Korea, Republic of
Exploring Future Promising Technologies in Hydrogen Fuel Cell Transportation
Jan 2022
Publication
The purpose of this research was to derive promising technologies for the transport of hydrogen fuel cells thereby supporting the development of research and development policy and presenting directions for investment. We also provide researchers with information about technology that will lead the technology field in the future. Hydrogen energy as the core of carbon neutral and green energy is a major issue in changing the future industrial structure and national competitive advantage. In this study we derived promising technology at the core of future hydrogen fuel cell transportation using the published US patent and paper databases (DB). We first performed text mining and data preprocessing and then discovered promising technologies through generative topographic mapping analysis. We analyzed both the patent DB and treatise DB in parallel and compared the results. As a result two promising technologies were derived from the patent DB analysis and five were derived from the paper DB analysis.
Numerical Analysis of the Effects of Ship Motion on Hydrogen Release and Dispersion in an Enclosed Area
Jan 2022
Publication
Hydrogen is an alternative to conventional heavy marine fuel oil following the initial strategy of the International Maritime Organization (IMO) for reducing greenhouse gas emissions. Although hydrogen energy has many advantages (zero-emission high efficiency and low noise) it has considerable fire and explosion risks due to its thermal and chemical characteristics (wide flammable concentration range and low ignition energy). Thus safety is a key concern related to the use of hydrogen. Whereas most previous studies focused on the terrestrial environment we aim to analyze the effects of the ship’s motion on hydrogen dispersion (using commercial FLUENT code) in an enclosed area. When compared to the steady state our results revealed that hydrogen reached specific sensors in 63% and 52% less time depending on vessel motion type and direction. Since ships carry and use a large amount of hydrogen as a power source the risk of hydrogen leakage from collision or damage necessitates studying the correspondence between leakage diffusion and motion characteristics of the ship to position the sensor correctly.
Hydrogen Production by Electrochemical Reaction Using Ethylene Glycol with Terephthalic Acid
Jan 2021
Publication
In this study ethylene glycol (EG) and terephthalic acid (TPA) were used to generate hydrogen using copper electrodes in an alkaline aqueous solution and the corresponding reaction mechanism was experimentally investigated. Both EG and TPA produced hydrogen; however TPA consumed OH− inhibiting the production of intermediary compounds of EG and causing EG to actively react with H2O ultimately leading to enhanced hydrogen production. In addition the initiation potential of water decomposition of the EG and TPA alkaline aqueous solution was 1.0 V; when 1.8 V (vs. RHE) was applied the hydrogen production reached 440 mmol L−1 which was substantially greater than the hydrogen production rate of 150 mmol L−1 during water decomposition.
Synthesis of Spherical V-Nb-Mo-Ta-W High-Entropy Alloy Powder Using Hydrogen Embrittlement and Spheroidization by Thermal Plasma
Dec 2019
Publication
V-Nb-Mo-Ta-W high-entropy alloy (HEA) one of the refractory HEAs is considered as a next-generation structural material for ultra-high temperature uses. Refractory HEAs have low castability and machinability due to their high melting temperature and low thermal conductivity. Thus powder metallurgy becomes a promising method for fabricating components with refractory HEAs. Therefore in this study we fabricated spherical V-Nb-Mo-Ta-W HEA powder using hydrogen embrittlement and spheroidization by thermal plasma. The HEA ingot was prepared by vacuum arc melting and revealed to have a single body-centered cubic phase. Hydrogen embrittlement which could be achieved by annealing in a hydrogen atmosphere was introduced to get the ingot pulverized easily to a fine powder having an angular shape. Then the powder was annealed in a vacuum atmosphere to eliminate the hydrogen from the hydrogenated HEA resulting in a decrease in the hydrogen concentration from 0.1033 wt% to 0.0003 wt%. The angular shape of the HEA powder was turned into a spherical one by inductively-coupled thermal plasma allowing to fabricate spherical V-Nb-Mo-Ta-W HEA powder with a d50 value of 28.0 μm.
Strategy for Selecting an Optimal Propulsion System of a Liquefied Hydrogen Tanker
Jan 2017
Publication
This study proposed a strategy for selecting an optimal propulsion system of a liquefied hydrogen tanker. Four propulsion system options were conceivable depending on whether the hydrogen BOG (boil-off gas) from the cryogenic cargo tanks was used for fuel or not. These options were evaluated in terms of their economic technological and environmental feasibilities. The comparison scope included not only main machinery but also the BOG handling system with electric generators. Cost-benefit analysis life-cycle costing including carbon tax and an energy efficiency design index were used as measures to compare the four alternative systems. The analytic hierarchy process made scientific decision-making possible. This methodology provided the priority of each attribute through the use of pairwise comparison matrices. Consequently the propulsion system using LNG with hydrogen BOG recovery was determined to be the optimal alternative. This system was appropriate for the tanker that achieved the highest evaluation score.
