Netherlands
Validation of CFD Models for Hydrogen Fast Filling Simulations
Sep 2011
Publication
High injection pressures are used during the re-fuelling process of vehicle tanks with compressed hydrogen and consequently high temperatures are generated in the tank potentially jeopardizing the system safety. Computational Fluid Dynamics (CFD) tools can help in predicting the temperature rise within vehicle tanks providing complete and detailed 3D information on flow features and temperature distribution. In this framework CFD simulations of hydrogen fast filling at different working conditions are performed and the accuracy of the numerical models is assessed against experimental data for a type 4 tank up to 70 MPa. Sensitivity analyses on the main modelling parameters are carried out in compliance with general CFD Best Practice Guidelines.
Risk Based Safety Distances for Hydrogen Refuelling Stations
Sep 2017
Publication
This paper introduces a risk-based methodology for hydrogen refuelling stations. Momentarily four stations are present in the Netherlands. This number is expected to increase to around twenty in the next years. For these stations a quantitative risk analysis (QRA) must be carried out to account for spatial planning. The presented method identifies the loss of containment scenarios and failure frequencies. Additionally the results of this study may be used in legislative context in the form of fixed generic safety distances. Using the risk analysis tool Safeti-NL safety distances are determined for three different kinds of hydrogen refuelling stations distinguished by the supply method of the hydrogen. For the hydrogen refuelling stations a maximum safety distance of 35 m is calculated. However despite the relatively small safety distances the maximum effect distances (distance to 1% lethality) can be very large especially for stations with a supply and storage of liquid hydrogen. The research was overseen by an advisory committee which also provided technical information on the refuelling stations.
Empirical Profiling of Cold Hydrogen Plumes Formed from Venting of LH2 Storage Vessels
Sep 2017
Publication
Liquid hydrogen (LH2) storage is viewed as a viable approach to assure sufficient hydrogen capacity at commercial fuelling stations. Presently LH2 is produced at remote facilities and then transported to the end-use site by road vehicles (i.e. LH2 tanker trucks). Venting of hydrogen to depressurize the transport storage tank is a routine part of the LH2 delivery and site transfer process. The behaviour of cold hydrogen plumes has not been well characterized because of the sparsity of empirical field data which can lead to overly conservative safety requirements. Committee members of the National Fire Protection Association (NFPA) Standard 2 [1] formed the Hydrogen Storage Safety Task Group which consists of hydrogen producers safety experts and computational fluid dynamics modellers has identified the lack of understanding of hydrogen dispersion during LH2 venting of storage vessels as a critical gap for establishing safety distances at LH2 facilities especially commercial hydrogen fuelling stations. To address this need the National Renewable Energy Laboratory Sensor Laboratory in collaboration with the NFPA Hydrogen Storage Task Group developed a prototype Cold Hydrogen Plume Analyzer to empirically characterize the hydrogen plume formed during LH2 storage tank venting. The prototype analyzer was field deployed during an actual LH2 venting process. Critical findings included
- Hydrogen above the lower flammable limit (LFL) was detected as much as 2 m lower than the release point which is not predicted by existing models.
- Personal monitors detected hydrogen at ground level although at levels below the LFL.
- A small but inconsistent correlation was found between oxygen depletion and the hydrogen concentration.
- A negligible to non-existent correlation was found between in-situ temperature measurements and the hydrogen concentration.
