Japan
Phenomena of Dispersion and Explosion of High Pressurized Hydrogen
Sep 2005
Publication
To make “Hydrogen vehicles and refuelling station systems” fit for public use research on hydrogen safety and designing mitigative measures are significant. For compact storage it is planned to store under high pressure (40MPa) at the refuelling stations so that the safety for the handling of high-pressurized hydrogen is essential. This paper describes the experimental investigation on the hypothetical dispersion and explosion of high-pressurized hydrogen gas which leaks through a large scale break in piping and blows down to atmosphere. At first we investigated time history of distribution of gas concentration in order to comprehend the behaviour of the dispersion of high-pressurized hydrogen gas before explosion experiments. The explosion experiments were carried out with changing the time of ignition after the start of dispersion. Hydrogen gas with the initial pressure of 40MPa was released through a nozzle of 10mm diameter. Through these experiments it was clarified that the explosion power depends not only on the concentration and volume of hydrogen/air pre-mixture but also on the turbulence characteristics before ignition. To clarify the explosion mechanism the numerical computer simulation about the same experimental conditions was performed. The initial conditions such as hydrogen distribution and turbulent characteristics were given by the results of the atmospheric diffusion simulation. By the verification of these experiments the results of CFD were fully improved.
Safety Study of Hydrogen Supply Stations for the Review of High Pressure Gas Safety Law in Japan
Sep 2005
Publication
A safety study of gaseous hydrogen supply stations with 40MPa storage system is undertaken through a risk based approach. Accident scenarios are identified based on a generic model of hydrogen station. And risks of identified accident scenarios are estimated and evaluated comparing with risk acceptance criteria. Also safety measures for risk reduction are discussed. Especially for clearance distance it is proposed that the distance from high-pressurized equipment to site borders should be at least 6 meters. As a result of the study it is concluded that risks of accidental scenarios can be mitigated to acceptable level under the proposed safety measures with several exceptions. These exceptional scenarios are very unlikely to occur but expected to have extremely severe consequence once occurred.
Fundamental Safety Testing and Analysis of Solid State Hydrogen Storage Materials and Systems
Sep 2007
Publication
Hydrogen is seen as the future automobile energy storage media due to its inherent cleanliness upon oxidation and its ready utilization in fuel cell applications. Its physical storage in light weight low volume systems is a key technical requirement. In searching for ever higher gravimetric and volumetric density hydrogen storage materials and systems it is inevitable that higher energy density materials will be studied and used. To make safe and commercially acceptable systems it is important to understand quantitatively the risks involved in using and handling these materials and to develop appropriate risk mitigation strategies to handle unforeseen accidental events. To evaluate these materials and systems an IPHE sanctioned program was initiated in 2006 partnering laboratories from Europe North America and Japan. The objective of this international program is to understanding the physical risks involved in synthesis handling and utilization of solid state hydrogen storage materials and to develop methods to mitigate these risks. This understanding will support ultimate acceptance of commercially high density hydrogen storage system designs. An overview of the approaches to be taken to achieve this objective will be given. Initial experimental results will be presented on environmental exposure of NaAlH4 a candidate high density hydrogen storage compound. The tests to be shown are based on United Nations recommendations for the transport of hazardous materials and include air and water exposure of the hydride at three hydrogen charge levels in various physical configurations. Additional tests developed by the American Society for Testing and Materials were used to quantify the dust cloud ignition characteristics of this material which may result from accidental high energy impacts and system breach. Results of these tests are shown along with necessary risk mitigation techniques used in the synthesis and fabrication of a prototype hydrogen storage system.