Layered Transition Metal Selenophosphites for Visible Light Photoelectrochemical Production of Hydrogen
Jun 2021
Publication
The growing consumption of global energy has posed serious challenges to environmental protection and energy supplies. A promising solution is via introducing clean and sustainable energy sources including photoelectrochemical hydrogen fuel production. 2D materials such as transition metal trichalcogenphosphites (MPCh3) are gaining more and more interest for their potential as photocatalysts. Crystals of transition metal selenophosphites namely MnPSe3 FePSe3 and ZnPSe3 were tested as photocatalysts for the hydrogen evolution reaction (HER). ZnPSe3 is the one that exhibited the lowest overpotential and the higher response to the light during photocurrent experiments in acidic media. For this reason among the crystals in this work it is the most promising for the photocatalyzed production of hydrogen.
MELCOR Analysis of a SPARC Experiment for Spray-PAR Interaction During a Hydrogen Release
Oct 2020
Publication
A series of experiments were performed in the SPARC (spray-aerosol-recombiner-combustion) test facility to simulate a hydrogen mitigation system with the actuation of a PAR (passive auto-catalytic re-combiner) and spray system. In this study the SPARC-SPRAY-PAR (SSP1) experiment is chosen to benchmark the MELCOR (a lumped-parameter code for severe accident analysis) predictions against test data. For this purpose firstly we prepared the base input model of the SPARC test vessel and tested it by a simple verification problem with well-defined boundary conditions. The implementation of a currently used PAR correlation in MELCOR is shown to be appropriate for the simulation of a PAR actuation experiment. In an SSP1 experiment the PAR is reacting with hydrogen and the spray actuation starts as soon as hydrogen injection is complete. The MELCOR simulation well predicts the pressure behavior and the gas flow affected by operating both a PAR and spray system. However the local hydrogen concentration measurement near the inlet nozzle is much higher than the volume average-value by MELCOR since high jet flow from the nozzle is dispersed in the corresponding cell volume. The experimental reproduction of the phenomena we expect or conversely the identification of phenomena we do not understand will continue to support the verification of analytical models using experimental data and to analyze the impact of spray on PAR operations in severe accident conditions.
Experimental and Theoretical Insights to Demonstrate the Hydrogen Evolution Activity of Layered Platinum Dichalcogenides Electrocatalysts
Mar 2021
Publication
Hydrogen is a highly efficient and clean renewable energy source and water splitting through electrocatalytic hydrogen evolution is a most promising approach for hydrogen generation. Layered transition metal dichalcogenides-based nano-structures have recently attracted significant interest as robust and durable catalysts for hydrogen evolution. We systematically investigated the platinum (Pt) based dichalcogenides (PtS2 PtSe2 and PtTe2) as highly energetic and robust hydrogen evolution electrocatalysts. PtTe2 catalyst unveiled the rapid hydrogen evolution process with the low overpotentials of 75 and 92 mV (vs. RHE) at a current density of 10 mA cm−2 and the small Tafel slopes of 64 and 59 mV/dec in acidic and alkaline medium respectively. The fabricated PtTe2 electrocatalyst explored a better catalytic activity than PtS2 and PtSe2. The density functional theory estimations explored that the observed small Gibbs free energy for H-adsorption of PtTe2 was given the prominent role to achieve the superior electrocatalytic and excellent stability activity towards hydrogen evolution due to a smaller bandgap and the metallic nature. We believe that this work will offer a key path to use Pt based dichalcogenides for hydrogen evolution electrocatalysts.
Advanced Sizing Methodology for a Multi-Mode eVTOL UAV Powered by a Hydrogen Fuel Cell and Battery
Jan 2022
Publication
A critical drawback of battery-powered eVTOL UAVs is their limited range and endurance and this drawback could be solved by using a combination of hydrogen fuel cells and batteries. The objective of this paper is to develop a sizing methodology for the lift+cruise-type eVTOL UAV powered by a hydrogen fuel cell and battery. This paper presents the constraints analysis method for forward flight/VTOL multi-mode UAV the regression model for electric propulsion system sizing a sizing method for an electric propulsion system and hydrogen fuel cell system and a transition analysis method. The total mass of the UAV is iteratively calculated until convergence and the optimization method is used to ensure that the sizing results satisfy the design requirements. The sizing results are the UAV’s geometry mass and power data. To verify the accuracy of the proposed sizing methodology the sizing and the conceptual design phase results of a 25 kg hydrogen fuel-cell-powered UAV are compared. All parameters had an error within 10% and satisfied the design requirements.
