Korea, Republic of
Effect of Hydrogen Addition on Combustion and Thermal Characteristics of Impinging Non-premixed Jet Flames for Various Heating Value Gases
Jun 2023
Publication
This study experimentally investigates the effect of hydrogen addition on combustion and thermal characteristics of impinging non-premixed jet flames for low-heating values gases (LHVGs). We evaluate the flame morphology and stability using a concentric non-premixed combustor with an impingement plate. OH radicals are visualized using the OH* chemiluminescence and OH-planar laser-induced fluorescence (OH-PLIF) system. Emission characteristics are investigated by calculating CO and NOx emission indices. The results show that the flame stability region narrows as the heating value decreases but expands as hydrogen has been added. The low-OH radical intensity of LHVGs increases with the hydrogen addition. EICO and EINOx decrease with the reduction of heating values. EICO rapidly declines near the lifted flame limit due to the premixing of fuel and air downstream of the flame region. The effect of the hydrogen addition on EINOx is insignificant and shows very low emissions. The heat transfer rate into cooling water indicates a linear tendency with thermal power regardless of the fuel type. These findings show that LHVGs can be employed in existing-impinging flame systems so long as they remain within flame sta bility regions. Furthermore hydrogen addition positively affects the expansion of flame stability enhancing the utility of LHVGs.
Structural Assessment of Independent Type-C Liquid Hydrogen Fuel Tank
Apr 2025
Publication
As environmental pollution has become a global concern regulations on carbon emissions from maritime activities are being implemented and interest in using renewable energy as fuel for ships is growing. Hydrogen which does not release carbon dioxide and has a high energy density can potentially replace fossil fuels as a renewable energy source. Notably storage of hydrogen in a liquid state is considered the most efficient. In this study a 0.7 m3 liquid hydrogen fuel tank suitable for small vessels was designed and a structural analysis was conducted to assess its structural integrity. The extremely low liquefaction temperature of hydrogen at −253 ◦C and the need for spatial efficiency in liquid hydrogen fuel tanks make vacuum insulation essential to minimize the heat transfer due to convection. A composite insulation system of sprayed-on foam insulation (SOFI) and multilayer insulation (MLI) was applied in the vacuum annular space between the inner and outer shells and a tube-shaped supporter made of a G-11 cryogenic (CR) material with low thermal conductivity and high strength was employed. The material selected for the inner and outer layers of the tank was STS 316L which exhibits sufficient ductility and strength at cryogenic temperatures and has low sensitivity to hydrogen embrittlement. The insulation performance was quantitatively assessed by calculating the boil-off rate (BOR) of the designed fuel tank. Structural integrity evaluations were conducted for nine load cases using heat transfer and structural analyses in accordance with the IGF code.
Techno-Economic Optimal Operation of an On-Site Hydrogen Refueling Station
Oct 2025
Publication
An on-site hydrogen refueling station (HRS) directly supplies hydrogen to vehicles using an on-site hydrogen production method such as electrolysis. For the efficient operation of an on-site HRS it is essential to optimize the entire process from hydrogen production to supply. However most existing approaches focus on the efficiency of hydrogen production. This study proposes an optimal operation model for a renewable-energy-integrated on-site HRS which considers the degradation of electrolyzers and operation of compressors. The proposed model maximizes profit by considering the hydrogen revenue electricity costs and energy storage system degradation. It estimates hydrogen production using a voltage equation models compressor power using a shaft power equation and considers electrolyzer degradation using an empirical voltage model. The effectiveness of the proposed model is evaluated through simulation. Comparison with a conventional control strategy shows an increase of over 56% in the operating revenue.