Comparative Technical and Economic Analyses of Hydrogen-Based Steel and Power Sectors
Mar 2024
Publication
Decarbonizing the current steel and power sectors through the development of the hydrogen direct-reduction iron ore–electric arc furnace route and the 100% hydrogen-fired gas turbine cycle is crucial. The current study focuses on three clusters of research works. The first cluster covers the investigation of the mass and energy balance of the route and the subsequent application of these values in experiments to optimize the reduction yield of iron ore. In the second cluster the existing gas turbine unit was selected for the complete replacement of natural gas with hydrogen and for finding the most optimal mass and energy balance in the cycle through an Aspen HYSYS model. In addition the chemical kinetics in the hydrogen combustion process were simulated using Ansys Chemkin Pro to research the emissions. In the last cluster a comparative economic analysis was conducted to identify the levelized cost of production of the route and the levelized cost of electricity of the cycle. The findings in the economic analysis provided good insight into the details of the capital and operational expenditures of each industrial sector in understanding the impact of each kg of hydrogen consumed in the plants. These findings provide a good basis for future research on reducing the cost of hydrogen-based steel and power sectors. Moreover the outcomes of this study can also assist ongoing large-scale hydrogen and ammonia projects in Uzbekistan in terms of designing novel hydrogen-based industries with cost-effective solutions.
Research and Development of Hydrogen Carrier Based Solutions for Hydrogen Compression and Storage
Aug 2022
Publication
Martin Dornheim,
Lars Baetcke,
Etsuo Akiba,
Jose-Ramón Ares,
Tom Autrey,
Jussara Barale,
Marcello Baricco,
Kriston Brooks,
Nikolaos Chalkiadakis,
Véronique Charbonnier,
Steven Christensen,
José Bellosta von Colbe,
Mattia Costamagna,
Erika Michela Dematteis,
Jose-Francisco Fernández,
Thomas Gennett,
David Grant,
Tae Wook Heo,
Michael Hirscher,
Katherine Hurst,
Mykhaylo V. Lototskyy,
Oliver Metz,
Paola Rizzi,
Kouji Sakaki,
Sabrina Sartori,
Emmanuel Stamatakis,
Alastair D. Stuart,
Athanasios Stubos,
Gavin Walker,
Colin Webb,
Brandon Wood,
Volodymyr A. Yartys and
Emmanuel Zoulias
Industrial and public interest in hydrogen technologies has risen strongly recently as hydrogen is the ideal means for medium to long term energy storage transport and usage in combination with renewable and green energy supply. In a future energy system the production storage and usage of green hydrogen is a key technology. Hydrogen is and will in future be even more used for industrial production processes as a reduction agent or for the production of synthetic hydrocarbons especially in the chemical industry and in refineries. Under certain conditions material based systems for hydrogen storage and compression offer advantages over the classical systems based on gaseous or liquid hydrogen. This includes in particular lower maintenance costs higher reliability and safety. Hydrogen storage is possible at pressures and temperatures much closer to ambient conditions. Hydrogen compression is possible without any moving parts and only by using waste heat. In this paper we summarize the newest developments of hydrogen carriers for storage and compression and in addition give an overview of the different research activities in this field.
Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage
Oct 2017
Publication
Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds which have fascinating structures compositions and properties. Complex metal hydrides are a rapidly expanding class of materials approaching multi-functionality in particular within the energy storage field. This review illustrates that complex metal hydrides may store hydrogen in the solid state act as novel battery materials both as electrolytes and electrode materials or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore it is highlighted how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron nitrogen and aluminum e.g. metal borohydrides and metal alanates. Our hope is that this review can provide new inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy.
Fabrication of CdS/β-SiC/TiO2 Tri-composites That Exploit Hole- and Electron-transfer Processes for Photocatalytic Hydrogen Production Under Visible Light
Dec 2017
Publication
In this work CdS/SiC/TiO2 tri-composite photocatalysts that exploit electron- and hole-transfer processes were fabricated using an easy two-step method in the liquid phase. The photocatalyst with a 1:1:1 M ratio of CdS/SiC/TiO2 exhibited a rate of hydrogen evolution from an aqueous solution of sodium sulfite and sodium sulfide under visible light of 137 μmol h−1 g−1 which is 9.5 times that of pure CdS. β-SiC can act as a sink for the photogenerated holes because the valence band level of β-SiC is higher than the corresponding bands in CdS and TiO2. In addition the level of the conduction band of TiO2 is lower than those of CdS and β-SiC so TiO2 can act as the acceptor of the photogenerated electrons. Our results demonstrate that hole transfer and absorption in the visible light region lead to an effective hydrogen-production scheme.