Effect of Copper Cobalt Oxide Composition on Oxygen Evolution Electrocatalysts for Anion Exchange Membrane Water Electrolysis
Nov 2020
Publication
Copper cobalt oxide nanoparticles (CCO NPs) were synthesized as an oxygen evolution electrocatalyst via a simple co-precipitation method with the composition being controlled by altering the precursor ratio to 1:1 1:2 and 1:3 (Cu:Co) to investigate the effects of composition changes. The effect of the ratio of Cu2+/Co3+ and the degree of oxidation during the co-precipitation and annealing steps on the crystal structure morphology and electrocatalytic properties of the produced CCO NPs were studied. The CCO1:2 electrode exhibited an outstanding performance and high stability owing to the suitable electrochemical kinetics which was provided by the presence of sufficient Co3+ as active sites for oxygen evolution and the uniform sizes of the NPs in the half cell. Furthermore single cell tests were performed to confirm the possibility of using the synthesized electrocatalyst in a practical water splitting system. The CCO1:2 electrocatalyst was used as an anode to develop an anion exchange membrane water electrolyzer (AEMWE) cell. The full cell showed stable hydrogen production for 100 h with an energetic efficiency of >71%. In addition it was possible tomass produce the uniform highly active electrocatalyst for such applications through the co-precipitation method.
Volumetric Analysis Technique for Analyzing the Transport Properties of Hydrogen Gas in Cylindrical-shaped Rubbery Polymers
Mar 2021
Publication
We report volumetric analysis techniques to analyze the transport properties of hydrogen dissolved in cylindrical-shaped polymers. The techniques utilize the volume measurement of the released hydrogen from rubber by gas collection in a graduated cylinder after charging sample with high-pressure hydrogen and subsequent decompression. We further improve the graduated cylinder with some modifications such as reading the electrical capacitance of the water level using electrodes and changing the sample loading position. From the measurement results the uptake (C∞) diffusion coefficient (D) and solubility (S) of hydrogen are quantified with an upgraded diffusion analysis program. These methods are applied to three cylindrical rubbers. Dual adsorption behaviors with increasing pressure are observed for all the samples. C∞ follows Henry’s law up to ~15 MPa whereas Langmuir model applies up to 90 MPa. D shows Knudsen and bulk diffusion behavior below and above pressure respectively. A COMSOL simulation is compared with experimental observations.
Review of the Durability of Polymer Electrolyte Membrane Fuel Cell in Long-Term Operation: Main Influencing Parameters and Testing Protocols
Jul 2021
Publication
Durability is the most pressing issue preventing the efficient commercialization of polymer electrolyte membrane fuel cell (PEMFC) stationary and transportation applications. A big barrier to overcoming the durability limitations is gaining a better understanding of failure modes for user profiles. In addition durability test protocols for determining the lifetime of PEMFCs are important factors in the development of the technology. These methods are designed to gather enough data about the cell/stack to understand its efficiency and durability without causing it to fail. They also provide some indication of the cell/stack’s age in terms of changes in performance over time. Based on a study of the literature the fundamental factors influencing PEMFC long-term durability and the durability test protocols for both PEMFC stationary and transportation applications were discussed and outlined in depth in this review. This brief analysis should provide engineers and researchers with a fast overview as well as a useful toolbox for investigating PEMFC durability issues.
Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective
Jun 2021
Publication
Managing the concentration of atmospheric CO2 requires a multifaceted engineering strategy which remains a highly challenging task. Reducing atmospheric CO2 (CO2R) by converting it to value-added chemicals in a carbon neutral footprint manner must be the ultimate goal. The latest progress in CO2R through either abiotic (artificial catalysts) or biotic (natural enzymes) processes is reviewed herein. Abiotic CO2R can be conducted in the aqueous phase that usually leads to the formation of a mixture of CO formic acid and hydrogen. By contrast a wide spectrum of hydrocarbon species is often observed by abiotic CO2R in the gaseous phase. On the other hand biotic CO2R is often conducted in the aqueous phase and a wide spectrum of value-added chemicals are obtained. Key to the success of the abiotic process is understanding the surface chemistry of catalysts which significantly governs the reactivity and selectivity of CO2R. However in biotic CO2R operation conditions and reactor design are crucial to reaching a neutral carbon footprint. Future research needs to look toward neutral or even negative carbon footprint CO2R processes. Having a deep insight into the scientific and technological aspect of both abiotic and biotic CO2R would advance in designing efficient catalysts and microalgae farming systems. Integrating the abiotic and biotic CO2R such as microbial fuel cells further diversifies the spectrum of CO2R.
