United Kingdom
HydroGenerally - Episode 3: Lift Off for Hydrogen in Aviation
Apr 2022
Publication
In this third episode Steffan Eldred and Hannah Abson from Innovate UK KTN are exploring the scale of the opportunity that hydrogen and aviation present alongside their special guest Katy Milne Head of Industrial Strategy at FlyZero.
The podcast can be found on their website
The podcast can be found on their website
A Combined Heat and Green Hydrogen (CHH) Generator Integrated with a Heat Network
Sep 2021
Publication
Combined heat and power (CHP) systems offer high energy efficiencies as they utilise both the electricity generated and any excess heat by co-suppling to local consumers. This work presents the potential of a combined heat and hydrogen (CHH) system a solution where Proton exchange membrane (PEM) electrolysis systems producing hydrogen at 60–70% efficiency also co-supply the excess heat to local heat networks. This work investigates the method of capture and utilisation of the excess heat from electrolysis. The analysed system was able to capture 312 kW of thermal energy per MW of electricity and can deliver it as heated water at either 75 ◦C or 45 ◦C this appropriate for existing district heat networks and lower temperature heat networks respectively. This yields an overall CHH system efficiency of 94.6%. An economic analysis was conducted based on income generated through revenue sales of both hydrogen and heat which resulted in a significant reduction in the Levelized Cost of Hydrogen.
Hydrogen Production, Distribution, Storage and Power Conversion in a Hydrogen Economy - A Technology Review
Aug 2021
Publication
To meet ambitious targets for greenhouse gas emissions reduction in the 2035-2050 timeframe hydrogen has been identified as a clean “green” fuel of interest. In comparison to fossil fuel use the burning of hydrogen results in zero CO2 emissions and it can be obtained from renewable energy sources. In addition to zero CO2 emissions hydrogen has several other attractive properties such as higher gravimetric energy content and wider flammability limits than most fossil fuels. However there are practical limitations to its widespread use at present which include low volumetric energy density in the gaseous state and high well-to-wheel costs when compared to fossil fuel production and distribution. In this paper a review is undertaken to identify the current state of development of key areas of the hydrogen network such as production distribution storage and power conversion technology. At present high technology costs still are a barrier to widespread hydrogen adoption but it is envisioned that as scale of production increases then costs are likely to fall. Technical barriers to a hydrogen economy adoption are not as significant as one might think as key technologies in the hydrogen network are already mature with working prototypes already developed for technologies such as liquid hydrogen composite cryotanks and proton exchange membrane fuel cells. It is envisioned that with continuous investment to achieve requisite scale that a hydrogen economy could be realised sooner rather than later with novel concepts such as turboelectric distributed propulsion enabled by a shift to hydrogen-powered network.
The Effect of Symmetrically Tilt Grain Boundary of Aluminum on Hydrogen Diffusion
Feb 2022
Publication
High-strength aluminum alloys are widely used in industry. Hydrogen embrittlement greatly reduces the performance and service safety of aluminum alloys. The hydrogen traps in aluminum profoundly affect the hydrogen embrittlement of aluminum. Here we took a coincidence-site lattice (CSL) symmetrically tilted grain boundary (STGB) Σ5(120)[001] as an example to carry out molecular dynamics (MD) simulations of hydrogen diffusion in aluminum at different temperatures and to obtain results and rules consistent with the experiment. At 700 K three groups of MD simulations with concentrations of 0.5 2.5 and 5 atomic % hydrogen (at. % H) were carried out for STGB models at different angles. By analyzing the simulation results and the MSD curves of hydrogen atoms we found that in the low hydrogen concentration of STGB models the grain boundaries captured hydrogen atoms and hindered their movement. In high-hydrogen-concentration models the diffusion rate of hydrogen atoms was not affected by the grain boundaries. The analysis of the simulation results showed that the diffusion of hydro-gen atoms at the grain boundary is anisotropic.