Technical–Economic Analysis for Ammonia Ocean Transportation Using an Ammonia-Fueled Carrier
Jan 2024
Publication
This study performed a technical–economic analysis for ship-based ammonia transportation to investigate the feasibility of international ammonia transportation. Ammonia is considered to be a vital hydrogen carrier so the international trade in ammonia by ship will considerably increase in the future. This study proposed three scenarios for transporting ammonia from the USA Saudi Arabia and Australia to South Korea and employed an 84000 m3 class ammonia carrier. Not only traditional very low sulfur fuel oil (VLSFO)/marine diesel oil (MDO) but also LNG and ammonia fuels were considered as propulsion and power generation fuels in the carrier. A life-cycle cost (LCC) model consisting of capital expenditure (CAPEX) and operational expenditure (OPEX) was employed for the cost estimation. The results showed that the transportation costs depend on the distance. The unit transportation cost from the USA to South Korea was approximately three times higher than that of Australia to South Korea. Ammonia fuel yielded the highest costs among the fuels investigated (VLSFO/MGO LNG and ammonia). When using ammonia fuel the unit transportation cost was approximately twice that when using VLSFO/MDO. The fuel costs occupied the largest portion of the LCC. The unit transportation costs from Australia to South Korea were 23.6 USD/ton-NH3 for the LVSFO/MDO fuel case 31.6 USD/ton-NH3 for the LNG fuel case and 42.9 USD/ton-NH3 for the ammonia fuel case. This study also conducted a sensitivity analysis to investigate the influence of assumptions including assumed parameters.
Economic Study of Hybrid Power System Using Boil-off Hydrogen for Liquid Hydrogen Carriers
Mar 2024
Publication
This study presents a hybrid power system comprising a fuel cell (FC) and a lithium-ion battery (LIB) for liquid hydrogen (LH2) carriers which is expected to increase globally due to the production cost gap of green hydrogen between renewable-rich and renewable-poor countries. The LH2 carrier has a key challenge in handling the inevitably considerable boil-off hydrogen (BOH). As a target ship of a 50000 m3 LH2 carrier with a boil-off rate (BOR) of 0.4% per day this study employs an optimization tool to determine the economic power dispatch between the FC and LIB aimed at minimizing the lifetime cost of the ship. The BOH is used as fuel for FC during the voyage. Moreover when the ship is under cargo loading and unloading operations at the port the considerable surplus BOH is utilized to generate electricity and then sold to the shore grid (StG). The results indicate that 45.2% of the BOH can be utilized as fuel for the FC and the StG system can effectively reduce the total lifetime cost by 32.0%. Further the paper presents the outcomes of a sensitivity analysis conducted on critical parameters. This study provides new insights into the BOH issue of LH2 carriers and helps to increase the international green hydrogen market.
Integrated Membrane Distillation-solid Electrolyte-based Alkaline Water Electrolysis for Enhancing Green Hydrogen Production
Jan 2025
Publication
This paper investigates the circularity of green hydrogen and resource recovery from brine using an integrated approach based on alkaline water electrolysis (AWE). Traditional AWE employs highly alkaline electrolytes which can lead to electrode corrosion undesirable side reactions and gas cross-over issues. Conversely indirect brine electrolysis requires pre-treatment steps which negatively impact both techno-economics and environmental sustainability. In response this study proposes an innovative brine electrolysis process utilizing solid electrolytes (SELs). The process includes an on-site brine treatment facility leveraging a self-driven phase transition technique and incorporates a hydrophobic membrane as part of a membrane distillation (MD) system to facilitate the gas pathway. Polyvinyl alcohol (PVA) and tetraethylammonium hydroxide (TEAOH)-based electrolytes combined with potassium hydroxide (KOH) at various concentrations function as a self-wetted electrolyte (SWE). This design partially disperses water vapor while effectively preventing the intrusion of contaminated ions into the SWE and electrode-catalyst interfaces. PVA-TEAOH-KOH-30 wt% SWE demonstrated the highest ion conductivity (112.4 mScm−1) and excellent performance with a current density of 375 mAcm−2. Long-term electrolysis confirmed with a nine-fold brine in volume concentration factor (VCF) demonstrated stable performance without MD membrane wetting. The Cl−/ClO− and Br− concentrations in the SWE were reduced by five orders of magnitude compared to the original brine. This electrolyzer supports the circular use of resources with hydrogen as an energy carrier and concentrated brine and oxygen as valuable by-products aligning with the sustainable development goals (SDGs) and net-zero emissions by 2050.