Materials for Hydrogen-based Energy Storage - Past, Recent Progress and Future Outlook
Dec 2019
Publication
Michael Hirscher,
Volodymyr A. Yartys,
Marcello Baricco,
José Bellosta von Colbe,
Didier Blanchard,
Robert C. Bowman Jr.,
Darren P. Broom,
Craig Buckley,
Fei Chang,
Ping Chen,
Young Whan Cho,
Jean-Claude Crivello,
Fermin Cuevas,
William I. F. David,
Petra E. de Jongh,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
Yaroslav Filinchuk,
George E. Froudakis,
David M. Grant,
Evan MacA. Gray,
Bjørn Christian Hauback,
Teng He,
Terry D. Humphries,
Torben R. Jensen,
Sangryun Kim,
Yoshitsugu Kojima,
Michel Latroche,
Hai-wen Li,
Mykhaylo V. Lototskyy,
Joshua W. Makepeace,
Kasper T. Møller,
Lubna Naheed,
Peter Ngene,
Dag Noreus,
Magnus Moe Nygård,
Shin-ichi Orimo,
Mark Paskevicius,
Luca Pasquini,
Dorthe B. Ravnsbæk,
M. Veronica Sofianos,
Terrence J. Udovic,
Tejs Vegge,
Gavin Walker,
Colin Webb,
Claudia Weidenthaler and
Claudia Zlotea
Globally the accelerating use of renewable energy sources enabled by increased efficiencies and reduced costs and driven by the need to mitigate the effects of climate change has significantly increased research in the areas of renewable energy production storage distribution and end-use. Central to this discussion is the use of hydrogen as a clean efficient energy vector for energy storage. This review by experts of Task 32 “Hydrogen-based Energy Storage” of the International Energy Agency Hydrogen TCP reports on the development over the last 6 years of hydrogen storage materials methods and techniques including electrochemical and thermal storage systems. An overview is given on the background to the various methods the current state of development and the future prospects. The following areas are covered; porous materials liquid hydrogen carriers complex hydrides intermetallic hydrides electro-chemical storage of energy thermal energy storage hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage
Potential Liquid-Organic Hydrogen Carrier (LOHC) Systems: A Review on Recent Progress
Nov 2020
Publication
The depletion of fossil fuels and rising global warming challenges encourage to find safe and viable energy storage and delivery technologies. Hydrogen is a clean efficient energy carrier in various mobile fuel-cell applications and owned no adverse effects on the environment and human health. However hydrogen storage is considered a bottleneck problem for the progress of the hydrogen economy. Liquid-organic hydrogen carriers (LOHCs) are organic substances in liquid or semi-solid states that store hydrogen by catalytic hydrogenation and dehydrogenation processes over multiple cycles and may support a future hydrogen economy. Remarkably hydrogen storage in LOHC systems has attracted dramatically more attention than conventional storage systems such as high-pressure compression liquefaction and absorption/adsorption techniques. Potential LOHC media must provide fully reversible hydrogen storage via catalytic processes thermal stability low melting points favorable hydrogenation thermodynamics and kinetics large-scale availability and compatibility with current fuel energy infrastructure to practically employ these molecules in various applications. In this review we present various considerable aspects for the development of ideal LOHC systems. We highlight the recent progress of LOHC candidates and their catalytic approach as well as briefly discuss the theoretical insights for understanding the reaction mechanism.
Evaluation Techniques of Hydrogen Permeation in Sealing Rubber Materials
Dec 2020
Publication
Three techniques for determining the hydrogen permeation properties of rubber samples were developed based on the volumetric and gravimetric measurements of released H2 gas after sample decompression. These methods include gas chromatography (GC) by thermal desorption analysis (TDA) volumetric collection (VC) measurement of hydrogen by graduated cylinder and gravimetric (GM) measurement by electronic balance. By measuring the released hydrogen against elapsed time after the decompression of pressure the charging amount (C0) and diffusivity (D) were obtained with the developed diffusion analysis program. From these values the solubility (S) and permeability (P) of polymers were evaluated through the relations of Henry's law and P=SD respectively. The developed techniques were applied to three kinds of spherically shaped sealing rubber materials. D S and P were analyzed as a function of pressure. The transport behaviors obtained in the three methods are discussed and compared with the characteristics of each measuring technique. The correlations between transport parameters and carbon black filler or density are discussed.