Hydrogen Safety Sensor Performance and Use Gap Analysis
Sep 2017
Publication
Hydrogen sensors are recognized as an important technology for facilitating the safe implementation of hydrogen as an alternative fuel and there are numerous reports of a sensor alarm successfully preventing a potentially serious event. However gaps in sensor metrological specifications as well as in their performance for some applications exist. The U.S. Department of Energy (DOE) Fuel Cell Technologies Office published a short list of critical gaps in the 2007 and 2012 Multiyear Project Plans; more detailed gap analyses were independently performed by the Joint Research Centre (JRC) and the National Renewable Energy Laboratory (NREL). There have been however some significant advances in sensor technologies since these assessments including the commercial availability of hydrogen sensors with fast response times (t90 < 1 s which had been an elusive DOE target since 2007) improved robustness to chemical poisons improved selectivity and improved lifetime and stability. These improvements however have not been universal and typically pertain to select platforms or models. Moreover as hydrogen markets grow and new applications are being explored more demands will be imposed on sensor performance. The hydrogen sensor laboratories at NREL and the JRC are currently updating the hydrogen safety sensor gap analysis through direct interaction with international stakeholders in the hydrogen community especially end users. NREL and the JRC are currently organizing a series of workshops (in Europe and the United States) with sensor developers end-users and other stakeholders in 2017 to identify technology gaps and to develop a path forward to address them. One workshop was held on May 10 in Brussels Belgium at the Headquarters of the Fuel Cell and Hydrogen Joint Undertaking. A second workshop is planned at NREL in Golden CO USA. This paper reviews improvements in sensor technologies in the past 5 to 10 years identifies gaps in sensor performance and use requirements and identifies potential research strategies to address the gaps. The outcomes of the Hydrogen Sensors Workshops are also summarized.
Best Practice in Numerical Simulation and CFD Benchmarking. Results from the SUSANA Project
Sep 2017
Publication
Correct use of Computational Fluid Dynamics (CFD) tools is essential in order to have confidence in the results. A comprehensive set of Best Practice Guidelines (BPG) in numerical simulations for Fuel Cells and Hydrogen applications has been one of the main outputs of the SUSANA project. These BPG focus on the practical needs of engineers in consultancies and industry undertaking CFD simulations or evaluating CFD simulation results in support of hazard/risk assessments of hydrogen facilities as well as on the needs of regulatory authorities. This contribution presents a summary of the BPG document. All crucial aspects of numerical simulations are addressed such as selection of the physical models domain design meshing boundary conditions and selection of numerical parameters. BPG cover all hydrogen safety relative phenomena i.e. release and dispersion ignition jet fire deflagration and detonation. A series of CFD benchmarking exercises are also presented serving as examples of appropriate modelling strategies.
Technical and Economic Analysis of One-Stop Charging Stations for Battery and Fuel Cell EV with Renewable Energy Sources
Jun 2020
Publication
Currently most of the vehicles make use of fossil fuels for operations resulting in one of the largest sources of carbon dioxide emissions. The need to cut our dependency on these fossil fuels has led to an increased use of renewable energy sources (RESs) for mobility purposes. A technical and economic analysis of a one-stop charging station for battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV) is investigated in this paper. The hybrid optimization model for electric renewables (HOMER) software and the heavy-duty refueling station analysis model (HDRSAM) are used to conduct the case study for a one-stop charging station at Technical University of Denmark (DTU)-Risø campus. Using HOMER a total of 42 charging station scenarios are analyzed by considering two systems (a grid-connected system and an off-grid connected system). For each system three different charging station designs (design A-hydrogen load; design B-an electrical load and design C-an integrated system consisting of both hydrogen and electrical load) are set up for analysis. Furthermore seven potential wind turbines with different capacity are selected from HOMER database for each system. Using HDRSAM a total 18 scenarios are analyzed with variation in hydrogen delivery option production volume hydrogen dispensing option and hydrogen dispensing option. The optimal solution from HOMER for a lifespan of twenty-five years is integrated into design C with the grid-connected system whose cost was $986065. For HDRSAM the optimal solution design consists of tube trailer as hydrogen delivery with cascade dispensing option at 350 bar together with high production volume and the cost of the system was $452148. The results from the two simulation tools are integrated and the overall cost of the one-stop charging station is achieved which was $2833465. The analysis demonstrated that the one-stop charging station with a grid connection is able to fulfil the charging demand cost-effectively and environmentally friendly for an integrated energy system with RESs in the investigated locations.