Simulation-based Safety Investigation of a Hydrogen Fueling Station with an On-site Hydrogen Production System Involving Methylcyclohexane
Jan 2017
Publication
Adequate safety measures are crucial for preventing major accidents at hydrogen fuelling stations. In particular risk analysis of the domino effect at hydrogen fuelling stations is essential because knock-on accidents are likely to intensify the consequences of a relatively small incident. Several risk assessment studies have focused on hydrogen fuelling stations but none have investigated accidental scenarios related to the domino effect at such stations. Therefore the purpose of this study is to identify a domino effect scenario analyze the scenario by using simulations and propose safety measures for preventing and mitigating of the scenario. In this hazard identification study we identified the domino effect scenario of a hydrogen fuelling station with an on-site hydrogen production system involving methylcyclohexane and investigated through simulations of the scenario. The simulations revealed that a pool fire of methylcyclohexane or toluene can damage the process equipment and that thermal radiation may cause the pressurized hydrogen tanks to rupture. The rupture-type vent system can serve as a critical safety measure for preventing and mitigating the examined scenario.
Evaluating Uncertainty in Accident Rate Estimation at Hydrogen Refueling Station Using Time Correlation Model
Nov 2018
Publication
Hydrogen as a future energy carrier is receiving a significant amount of attention in Japan. From the viewpoint of safety risk evaluation is required in order to increase the number of hydrogen refuelling stations (HRSs) implemented in Japan. Collecting data about accidents in the past will provide a hint to understand the trend in the possibility of accidents occurrence by identifying its operation time However in new technology; accident rate estimation can have a high degree of uncertainty due to absence of major accident direct data in the late operational period. The uncertainty in the estimation is proportional to the data unavailability which increases over long operation period due to decrease in number of stations. In this paper a suitable time correlation model is adopted in the estimation to reflect lack (due to the limited operation period of HRS) or abundance of accident data which is not well supported by conventional approaches. The model adopted in this paper shows that the uncertainty in the estimation increases when the operation time is long owing to the decreasing data.
Hazard Identification Study for Risk Assessment of a Hybrid Gasoline-hydrogen Fueling Station with an Onsite Hydrogen Production System Using Organic Hydride
Oct 2015
Publication
Hydrogen infrastructures are important for the commercialization of fuel cell vehicles. Hydrogen storage and transportation are significant topics because it is difficult to safely and effectively treat large amounts of hydrogen because of hydrogen hazards. An organic chemical hydride method keeps and provides hydrogen using hydrogenation and dehydrogenation chemical reactions with aromatic compounds. This method has advantages in that the conventional petrochemical products are used as a hydrogen carrier and petrochemicals are more easily treated than hydrogen because of low hazards. Hydrogen fueling stations are also crucial infrastructures for hydrogen supply. In Japan hybrid gasoline-hydrogen fuelling stations are needed for effective space utilization in urban areas. It is essential to address the safety issues of hybrid fueling stations for inherently safer station construction. We focused on a hybrid gasoline-hydrogen fuelling station with an on-site hydrogen production system using methylcyclohexane as an organic chemical hydride. The purpose of this study is to reveal unique hybrid risks in the station with a hazard identification study (HAZID study). As a result of the HAZID study we identified 314 accident scenarios involving gasoline and organic chemical hydride systems. In addition we suggested improvement safety measures for uniquely worst-case accident scenarios to prevent and mitigate the scenarios.
Development of Technical Regulations for Fuel Cell Motorcycles in Japan—Hydrogen Safety
Jul 2019
Publication
Hydrogen fuel cell vehicles are expected to play an important role in the future and thus have improved significantly over the past years. Hydrogen fuel cell motorcycles with a small container for compressed hydrogen gas have been developed in Japan along with related regulations. As a result national regulations have been established in Japan after discussions with Japanese motorcycle companies stakeholders and experts. The concept of Japanese regulations was proposed internationally and a new international regulation on hydrogen-fueled motorcycles incorporating compressed hydrogen storage systems based on this concept are also established as United Nations Regulation No. 146. In this paper several technical regulations on hydrogen safety specific to fuel cell motorcycles incorporating compressed hydrogen storage systems are summarized. The unique characteristics of these motorcycles e.g. small body light weight and tendency to overturn easily are considered in these regulations.