Crack Management of Hydrogen Pipelines
Sep 2021
Publication
The climate emergency is one of the biggest challenges humanity must face in the 21st century. The global energy transition faces many challenges when it comes to ensuring a sustainable reliable and affordable energy supply. A likely outcome is decarbonizing the existing gas infrastructure. This will inevitably lead to greater penetration of hydrogen. While the introduction of hydrogen into natural gas transmission and distribution networks creates challenges there is nothing new or inherently impossible about the concept. Indeed more than 4000 kilometers of hydrogen pipelines are currently in operation. These pipelines however were (almost) all built and operated exclusively in accordance with specific hydrogen codes which tend to be much more restrictive than their natural gas equivalents. This means that the conversion of natural gas pipelines which have often been in service for decades and have accumulated damage and been subject to cracking threats (e.g. fatigue or stress corrosion cracking (SCC)) throughout their lifetime can be challenging. This paper will investigate the impact of transporting hydrogen on the crack management of existing natural gas pipelines from an overall integrity perspective. Different cracking threats will be described including recent industry experience of those which are generic to all steel pipelines but exacerbated by hydrogen and those which are hydrogen specific. The application of a Hydrogen Framework to identify characterise and manage credible cracking threats to pipelines in order to help enable the safe economic and successful introduction of hydrogen into the natural gas network will be discussed.
Our Green Print: Future Heat for Everyone
Jul 2021
Publication
Green Print - Future Heat for Everyone draws together technical consumer and economic considerations to create a pioneering plan to transition 22 million UK homes to low carbon heat by 2050.<br/>Our Green Print underlines the scale of the challenge ahead acknowledging that a mosaic of low carbon heating solutions will be required to meet the needs of individual communities and setting out 12 key steps that can be taken now in order to get us there<br/>The Climate Change Committee (CCC) estimates an investment spend of £250bn to upgrade insulation and heating in homes as well as provide the infrastructure to deliver the energy.<br/>This is a task of unprecedented scale the equivalent of retro-fitting 67000 homes every month from now until 2050. In this Report Cadent takes the industry lead in addressing the challenge.
An Evaluation of Turbocharging and Supercharging Options for High-Efficiency Fuel Cell Electric Vehicles
Dec 2018
Publication
Mass-produced off-the-shelf automotive air compressors cannot be directly used for boosting a fuel cell vehicle (FCV) application in the same way that they are used in internal combustion engines since the requirements are different. These include a high pressure ratio a low mass flow rate a high efficiency requirement and a compact size. From the established fuel cell types the most promising for application in passenger cars or light commercial vehicle applications is the proton exchange membrane fuel cell (PEMFC) operating at around 80 ◦C. In this case an electric-assisted turbocharger (E-turbocharger) and electric supercharger (single or two-stage) are more suitable than screw and scroll compressors. In order to determine which type of these boosting options is the most suitable for FCV application and assess their individual merits a co-simulation of FCV powertrains between GT-SUITE and MATLAB/SIMULINK is realised to compare vehicle performance on the Worldwide Harmonised Light Vehicle Test Procedure (WLTP) driving cycle. The results showed that the vehicle equipped with an E-turbocharger had higher performance than the vehicle equipped with a two-stage compressor in the aspects of electric system efficiency (+1.6%) and driving range (+3.7%); however for the same maximal output power the vehicle’s stack was 12.5% heavier and larger. Then due to the existence of the turbine the E-turbocharger led to higher performance than the single-stage compressor for the same stack size. The solid oxide fuel cell is also promising for transportation application especially for a use as range extender. The results show that a 24-kWh electric vehicle can increase its driving range by 252% due to a 5 kW solid oxide fuel cell (SOFC) stack and a gas turbine recovery system. The WLTP driving range depends on the charge cycle but with a pure hydrogen tank of 6.2 kg the vehicle can reach more than 600 km.
Fugitive Hydrogen Emissions in a Future Hydrogen Economy
Apr 2022
Publication
There is an increasing body of evidence that leakage of hydrogen to the atmosphere will have an indirect warming effect on the climate and so should be minimised.<br/>This study investigates and quantifies the current understanding of potential hydrogen emissions in the different sectors across a future hydrogen value-chain. It shows that there are some key areas in production distribution and end-use where there could potentially be significant leaks of hydrogen to the atmosphere. In some of these areas there are clear mitigation options while with others the options are less clear due to uncertainty in either data or future technology development.<br/>The report recommends further research and development to reduce the main leak pathways and additional evidence gathering in key areas where there is currently inadequate data to make accurate predictions.<br/>The study was commissioned by BEIS and conducted by the Frazer-Nash consultancy.