Use of Hydrogen Safety Sensors Under Anaerobic Conditions – Impact of Oxygen Content on Sensor Performance
Sep 2011
Publication
In any application involving the production storage or use of hydrogen sensors are important devices for alerting to the presence of leaked hydrogen. Hydrogen sensors should be accurate sensitive and specific as well as resistant to long term drift and varying environmental conditions. Furthermore as an integral element in a safety system sensor performance should not be compromised by operational parameters. For example safety sensors may be required to operate at reduced oxygen levels relative to air. In this work we evaluate and compare a number of sensor technologies in terms of their ability to detect hydrogen under conditions of varying oxygen concentration.
Integration of Experimental Facilities: A Joint Effort for Establishing a Common Knowledge Base in Experimental Work on Hydrogen Safety
Sep 2009
Publication
With regard to the goals of the European HySafe Network research facilities are essential for the experimental investigation of relevant phenomena for testing devices and safety concepts as well as for the generation of validation data for the various numerical codes and models. The integrating activity ‘Integration of Experimental Facilities (IEF)’ has provided basic support for jointly performed experimental work within HySafe. Even beyond the funding period of the NoE HySafe in the 6th Framework Programme IEF represents a long lasting effort for reaching sustainable integration of the experimental research capacities and expertise of the partners from different research fields. In order to achieve a high standard in the quality of experimental data provided by the partners emphasis was put on the know-how transfer between the partners. The strategy for reaching the objectives consisted of two parts. On the one hand a documentation of the experimental capacities has been prepared and analysed. On the other hand a communication base has been established by means of biannual workshops on experimental issues. A total of 8 well received workshops has been organised covering topics from measurement technologies to safety issues. Based on the information presented by the partners a working document on best practice including the joint experimental knowledge of all partners with regard to experiments and instrumentation was created. Preserving the character of a working document it was implemented in the IEF wiki website which was set up in order to provide a central communication platform. The paper gives an overview of the IEF network activities over the last 5 years.
Benchmark Exercise on Risk Assessment Methods Applied to a Virtual Hydrogen Refuelling Station
Sep 2009
Publication
A benchmarking exercise on quantitative risk assessment (QRA) methodologies has been conducted within the project HyQRA under the framework of the European Network of Excellence (NoE) HySafe. The aim of the exercise was basically twofold: (i) to identify the differences and similarities in approaches in a QRA and their results for a hydrogen installation between nine participating partners representing a broad spectrum of background in QRA culture and history and (ii) to identify knowledge gaps in the various steps and parameters underlying the risk quantification. In the first step a reference case was defined: a virtual hydrogen refuelling station (HRS) in virtual surroundings comprising housing school shops and other vulnerable objects. All partners were requested to conduct a QRA according to their usual approach and experience. Basically participants were free to define representative release cases to apply models and frequency assessments according their own methodology and to present risk according to their usual format. To enable inter-comparison a required set of results data was prescribed like distances to specific thermal radiation levels from fires and distances to specific overpressure levels. Moreover complete documentation of assumptions base data and references was to be reported. It was not surprising that a wide range of results was obtained both in the applied approaches as well as in the quantitative outcomes and conclusions. This made it difficult to identify exactly which assumptions and parameters were responsible for the differences in results as the paper will show. A second phase was defined in which the QRA was determined by a more limited number of release cases (scenarios). The partners in the project agreed to assess specific scenarios in order to identify the differences in consequence assessment approaches. The results of this phase provide a better understanding of the influence of modelling assumptions and limitations on the eventual conclusions with regard to risk to on-site people and to the off-site public. This paper presents the results and conclusions of both stages of the exercise.