A Production and Delivery Model of Hydrogen from Solar Thermal Energy in the United Arab Emirates
May 2022
Publication
Hydrogen production from surplus solar electricity as energy storage for export purposes can push towards large-scale application of solar energy in the United Arab Emirates and the Middle East region; this region’s properties of high solar irradiance and vast empty lands provide a good fit for solar technologies such as concentrated solar power and photovoltaics. However a thorough comparison between the two solar technologies as well as investigating the infrastructure of the United Arab Emirates for a well-to-ship hydrogen pathway is yet to be fully carried out. Therefore in this study we aim to provide a full model for solar hydrogen production and delivery by evaluating the potential of concentrated solar power and photovoltaics in the UAE then comparing two different pathways for hydrogen delivery based on the location of hydrogen production sites. A Solid Oxide Cell Electrolyzer (SOEC) is used for technical comparison while the shortest routes for hydrogen transport were analyzed using Geographical Information System (GIS). The results show that CSP technology coupled with SOEC is the most favorable pathway for large-scale hydrogen from solar energy production in the UAE for export purposes. Although PV has a slightly higher electricity potential compared to CSP around 42 GWh/km2 to 41.1 GWh/km2 respectively CSP show the highest productions rates of over 6 megatons of hydrogen when the electrolyzer is placed at the same site as the CSP plant while PV generates 5.15 megatons when hydrogen is produced at the same site with PV plants; meanwhile hydrogen from PV and CSP shows similar levels of 4.8 and 4.6 megatons of hydrogen respectively when electrolyzers are placed at port sites. Even considering the constraints in the UAE’s infrastructure and suggesting new shorter electrical transmission lines that could save up to 0.1 megatons of hydrogen in the second pathway production at the same site with CSP is still the most advantageous scenario.
Cost Optimization of a Stand-Alone Hybrid Energy System with Fuel Cell and PV
Mar 2020
Publication
Renewable energy has become very popular in recent years. The amount of renewable generation has increased in both grid-connected and stand-alone systems. This is because it can provide clean energy in a cost-effective and environmentally friendly fashion. Among all varieties photovoltaic (PV) is the ultimate rising star. Integration of other technologies with solar is enhancing the efficiency and reliability of the system. In this paper a fuel cell–solar photovoltaic (FC-PV)-based hybrid energy system has been proposed to meet the electrical load demand of a small community center in India. The system is developed with PV panels fuel cell an electrolyzer and hydrogen storage tank. Detailed mathematical modeling of this system as well as its operation algorithm have been presented. Furthermore cost optimization has been performed to determine ratings of PV and Hydrogen system components. The objective is to minimize the levelized cost of electricity (LCOE) of this standalone system. This optimization is performed in HOMER software as well as another tool using an artificial bee colony (ABC). The results obtained by both methods have been compared in terms of cost effectiveness. It is evident from the results that for a 68 MWh/yr of electricity demand is met by the 129 kW Solar PV 15 kW Fuel cell along with a 34 kW electrolyzer and a 20 kg hydrogen tank with a LPSP of 0.053%. The LCOE is found to be in 0.228 $/kWh. Results also show that use of more sophisticated algorithms such as ABC yields more optimized solutions than package programs such as HOMER. Finally operational details for FC-PV hybrid system using IEC 61850 inter-operable communication is presented. IEC 61850 information models for FC electrolyzer hydrogen tank were developed and relevent IEC 61850 message exchanges for energy management in FC-PV hybrid system are demonstrated.
Evaluation of Safety Measures of a Hydrogen Fueling Station Using Physical Modeling
Oct 2018
Publication
Hydrogen fueling stations are essential for operating fuel cell vehicles. If multiple safety measures in a hydrogen fueling station fail simultaneously it could lead to severe consequences. To analyze the risk of such a situation we developed a physical model of a hydrogen fueling station which when using the temperature pressure and flow rate of hydrogen could be simulated under normal and abnormal operating states. The physical model was validated by comparing the analytical results with the experimental results of an actual hydrogen fueling station. By combining the physical model with a statistical method we evaluated the significance of the safety measures in the event wherein multiple safety measures fail simultaneously. We determined the combinations of failures of safety measures that could lead to accidents and suggested a measure for preventing and mitigating the accident scenario.