The Evolution and Structure of Ignited High-pressure Cryogenic Hydrogen Jets
Jun 2022
Publication
The anticipated upscaling of hydrogen energy applications will involve the storage and transport of hydrogen at cryogenic conditions. Understanding the potential hazard arising from leaks in high-pressure cryogenic storage is needed to improve hydrogen safety. The manuscript reports a series of numerical simulations with detailed chemistry for the transient evolution of ignited high-pressure cryogenic hydrogen jets. The study aims to gain insight of the ignition processes flame structures and dynamics associated with the transient flame evolution. Numerical simulations were firstly conducted for an unignited jet released under the same cryogenic temperature of 80 K and pressure of 200 bar as the considered ignited jets. The predicted hydrogen concentrations were found to be in good agreement with the experimental measurements. The results informed the subsequent simulations of the ignited jets involving four different ignition locations. The predicted time series snapshots of temperature hydrogen mass fraction and the flame index are analyzed to study the transient evolution and structure of the flame. The results show that a diffusion combustion layer is developed along the outer boundary of the jet and a side diffusion flame is formed for the near-field ignition. For the far-field ignition an envelope flame is observed. The flame structure contains a diffusion flame on the outer edge and a premixed flame inside the jet. Due to the complex interactions between turbulence fuel-air mixing at cryogenic temperature and chemical reactions localized spontaneous ignition and transient flame extinguishment are observed. The predictions also captured the experimentally observed deflagration waves in the far-field ignited jets.
A Review of Factors Affecting SCC Initiation and Propagation in Pipeline Carbon Steels
Aug 2022
Publication
Pipelines have been installed and operated around the globe to transport oil and gas for decades. They are considered to be an effective economic and safe means of transportation. The major concern in their operation is corrosion. Among the different forms of corrosion stress corrosion cracking (SCC) which is caused by stresses induced by internal fluid flow or other external forces during the pipeline’s operation in combined action with the presence of a corrosive medium can lead to pipeline failure. In this paper an extensive review of different factors affecting SCC of pipeline steels in various environmental conditions is carried out to understand their impact. Several factors such as temperature presence of oxidizers (O2 CO2 H2S etc.) composition and concentration of medium pH applied stress and microstructure of the metal/alloy have been established to affect the SCC of pipeline steels. SCC susceptibility of a steel at a particular temperature strongly depends on the type and composition of the corrosive medium and microstructure. It was observed that pipeline steels with water quenched and quenched and tempered heat treatments such as those that consist of acicular ferrite or bainitic ferrite grains are more susceptible to SCC irrespective of solution type and composition. Applied stress stress concentration and fluctuating stress facilitates SCC initiation and propagation. In general the mechanisms for crack initiation and propagation in near-neutral solutions are anodic dissolution and hydrogen embrittlement.
Ammonia as Hydrogen Carrier for Transportation; Investigation of the Ammonia Exhaust Gas Fuel Reforming
Jun 2013
Publication
In this paper we show for the first time the feasibility of ammonia exhaust gas reforming as a strategy for hydrogen production used in transportation. The application of the reforming process and the impact of the product on diesel combustion and emissions were evaluated. The research was started with an initial study of ammonia autothermal reforming (NH3 e ATR) that combined selective oxidation of ammonia (into nitrogen and water) and ammonia thermal decomposition over a ruthenium catalyst using air as the oxygen source. The air was later replaced by real diesel engine exhaust gas to provide the oxygen needed for the exothermic reactions to raise the temperature and promote the NH3 decomposition. The main parameters varied in the reforming experiments are O2/NH3 ratios NH3 concentration in feed gas and gas e hourly e space e velocity (GHSV). The O2/NH3 ratio and NH3 concentration were the key factors that dominated both the hydrogen production and the reforming process efficiencies: by applying an O2/NH3 ratio ranged from 0.04 to 0.175 2.5e3.2 l/min of gaseous H2 production was achieved using a fixed NH3 feed flow of 3 l/min. The reforming reactor products at different concentrations (H2 and unconverted NH3) were then added into a diesel engine intake. The addition of considerably small amount of carbon e free reformate i.e. represented by 5% of primary diesel replacement reduced quite effectively the engine carbon emissions including CO2 CO and total hydrocarbons.