Biohydrogen Production: Strategies to Improve Process Efficiency through Microbial Routes
Apr 2015
Publication
The current fossil fuel-based generation of energy has led to large-scale industrial development. However the reliance on fossil fuels leads to the significant depletion of natural resources of buried combustible geologic deposits and to negative effects on the global climate with emissions of greenhouse gases. Accordingly enormous efforts are directed to transition from fossil fuels to nonpolluting and renewable energy sources. One potential alternative is biohydrogen (H2) a clean energy carrier with high-energy yields; upon the combustion of H2 H2O is the only major by-product. In recent decades the attractive and renewable characteristics of H2 led us to develop a variety of biological routes for the production of H2. Based on the mode of H2 generation the biological routes for H2 production are categorized into four groups: photobiological fermentation anaerobic fermentation enzymatic and microbial electrolysis and a combination of these processes. Thus this review primarily focuses on the evaluation of the biological routes for the production of H2. In particular we assess the efficiency and feasibility of these bioprocesses with respect to the factors that affect operations and we delineate the limitations. Additionally alternative options such as bioaugmentation multiple process integration and microbial electrolysis to improve process efficiency are discussed to address industrial-level applications.
Experimental Study on the Effect of the Ignition Location on Vented Deflagration of Hydrogen-air Mixtures in Enclosure
Sep 2023
Publication
No countermeasures exist for accidents that might occur in hydrogen-based facilities (leaks fires explosions etc.). In South Korea discussions are underway regarding measures to ensure safety from such accidents such as the construction of underground hydrogen storage tank facilities. However explosion vents with a minimum ventilation area are required in such facilities to minimize damage to buildings and other structures due to accidental explosions. These explosion vents allow the generated overpressure and flames to be safely dispersed outside; however a safe separation distance must be secured to minimize damage to humans. This study aimed to determine the safe separation distance to minimize human damage after analyzing the dispersed overpressure and flame behavior following a vent explosion. Explosion experiments were conducted to investigate the influence of the ignition source location on internal and external overpressure and external flame behavior using a cuboid concrete structure with a volume of 20.33 m3 filled with a hydrogen-air mixture (29.0 vol.%). The impact on overpressure and flame was increased with the increasing distance of the ignition source from the vent. Importantly depending on the ignition location the incident pressure was up to 24.4 times higher while the reflected pressure was 8.7 times higher. Additionally a maximum external overpressure of 30.01 kPa was measured at a distance of 2.4 m from the vent predicting damage to humans at the “Injury” level (1 % fatality probability). Whereas no significant damage would occur at a distance of 7.4 m or more from the vent.
Industrial Waste Gases as a Resource for Sustainable Hydrogen Production: Resource Availability, Production Potential, Challenges, and Prospects
May 2024
Publication
Industrial sectors pivotal for the economic prosperity of nations rely heavily on affordable reliable and environmentally friendly energy sources. Industries like iron and steel oil refineries and coal-fired power plants while instrumental to national economies are also the most significant contributors to waste gases that contain substantial volumes of carbon monoxide (CO). CO can be converted to a highly efficient and carbon free fuel hydrogen (H2) through a well-known water gas shift reaction. However the untapped potential of H2 from waste industrial streams is yet to be explored. This is the first article that investigates the potential of H2 production from industrial waste gases. The available resource (i.e. CO) and its H2 production potential are estimated. The article also provides insights into the principal challenges and potential avenues for long-term adoption. The results showed that 249.14 MTPY of CO are available to produce 17.44 MTPY of H2 annually. This suggests a significant potential for H2 production from waste gases to revolutionize industrial waste management and contribute significantly towards Sustainable Development Goals 7 9 and 13ensuring access to affordable reliable sustainable and modern energy for all and taking decisive climate action respectively.
Review on Bubble Dynamics in Proton Exchange Membrane Water Electrolysis: Towards Optimal Green Hydrogen Yield
Dec 2023
Publication
Water electrolysis using a proton exchange membrane (PEM) holds substantial promise to produce green hydrogen with zero carbon discharge. Although various techniques are available to produce hydrogen gas the water electrolysis process tends to be more cost-effective with greater advantages for energy storage devices. However one of the challenges associated with PEM water electrolysis is the accumulation of gas bubbles which can impair cell performance and result in lower hydrogen output. Achieving an in-depth knowledge of bubble dynamics during electrolysis is essential for optimal cell performance. This review paper discusses bubble behaviors measuring techniques and other aspects of bubble dynamics in PEM water electrolysis. It also examines bubble behavior under different operating conditions as well as the system geometry. The current review paper will further improve the understanding of bubble dynamics in PEM water electrolysis facilitating more competent inexpensive and feasible green hydrogen production.