Materials for Hydrogen-based Energy Storage - Past, Recent Progress and Future Outlook
Dec 2019
Publication
Michael Hirscher,
Volodymyr A. Yartys,
Marcello Baricco,
José Bellosta von Colbe,
Didier Blanchard,
Robert C. Bowman Jr.,
Darren P. Broom,
Craig Buckley,
Fei Chang,
Ping Chen,
Young Whan Cho,
Jean-Claude Crivello,
Fermin Cuevas,
William I. F. David,
Petra E. de Jongh,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
Yaroslav Filinchuk,
George E. Froudakis,
David M. Grant,
Evan MacA. Gray,
Bjørn Christian Hauback,
Teng He,
Terry D. Humphries,
Torben R. Jensen,
Sangryun Kim,
Yoshitsugu Kojima,
Michel Latroche,
Hai-wen Li,
Mykhaylo V. Lototskyy,
Joshua W. Makepeace,
Kasper T. Møller,
Lubna Naheed,
Peter Ngene,
Dag Noreus,
Magnus Moe Nygård,
Shin-ichi Orimo,
Mark Paskevicius,
Luca Pasquini,
Dorthe B. Ravnsbæk,
M. Veronica Sofianos,
Terrence J. Udovic,
Tejs Vegge,
Gavin Walker,
Colin Webb,
Claudia Weidenthaler and
Claudia Zlotea
Globally the accelerating use of renewable energy sources enabled by increased efficiencies and reduced costs and driven by the need to mitigate the effects of climate change has significantly increased research in the areas of renewable energy production storage distribution and end-use. Central to this discussion is the use of hydrogen as a clean efficient energy vector for energy storage. This review by experts of Task 32 “Hydrogen-based Energy Storage” of the International Energy Agency Hydrogen TCP reports on the development over the last 6 years of hydrogen storage materials methods and techniques including electrochemical and thermal storage systems. An overview is given on the background to the various methods the current state of development and the future prospects. The following areas are covered; porous materials liquid hydrogen carriers complex hydrides intermetallic hydrides electro-chemical storage of energy thermal energy storage hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage
Drivers and Barriers to the Adoption of Fuel Cell Passenger Vehicles and Buses in Germany
Feb 2021
Publication
As policymakers and automotive stakeholders around the world seek to accelerate the electrification of road transport with hydrogen this study focuses on the experiences of Germany a world leader in fuel cell technology. Specifically it identifies and compares the drivers and barriers influencing the production and market penetration of privately-owned fuel cell electric passenger vehicles (FCEVs) and fuel cell electric buses (FCEBs) in public transit fleets. Using original data collected via a survey and 17 interviews we elicited the opinions of experts to examine opportunities and obstacles in Germany from four perspectives: (i) the supply of vehicles (ii) refuelling infrastructure (iii) demand for vehicles and (iv) cross-cutting institutional issues. Findings indicate that despite multiple drivers there are significant challenges hampering the growth of the hydrogen mobility market. Several are more pronounced in the passenger FCEV market. These include the supply and cost of production the lack of German automakers producing FCEVs the profitability and availability of refuelling stations and low demand for vehicles. In light of these findings we extract implications for international policymakers and future studies. This study provides a timely update on efforts to spur the deployment of hydrogen mobility in Germany and addresses the underrepresentation of studies examining both buses and passenger vehicles in tandem.