Moving Toward the Low-carbon Hydrogen Economy: Experiences and Key Learnings from National Case Studies
Sep 2022
Publication
The urgency to achieve net-zero carbon dioxide (CO2) emissions by 2050 as first presented by the IPCC special report on 1.5°C Global Warming has spurred renewed interest in hydrogen to complement electrification for widespread decarbonization of the economy. We present reflections on estimates of future hydrogen demand optimization of infrastructure for hydrogen production transport and storage development of viable business cases and environmental impact evaluations using life cycle assessments. We highlight challenges and opportunities that are common across studies of the business cases for hydrogen in Germany the UK the Netherlands Switzerland and Norway. The use of hydrogen in the industrial sector is an important driver and could incentivise large-scale hydrogen value chains. In the long-term hydrogen becomes important also for the transport sector. Hydrogen production from natural gas with capture and permanent storage of the produced CO2 (CCS) enables large-scale hydrogen production in the intermediate future and is complementary to hydrogen from renewable power. Furthermore timely establishment of hydrogen and CO2 infrastructures serves as an anchor to support the deployment of carbon dioxide removal technologies such as direct air carbon capture and storage (DACCS) and biohydrogen production with CCS. Significant public support is needed to ensure coordinated planning governance and the establishment of supportive regulatory frameworks which foster the growth of hydrogen markets.
Regional Uptake of Direct Reduction Iron Production Using Hydrogen Under Climate Policy
Nov 2022
Publication
The need to reduce CO2 emissions to zero by 2050 has meant an increasing focus on high emitting industrial sectors such as steel. However significant uncertainties remain as to the rate of technology diffusion across steel production pathways in different regions and how this might impact on climate ambition. Informed by empirical analysis of historical transitions this paper presents modelling on the regional deployment of Direction Reduction Iron using hydrogen (DRI-H2). We find that DRI-H2 can play a leading role in the decarbonisation of the sector leading to near-zero emissions by 2070. Regional spillovers from early to late adopting regions can speed up the rate of deployment of DRI-H2 leading to lower cumulative emissions and system costs. Without such effects cumulative emissions are 13% higher than if spillovers are assumed and approximately 15% and 20% higher in China and India respectively. Given the estimates of DRI-H2 cost-effectiveness relative to other primary production technologies we also find that costs increase in the absence of regional spillovers. However other factors can also have impacts on deployment emission reductions and costs including the composition of the early adopter group material efficiency improvements and scrap recycling rates. For the sector to achieve decarbonisation key regions will need to continue to invest in low carbon steel projects recognising their broader global benefit and look to develop and strengthen policy coordination on technologies such as DRI-H2.
Progress in Reducing Emissions in Scotland: 2021 Report to Parliament
Dec 2021
Publication
This is the tenth annual Progress Report to the Scottish Parliament as required by the Climate Change (Scotland) Act 2009. This year’s report shows that in 2019 Scotland’s greenhouse emissions fell by 2% compared to 2018 and are now 44% below 1990 levels. The reductions were largely driven by the manufacturing and construction and fuel supply sectors with electricity generation remaining the biggest driver of emissions cuts over the past decade (2009-2019). The potential for further emissions savings from electricity generation has however largely run out.
The focus must now shift to ensuring that rapid emissions reductions are delivered with no further delay to allow Scotland to meet its legislated 2030 target.
This report and other reports by the Climate Change Committee can be downloaded on their website.
The focus must now shift to ensuring that rapid emissions reductions are delivered with no further delay to allow Scotland to meet its legislated 2030 target.
This report and other reports by the Climate Change Committee can be downloaded on their website.