Influence of Air Changes Per Hour on Hydrogen Leaks in Mechanically Ventilated Enclosures
Mar 2024
Publication
The integration of hydrogen energy systems into nearly zero-emission buildings (nZEB) is emerging as a viable strategy to curtail greenhouse gas emissions associated with energy use in these buildings. However the indoor or outdoor placement of certain hydrogen system components or equipment necessitates stringent safety measures particularly in confined environments. This study aims to investigate the dynamics of hydrogen dispersion within an enclosure featuring forced ventilation analyzing the interplay between leakage flow rates and ventilation efficiency both experimentally and numerically. To simulate hydrogen's behavior helium gas which shares similar physical characteristics with hydrogen was utilized in experiments conducted at leakage flows of 4 8 and 10 L/min alongside a ventilation rate of 30 air changes per hour (ACH). The experiments revealed that irrespective of the leakage rate the oxygen concentration returned to its initial level approximately 11 min post-leakage at a ventilation rate of 30 ACH. This study also encompasses a numerical analysis to validate the experimental findings and assess the congruence between helium and hydrogen behaviors. Additionally the impact of varying ACH rates (30 45 60 75) on the concentrations of oxygen and hydrogen was quantified through numerical analysis for different hydrogen leakage rates (4 8 10 20 L/min). The insights derived from this research offer valuable guidance for building facility engineers on designing ventilation systems that ensure hydrogen and oxygen concentrations remain within safe limits in hydrogen-utilizing indoor environments.
Techno‑Economic Comparative Analysis of Two Hybrid Renewable Energy Systems for Powering a Simulated House, including a Hydrogen Vehicle Load at Jeju Island
Nov 2023
Publication
This work undertakes a techno‑economic comparative analysis of the design of photo‑ voltaic panel/wind turbine/electrolyzer‑H2 tank–fuel cell/electrolyzer‑H2 tank (configuration 1) and photovoltaic panel/wind turbine/battery/electrolyzer‑H2 tank (configuration 2) to supply electricity to a simulated house and a hydrogen‑powered vehicle on Jeju Island. The aim is to find a system that will make optimum use of the excess energy produced by renewable energies to power the hydrogen vehicle while guaranteeing the reliability and cost‑effectiveness of the entire system. In addition to evaluating the Loss of Power Supply Probability (LPSP) and the Levelized Cost of Energy (LCOE) the search for achieving that objective leads to the evaluation of two new performance indicators: Loss of Hydrogen Supply Probability (LHSP) and Levelized Cost of Hydrogen (LCOH). After anal‑ ysis for 0 < LPSP < 1 and 0 < LHSP < 1 used as the constraints in a multi‑objective genetic algorithm configuration 1 turns out to be the most efficient loads feeder with an LCOE of 0.3322 USD/kWh an LPSP of 0% concerning the simulated house load an LCOH of 11.5671 USD/kg for a 5 kg hydrogen storage and an LHSP of 0.0043% regarding the hydrogen vehicle load.
Acidification-based Direct Electrolysis of Treated Wastewater for Hydrogen Production and Water Reuse
Oct 2023
Publication
This report describes the direct electrolysis of treated wastewater (as a catholyte) to produce hydrogen and potentially reuse the water. To suppress the negative shift of the cathodic potential due to an increase in pH by the hydrogen evolution reaction (HER) the treated wastewater is acidified using the synergetic effect of protons generated from the bipolar membrane and inor ganic precipitation occurred at the surface of the cathode during the HER. Natural seawater as an accessible source for Mg2+ ions was added to the treated wastewater because the concentration of Mg2+ ions contained in the original wastewater was too low for acidification to occur. The mixture of treated wastewater with seawater was acidified to pH 3 allowing the initial cathode potential to be maintained for more than 100 h. The amount of inorganic precipitates formed on the cathode surface is greater than that in the control case (adding 0.5 M NaCl instead of seawater) but does not adversely affect the cathodic potential and Faradaic efficiency for H2 production. Additionally it was confirmed that less organic matter was adsorbed to the inorganic deposits under acidic conditions. These indicate that acidification plays an important role in improving the performance and stability of low-grade water electrolysis. Considering that the treated wastewater is discharged near the ocean acidification-based electrolysis of the effluent with seawater can be a water reuse technology for green hydrogen production enhancing water resilience and contributing to the circular economy of water resources.