Development and Future Scope of Renewable Energy and Energy Storage Systems
May 2022
Publication
This review study attempts to summarize available energy storage systems in order to accelerate the adoption of renewable energy. Inefficient energy storage systems have been shown to function as a deterrent to the implementation of sustainable development. It is therefore critical to conduct a thorough examination of existing and soon-to-be-developed energy storage technologies. Various scholarly publications in the fields of energy storage systems and renewable energy have been reviewed and summarized. Data and themes have been further highlighted with the use of appropriate figures and tables. Case studies and examples of major projects have also been researched to gain a better understanding of the energy storage technologies evaluated. An insightful analysis of present energy storage technologies and other possible innovations have been discovered with the use of suitable literature review and illustrations. This report also emphasizes the critical necessity for an efficient storage system if renewable energy is to be widely adopted.
Energy Management Control Strategy for Saving Trip Costs of Fuel Cell/Battery Electric Vehicles
Mar 2022
Publication
Fuel cell vehicles (FCVs) should control the energy management between two energy sources for fuel economy using the stored energy in a battery or generation of energy through a fuel cell system. The fuel economy for an FCV includes trip costs for hydrogen consumption and the lifetime of two energy sources. This paper proposes an implementable energy management control strategy for an FCV to reduce trip costs. The concept of the proposed control strategy is first to analyze the allowable current of a fuel cell system from the optimal strategies for various initial battery state of charge (SOC) conditions using dynamic programming (DP) and second to find a modulation ratio determining the current of a fuel cell system for driving a vehicle using the particle swarm optimization method. The control strategy presents the on/off moment of a fuel cell system and the proper modulation ratio of the turned-on fuel cell system with respect to the battery SOC and the power demand. The proposed strategy reduces trip costs in real-time similar to the DP-based optimal strategy and more than the simple energy control strategy of switching a fuel cell system on/off at the battery SOC boundary conditions even for long-term driving cycles.
Simulation of a Hydrogen-Air Diffusion Flame under Consideration of Component-Specific Diffusivities
Mar 2022
Publication
This work deals with the numerical investigation of a three-dimensional laminar hydrogenair diffusion flame in which a cylindrical fuel jet is surrounded by in-flowing air. To calculate the distribution of gas molecules the model solves the species conservation equation for N-1 components using infinity fast chemistry and irreversible chemical reaction. The consideration of the component-specific diffusion has a strong influence on the position of the high-temperature zone as well as on the concentration distribution of the individual gas molecules. The calculations of the developed model predict the radial and axial species and temperature distribution in the combustion chamber comparable to those from previous publications. Deviations due to a changed burner geometry and air supply narrow the flame structure by up to 50% and the high-temperature zones merge toward the central axis. Due to the reduced inflow velocity of the hydrogen the high-temperature zones develop closer to the nozzle inlet of the combustion chamber. As the power increases the length of the cold hydrogen jet increases. Furthermore the results show that the axial profiles of temperature and mass fractions scale quantitatively with the power input by the fuel.
The Enhanced Hydrogen Storage Capacity of Carbon Fibers The Effect of Hollow Porous Structure and Surface Modification
Jul 2021
Publication
In this study highly porous carbon fiber was prepared for hydrogen storage. Porous carbon fiber (PCF) and activated porous carbon fiber (APCF) were derived by carbonization and chemical activation after selectively removing polyvinyl alcohol from a bi-component fiber composed of polyvinyl alcohol and polyacrylonitrile (PAN). The chemical activation created more pores on the surface of the PCF and consequently highly porous APCF was obtained with an improved BET surface area (3058 m2 g−1) and micropore volume (1.18 cm3 g−1) compare to those of the carbon fiber which was prepared by calcination of monocomponent PAN. APCF was revealed to be very efficient for hydrogen storage its hydrogen capacity of 5.14 wt% at 77 K and 10 MPa. Such hydrogen storage capacity is much higher than that of activated carbon fibers reported previously. To further enhance hydrogen storage capacity catalytic Pd nanoparticles were deposited on the surface of the APCF. The Pd-deposited APCF exhibits a high hydrogen storage capacity of 5.45 wt% at 77 K and 10 MPa. The results demonstrate the potential of Pd-deposited APCF for efficient hydrogen storage.
No more items...