Hydrogen-Enriched Compressed Natural Gas Network Simulation for Consuming Green Hydrogen Considering the Hydrogen Diffusion Process
Sep 2022
Publication
Transporting green hydrogen by existing natural gas networks has become a practical means to accommodate curtailed wind and solar power. Restricted by pipe materials and pressure levels there is an upper limit on the hydrogen blending ratio of hydrogen-enriched compressed natural gas (HCNG) that can be transported by natural gas pipelines which affects whether the natural gas network can supply energy safely and reliably. To this end this paper investigates the effects of the intermittent and fluctuating green hydrogen produced by different types of renewable energy on the dynamic distribution of hydrogen concentration after it is blended into natural gas pipelines. Based on the isothermal steady-state simulation results of the natural gas network two convection–diffusion models for the dynamic simulation of hydrogen injections are proposed. Finally the dynamic changes of hydrogen concentration in the pipelines under scenarios of multiple green hydrogen types and multiple injection nodes are simulated on a seven-node natural gas network. The simulation results indicate that compared with the solar-power-dominated hydrogen productionblending scenario the hydrogen concentrations in the natural gas pipelines are more uniformly distributed in the wind-power-dominated scenario and the solar–wind power balance scenario. To be specific in the solar-power-dominated scenario the hydrogen concentration exceeds the limit for more time whilst the overall hydrogen production is low and the local hydrogen concentration in the natural gas network exceeds the limit for nearly 50% of the time in a day. By comparison in the wind-power-dominated scenario all pipelines can work under safe conditions. The hydrogen concentration overrun time in the solar–wind power balance scenario is also improved compared with the solar-power-dominated scenario and the limit-exceeding time of the hydrogen concentration in Pipe 5 and Pipe 6 is reduced to 91.24% and 91.99% of the solar-power-dominated scenario. This work can help verify the day-ahead scheduling strategy of the electricity-HCNG integrated energy system (IES) and provide a reference for the design of local hydrogen production-blending systems.
Critical Parameters Controlling Wettability in Hydrogen Underground Storage - An Analytical Study
Sep 2022
Publication
Hypothesis.<br/>The large-scale implementation of hydrogen economy requires immense storage spaces to facilitate the periodic storage/production cycles. Extensive modelling of hydrogen transport in porous media is required to comprehend the hydrogen-induced complexities prior to storage to avoid energy loss. Wettability of hydrogen-brine-rock systems influence flow properties (e.g. capillary pressure and relative permeability curves) and the residual saturations which are all essential for subsurface hydrogen systems.<br/>Model.<br/>This study aims to understand which parameters critically control the contact angle for hydrogen-brine-rock systems using the surface force analysis following the DLVO theory and sensitivity analysis. Furthermore the effect of roughness is studied using the Cassie-Baxter model.<br/>Findings.<br/>Our results reveal no considerable difference between H2 and other gases such as N2. Besides the inclusion of roughness highly affects the observed apparent contact angles and even lead to water-repelling features. It was observed that contact angle does not vary significantly with variations of surface charge and density at high salinity which is representative for reservoir conditions. Based on the analysis it is speculated that the influence of roughness on contact angle becomes significant at low water saturation (i.e. high capillary pressure).
Life Cycle Cost Analysis for Scotland Short-Sea Ferries
Feb 2023
Publication
The pathway to zero carbon emissions passing through carbon emissions reduction is mandatory in the shipping industry. Regarding the various methodologies and technologies reviewed for this purpose Life Cycle Cost Analysis (LCCA) has been used as an excellent tool to determine economic feasibility and sustainability and to present directions. However insufficient commercial applications cause a conflict of opinion on which fuel is the key to decarbonisation. Many LCCA comparison studies about eco-friendly ship propulsion claim different results. In order to overcome this and discover the key factors that affect the overall comparative analysis and results in the maritime field it is necessary to conduct the comparative analysis considering more diverse case ships case routes and various types that combine each system. This study aims to analyse which greener fuels are most economically beneficial for the shipping sector and prove the factors influencing different results in LCCA. This study was conducted on hydrogen ammonia and electric energy which are carbon-free fuels among various alternative fuels that are currently in the limelight. As the power source a PEMFC and battery were used as the main power source and a solar PV system was installed as an auxiliary power source to compare economic feasibility. Several cost data for LCCA were selected from various feasible case studies. As the difficulty caused by the storage and transportation of hydrogen and ammonia should not be underestimated in this study the LCCA considers not only the CapEx and OpEx but also fuel transport costs. As a result fuel cell propulsion systems with hydrogen as fuel proved financial effectiveness for short-distance ferries as they are more inexpensive than ammonia-fuelled PEMFCs and batteries. The fuel cost takes around half of the total life-cycle cost during the life span.