Safety Equipment Planning Through Experimental Analysis of Hydrogen Leakage and Ventilation in Enclosed Spaces
Aug 2025
Publication
In South Korea securing ground space for installing hydrogen refueling stations in urban areas is challenging due to limited ground space and high-density development. Safety concerns for hydrogen systems in enclosed urban environments also require careful consideration. To address this issue this study explored a method of undergrounding hydrogen infrastructure as a solution for urban hydrogen charging stations. This study examined the characteristics of hydrogen diffusion and concentration reduction under leakage conditions within a confined hydrogen infrastructure focusing on key safety systems including emergency shut-off valves (ESVs) and ventilation fans. We discovered that the ESV reduced hydrogen concentration by over 80%. Installing two or more ventilation fans arranged horizontally improves airflow and enhances ventilation efficiency. Moreover increasing the number of fans reduces stagnant zones within the space effectively lowering the average hydrogen concentration.
Numerical Study on the Characteristics of Hydrogen Leakage, Diffusion and Ventilation in Ships
Jan 2025
Publication
Hydrogen is a promising environmentally friendly fuel with the potential for zero-carbon emissions particularly in maritime applications. However owing to its wide flammability range (4–75%) significant safety concerns persist. In confined spaces hydrogen leaks can lead to explosions posing a risk to both lives and assets. This study conducts a numerical analysis to investigate hydrogen flow within hydrogen storage rooms aboard ships with the goal of developing efficient ventilation strategies. Through simulations performed using ANSYS-CFX this research evaluates hydrogen diffusion stratification and ventilation performance. A vertex angle of 120◦ at the ceiling demonstrated superior ventilation efficiency compared to that at 177◦ while air inlets positioned on side-wall floors or mid-sections proved more effective than those located near the ceiling. The most efficient ventilation occurred at a velocity of 1.82 m/s achieving 20 air exchanges per hour. These findings provide valuable insights for the design of safer hydrogen vessel operations.
Development of Hydrogen Fuel Cell–Battery Hybrid Multicopter System Thermal Management and Power Management System Based on AMESim
Jan 2025
Publication
Urban Air Mobility (UAM) is gaining attention as a solution to urban population growth and air pollution. Hydrogen fuel cells are applied to overcome the limitations of battery-based UAM utilizing a PEMFC (Polymer Electrolyte Membrane Fuel Cell) with batteries in a hybrid system to enhance responsiveness. Power management improves efficiency through effective power distribution under varying loads while thermal management maintains optimal stack temperatures to prevent degradation. This study developed a hydrogen fuel cell–battery hybrid multicopter system using AMESim consisting of a 138 kW fuel cell stack 60 kW battery DC–DC converters and thrust motors. A rule-based power management system was implemented to define power distribution strategies based on SOC and load demand. The system’s operating range was designed to allocate power according to battery SOC and load variations. For an initial SOC of 45% the power management system distributed power for flight and the results showed that the state machine control system reduced hydrogen consumption by 5.85% and parasitic energy by 1.63% compared to the rule-based system.
