (particularly when consumer choice is factored in) or a hybrid system. A recent trial run in winter 2018-19 by the Energy System Catapult revealed that all participants were reluctant to make expensive investments to improve the energy efficiency of their homes just to enhance the performance of their heat pump. They were more interested in less costly upgrades and tangible benefits such as lower bills or greater comfort. This means that renewable gases including hydrogen as heating fuels are a crucial component of the journey to net zero and the UK’s hydrogen ambitions should be reflective of this. The analysis presented in this paper focuses on the external fabric of the buildings further analysis should be undertaken to consider the internal system changes that would be required for heat pumps and hydrogen boilers for example BEIS Domestic Heat Distribution Systems: Gathering Report from February 2021 which considers the suitability of radiators for the low carbon transition.
China Progress on Renewable Energy Vehicles: Fuel Cells, Hydrogen and Battery Hybrid Vehicles
Dec 2018
Publication
Clean renewable energy for Chinese cities is a priority in air quality improvement. This paper describes the recent Chinese advances in Polymer Electrolyte Membrane (PEM) hydrogen-fuel-cell-battery vehicles including buses and trucks. Following the 2016 Chinese government plan for new energy vehicles bus production in Foshan has now overtaken that in the EU USA and Japan combined. Hydrogen infrastructure requires much advance to catch up but numbers of filling stations are now increasing rapidly in the large cities. A particular benefit in China is the large number of battery manufacturing companies which fit well into the energy storage plan for hybrid fuel cell buses. The first city to manufacture thousands of PEM-battery hybrid buses is Foshan where the Feichi (Allenbus) company has built a new factory next to a novel fuel cell production line capable of producing 500 MW of fuel cell units per year. Hundreds of these buses are running on local Foshan routes this year while production of city delivery trucks has also been substantial. Results for energy consumption of these vehicles are presented and fitted to the Coulomb theory previously delineated.
Investment Frameworks for Development of CCUS in the UK
Jul 2019
Publication
The CCUS Advisory Group (CAG) established in March 2019 is an industry-led group considering the critical challenges facing the development of CCUS market frameworks and providing insight into potential solutions. The CAG brings together experts from across the CCUS industry finance and legal sectors.<br/>The CAG has examined a range of business models focusing on industrial CCUS power production CO? transport and storage and hydrogen production. It has considered how the proposed business models interact in order to minimise issues such as cross-chain risk and has considered issues such as delivery capability. The conclusions of the CAG can be found in this report.
Climate Change Committee: Progress in Reducing Emissions, 2022 Report to Parliament
Jun 2022
Publication
This statutory report provides a comprehensive overview of the UK Government’s progress to date in reducing emissions. It is accompanied by a new Monitoring Framework which details the CCC’s updated approach to tracking real-world progress through a host of new indicators.<br/>This is a pivotal point in the UK’s journey to Net Zero. The UK is one of the few countries with emissions targets in line with the long-term temperature goal of the Paris Agreement. Policy ambition has moved substantially with the publication of the UK’s Net Zero Strategy. Now is the time to deliver the promised action.
Renewable Hydrogen Economy Outlook in Africa
Jun 2022
Publication
Hydrogen presents an opportunity for Africa to not only decarbonise its own energy use and enable clean energy access for all but also to export renewable energy. This paper developed a framework for assessing renewable resources for hydrogen production and provides a new critical analysis as to how and what role hydrogen can play in the complex African energy landscape. The regional solar wind CSP and bio hydrogen potential ranges from 366 to 1311 Gt/year 162 to 1782 Gt/year 463 to 2738 Gt/year and 0.03 to 0.06 Gt/year respectively. The water availability and sensitivity results showed that the water shortages in some countries can be abated by importing water from regions with high renewable water resources. A techno-economic comparative analysis indicated that a high voltage direct current (HVDC) system presents the most cost-effective transportation system with overall costs per kg hydrogen of 0.038 $/kg followed by water pipeline with 0.084 $/kg seawater desalination 0.1 $/kg liquified hydrogen tank truck 0.12 $/kg compressed hydrogen pipeline 0.16 $/kg liquefied ammonia pipeline 0.38 $/kg liquefied ammonia tank truck 0.60 $/kg and compressed hydrogen tank truck with 0.77 $/kg. The results quantified the significance of economies of scale due to cost effectiveness of systems such as compressed hydrogen pipeline and liquefied hydrogen tank truck systems when hydrogen production is scaled up. Decentralization is favorable under some constraints e.g. compressed hydrogen and liquefied ammonia tank truck systems will be more cost effective below 800 km and 1400 km due to lower investment and operation costs.
No more items...