Enabling Hydrogen Blending From Industrial Clusters
Nov 2022
Publication
This study has been commissioned by the gas transporters as part of the Gas Goes Green (GGG)2 work programme to develop and report a ‘gas transporter view’ on how to facilitate hydrogen blending from industrial clusters which are likely to form the initial source for hydrogen blending in the gas network. This view has been developed through engagement carried out with industrial clusters and other stakeholders as well as drawing on learnings from a previous hydrogen blending study.3 The key takeaways of this study are that: l Enabling hydrogen blending from industrial clusters can be done in a pragmatic way with limited need for change to existing gas frameworks. l Where frameworks do need to change the changes are incremental rather than involving overhaul of existing frameworks and are highly workable. l While there remain uncertainties as to the nature of blending at each cluster (e.g. the volume and profile of hydrogen injections) in general the changes required to commercial and regulatory frameworks are the same implying that they are low regret. Below we summarise gas transporters’ preferred approach to facilitating hydrogen blending from industrial clusters including both the policy decisions needed and the changes required to commercial and regulatory frameworks. We note that this work has not involved a legal review and that one will be required as part of the process of implementing the framework changes described below.
Spontaneous Ignition of Cryo-Compressed Hydrogen in a T-Shaped Channel System
Aug 2022
Publication
Sudden releases of pressurised hydrogen may spontaneously ignite by the so-called “diffusion ignition” mechanism. Several experimental and numerical studies have been performed on spontaneous ignition for compressed hydrogen at ambient temperature. However there is no knowledge of the phenomenon for compressed hydrogen at cryogenic temperatures. The study aims to close this knowledge gap by performing numerical experiments using a computational fluid dynamics model validated previously against experiments at atmospheric temperatures to assess the effect of temperature decrease from ambient 300 K to cryogenic 80 K. The ignition dynamics is analysed for a T-shaped channel system. The cryo-compressed hydrogen is initially separated from the air in the T-shaped channel system by a burst disk (diaphragm). The inertia of the burst disk is accounted for in the simulations. The numerical experiments were carried out to determine the hydrogen storage pressure limit leading to spontaneous ignition in the configuration under investigation. It is found that the pressure limit for spontaneous ignition of the cryo-compressed hydrogen at temperature 80 K is 9.4 MPa. This is more than 3 times larger than pressure limit for spontaneous ignition of 2.9 MPa in the same setup at ambient temperature of 300 K.
Green Hydrogen Production and Use in Low- and Middle-income Countries: A Least-cost Geospatial Modelling Approach Applied to Kenya
May 2023
Publication
With the rising threat of climate change green hydrogen is increasingly seen as the high-capacity energy storage and transport medium of the future. This creates an opportunity for low- and middle-income countries to leverage their high renewable energy potential to produce use and export low-cost green hydrogen creating environmental and economic development benefits. While identifying ideal locations for green hydrogen production is critical for countries when defining their green hydrogen strategies there has been a paucity of adequate geospatial planning approaches suitable to low- and middle-income countries. It is essential for these countries to identify green hydrogen production sites which match demand to expected use cases such that their strategies are economically sustainable. This paper therefore develops a novel geospatial cost modelling method to optimize the location of green hydrogen production across different use cases with a focus on suitability to low- and middle-income countries. This method is applied in Kenya to investigate the potential hydrogen supply chain for three use cases: ammonia-based fertilizer freight transport and export. We find hydrogen production costs of e3.7–9.9/kgH2 are currently achievable across Kenya depending on the production location chosen. The cheapest production locations are identified to the south and south-east of Lake Turkana. We show that ammonia produced in Kenya can be cost-competitive given the current energy crisis and that Kenya could export hydrogen to Rotterdam with costs of e7/kgH2 undercutting current market prices regardless of the carrier medium. With expected techno-economic improvements hydrogen production costs across Kenya could drop to e1.8–3.0/kgH2 by 2030.
No more items...