Design and Optimization Strategy of a Net-Zero City Based on a Small Modular Reactor and Renewable Energy
Aug 2025
Publication
This study proposes the SMR Smart Net-Zero City (SSNC) framework—a scalable model for achieving carbon neutrality by integrating Small Modular Reactors (SMRs) renewable energy sources and sector coupling within a microgrid architecture. As deploying renewables alone would require economically and technically impractical energy storage systems SMRs provide a reliable and flexible baseload power source. Sector coupling systems—such as hydrogen production and heat generation—enhance grid stability by absorbing surplus energy and supporting the decarbonization of non-electric sectors. The core contribution of this study lies in its real-time data emulation framework which overcomes a critical limitation in the current energy landscape: the absence of operational data for future technologies such as SMRs and their coupled hydrogen production systems. As these technologies are still in the pre-commercial stage direct physical integration and validation are not yet feasible. To address this the researchers leveraged real-time data from an existing commercial microgrid specifically focusing on the import of grid electricity during energy shortfalls and export during solar surpluses. These patterns were repurposed to simulate the real-time operational behavior of future SMRs (ProxySMR) and sector coupling loads. This physically grounded simulation approach enables highfidelity approximation of unavailable technologies and introduces a novel methodology to characterize their dynamic response within operational contexts. A key element of the SSNC control logic is a day–night strategy: maximum SMR output and minimal hydrogen production at night and minimal SMR output with maximum hydrogen production during the day—balancing supply and demand while maintaining high SMR utilization for economic efficiency. The SSNC testbed was validated through a seven-day continuous operation in Busan demonstrating stable performance and approximately 75% SMR utilization thereby supporting the feasibility of this proxy-based method. Importantly to the best of our knowledge this study represents the first publicly reported attempt to emulate the real-time dynamics of a net-zero city concept based on not-yet-commercial SMRs and sector coupling systems using live operational data. This simulation-based framework offers a forward-looking data-driven pathway to inform the development and control of next-generation carbon-neutral energy systems.
Operable Range Extension of Ammonia Direct Injection Spark Ignition Engine by Hydrogen Addition
Feb 2024
Publication
Ammonia is gaining attention as a non-carbon environmental-friendly fuel due to its superior storage capability compared to hydrogen. However its high minimum ignition energy and slow laminar flame speed make it unsuitable for application in combustion-based energy conversion devices. In particular when applied to internal combustion engines issues such as combustion instability and limitations in operational range exist. Therefore the intention is to address these issues by adding hydrogen which has a wider flammable range and a faster laminar flame speed to ammonia. In this study the extension of the operable range of ammonia-fueled spark ignition engine by hydrogen addition was mainly discussed. Ammonia was injected directly in the cylinder and hydrogen was supplied into the intake port. The result showed that operable range of ammonia fueled combustion with hydrogen addition could be extended from 0.2 to 1.4 MPa with relatively stable combustion i.e. CoV of gIMEP
A Computational Study of Hydrogen Dispersion and Explosion after Large-Scale Leakage of Liquid Hydrogen
Nov 2023
Publication
This study employs the FLACS code to analyze hydrogen leakage vapor dispersion and subsequent explosions. Utilizing pseudo-source models a liquid pool model and a hybrid model combining both we investigate dispersion processes for varying leak mass flow rates (0.225 kg/s and 0.73 kg/s) in a large open space. We also evaluate explosion hazards based on overpressure and impulse effects on humans. The computational results compared with experimental data demonstrated reasonable hydrogen vapor cloud concentration predictions especially aligned with the wind direction. For higher mass flow rate of 0.73 kg/s the pseudo-source model exhibited the most reasonable predictive performance for locations near the leak source despite the hybrid model yielded similar results to the pseudo-source model while the liquid pool model was more suitable for lower mass flow rate of 0.225 kg/s. Regarding explosion analyses using overpressure-impulse diagram higher mass flow rates leaded to potentially fatal overpressure and impulse effects on humans. However lower mass flow rates may cause severe eardrum damage at the maximum overpressure point.
Methods for Enhancing Electrolysis for Hydrogen Production: The Benefits of Applying Magnetic Fields
Sep 2024
Publication
The electrolysis of water is one of the most promising ways of producing green hydrogen. This produces hydrogen using electricity and does not generate additional carbon dioxide like the more conventional reforming of fossil fuels. However making electrolysis competitive with conventional methods for hydrogen production is a challenge because of the cost of electricity and because of inefficiencies and costs in electrolysis systems. Initially this review looks at the basic design of water electrolysis and asks where energy is lost. Then a selection of the latest results in the area of magnetic field-enhanced water electrolysis are examined and discussed in particular focusing on the empirical results of magnetic field-assisted electrolysis with the aim of comparing findings and identifying limitations of current studies such that recommendations can be made for advanced design of hydrogen producing electrolysis systems.
No more items...