Sustainable Offshore Oil and Gas Fields Development: Techno-economic Feasibility Analysis of Wind–hydrogen–natural Gas Nexus
Jul 2021
Publication
Offshore oil and gas field development consumes quantities of electricity which is usually provided by gas turbines. In order to alleviate the emission reduction pressure and the increasing pressure of energy saving governments of the world have been promoting the reform of oil and gas fields for years. Nowadays environmentally friendly alternatives to provide electricity are hotspots such as the integration of traditional energy and renewable energy. However the determination of system with great environmental and economic benefits is still controversial. This paper proposed a wind– hydrogen–natural gas nexus (WHNGN) system for sustainable offshore oil and gas fields development. Combining the optimization model with the techno-economic evaluation model a comprehensive evaluation framework is established for techno-economic feasibility analysis. In addition to WHNGN system another two systems are designed for comparison including the traditional energy supply (TES) system and wind–natural gas nexus (WNGN) system. An offshore production platforms in Bohai Bay in China is taken as a case and the results indicate that: (i) WNGN and WHNGN systems have significant economic benefits total investment is decreased by 5190 and 5020 million $ respectively and the WHNGN system increases 4174 million $ profit; (ii) WNGN and WHNGN systems have significant environmental benefits annual carbon emission is decreased by 15 and 40.2 million kg respectively; (iii) the system can be ranked by economic benefits as follows: WHNGN >WNGN > TES; and (iV) the WHNGN system is more advantageous in areas with high hydrogen and natural gas sales prices such as China Kazakhstan Turkey India Malaysia and Indonesia.
Strategies to Accelerate the Production and Diffusion of Fuel Cell Electric Vehicles: Experiences from California
Sep 2020
Publication
Fuel cell electric vehicles (FCEVs) can play a key role in accelerating the electrification of road transport. Specifically they offer longer driving ranges and shorter refuelling times relative to Battery Electric Vehicles (BEVs) while reducing needs for space-intensive public charging infrastructure. Although the maturity and market penetration of hydrogen is currently trailing batteries transport planners in several countries are looking to both technologies to reduce carbon emissions and air pollution. Home to the world’s largest on-road fleet of FCEVs California is one such jurisdiction. Experiences in California provide an ideal opportunity to address a gap in literature whereby barriers to FCEV diffusion are well understood but knowledge on actual strategies to overcome these has lacked. This study thus examines governance strategies in California to accelerate the production and diffusion of FCEVs key outcomes lessons learned and unresolved challenges. Evidence is sourced from 19 expert interviews and an examination of diverse documents. Strategies are examined from four perspectives: (i) supply-side (i.e. stimulation of vehicle production) (ii) infrastructure (i.e. construction of refuelling stations and hydrogen production) (iii) demand-side (i.e. stimulation of vehicle adoption) and (iv) institutional (i.e. cross-cutting measures to facilitate collaboration innovation and cost-reduction). Findings reveal a comprehensive mix of stringent regulation market and consumer incentives and public–private collaboration. However significant challenges remain for spurring the development of fuel cell transport in line with initial ambitions. Highlighting these provides important cues for public policy to accelerate the deployment of FCEVs and hydrogen in California and elsewhere.
Hydrogen - A Sustainable Energy Carrier
Jan 2017
Publication
Hydrogen may play a key role in a future sustainable energy system as a carrier of renewable energy to replace hydrocarbons. This review describes the fundamental physical and chemical properties of hydrogen and basic theories of hydrogen sorption reactions followed by the emphasis on state-of-the-art of the hydrogen storage properties of selected interstitial metallic hydrides and magnesium hydride especially for stationary energy storage related utilizations. Finally new perspectives for utilization of metal hydrides in other applications will be reviewed.
Effect of Defects and Hydrogen on the Fatigue Limit of Ni-based Superalloy 718
Dec 2019
Publication
Tension-compression fatigue tests were performed on two types of Ni-based superalloy 718 with different microstructures to which small artificial defects of various shapes and sizes were introduced. Similar tests were also conducted on hydrogen-charged specimens with defects with a solute hydrogen content ranging from 26.3 to 91.0 mass ppm. In the non-charged specimens in particular the fatigue strength susceptibility to defects varied significantly according to the type of microstructural morphology i.e. a smaller grain size made the alloy more vulnerable to defects. The fatigue limit as a small-crack threshold was successfully predicted using the √area parameter model. Depending on the size of defects the fatigue limit was calculated in relation to three phases: (i) harmless-defect regime (ii) small-crack regime and (iii) large-crack regime. Such a classification enabled comprehensive fatigue limit evaluation in a wide array of defects taking into consideration (a) the defect size over a range of small crack and large crack and (b) the characteristics of the matrix represented by grain size and hardness. In addition the effect of defects and hydrogen on fatigue strength will be comprehensively discussed based on a series of experimental results.
No more items...