Hydrogen Monitoring Requirements in the Global Technical Regulation on Hydrogen and Fuel Cell Vehicles
Oct 2015
Publication
The United Nations Economic Commission for Europe Global Technical Regulation (GTR) Number 13 (Global Technical Regulation on Hydrogen and Fuel Cell Vehicles) is the defining document regulating safety requirements in hydrogen vehicles and in particular fuel cell electric vehicles (FCEVs). GTR Number 13 has been formally adopted and will serve as the basis for the national regulatory standards for FCEV safety in North America (led by the United States) Japan Korea and the European Union. The GTR defines safety requirements for these vehicles including specifications on the allowable hydrogen levels in vehicle enclosures during in-use and post-crash conditions and on the allowable hydrogen emissions levels in vehicle exhaust during certain modes of normal operation. However in order to be incorporated into national regulations that is to be legally binding methods to verify compliance with the specific requirements must exist. In a collaborative program the Sensor Laboratories at the National Renewable Energy Laboratory in the United States and the Joint Research Centre Institute for Energy and Transport in the Netherlands have been evaluating and developing analytical methods that can be used to verify compliance with the hydrogen release requirements as specified in the GTR.
State-of-the-Art and Research Priorities in Hydrogen Safety
Sep 2013
Publication
On October 16-17 2012 the International Association for Hydrogen Safety (HySafe) in cooperation with the Institute for Energy and Transport of the Joint Research Centre of the European Commission (JRC IET Petten) held a two-day workshop dedicated to Hydrogen Safety Research Priorities. The workshop was hosted by Federal Institute for Materials Research and Testing (BAM) in Berlin Germany. The main idea of the Workshop was to bring together stakeholders who can address the existing knowledge gaps in the area of the hydrogen safety including identification and prioritization of such gaps from the standpoint of scientific knowledge both experimental and theoretical including numerical. The experience highlighting these gaps which was obtained during both practical applications (industry) and risk assessment should serve as reference point for further analysis. The program included two sections: knowledge gaps as they are addressed by industry and knowledge gaps and state-of-the-art by research. In the current work the main results of the workshop are summarized and analysed.
Indoor Use of Hydrogen, Knowledge Gaps and Priorities for the Improvement of Current Standards on Hydrogen, a Presentation of HyIndoor European Project
Sep 2013
Publication
To develop safety strategies for the use of hydrogen indoors the HyIndoor project is studying the behaviour of a hydrogen release deflagration or non-premixed flame in an enclosed space such as a fuel cell or its cabinet a room or a warehouse. The paper proposes a safety approach based on safety objectives that can be used to take various scenarios of hydrogen leaks into account for the safe design of Hydrogen and Fuel Cell (HFC) early market applications. Knowledge gaps on current engineering models and unknown influence of specific parameters were identified and prioritized thereby re-focusing the objectives of the project test campaign and numerical simulations. This approach will enable the improvement of the specification of openings and use of hydrogen sensors for enclosed spaces. The results will be disseminated to all stakeholders including hydrogen industry and RCS bodies.
JRC Reference Data from Experiments of Onboard Hydrogen Tanks Fast Filling
Sep 2013
Publication
At the JRC-IET on-board hydrogen tanks have been subjected to filling–emptying cycles to investigate their long-term mechanical and thermal behaviour and their safety performance. The local temperature history inside the tanks has been measured and compared with the temperatures outside and at the tank metallic bosses which is the measurement location identified by some standards. The outcome of these activities is a set of experimental data which will be made publicly available as reference for safety studies and validation of computational fluid dynamics.
Experimental Study of the Thermal Behaviour of Hydrogen Tanks During Hydrogen Cycling
Sep 2013
Publication
The thermal behaviour of several commercial hydrogen tanks has been studied during high pressure (70-84 MPa) hydrogen cycling. The temperature of the gas at different points inside the tank the temperature at the bosses and the tank outer wall temperature have been measured under different filling and emptying conditions. From the experimental results the effect of the filling rate (1.5-4 g/s) and the influence of the liner material in the thermal behaviour of the hydrogen tanks have been evaluated. Bosses thermal response under the different cycling conditions has also been investigated.
HIAD 2.0 – Hydrogen Incident and Accident Database
Sep 2019
Publication
Hydrogen technologies are expected to play a key role in implementing the transition from a fossil fuel- based to a more sustainable lower-carbon energy system. To facilitate their widespread deployment the safe operation and hydrogen systems needs to be ensured together with the evaluation of the associated risk.<br/>HIAD has been designed to be a collaborative and communicative web-based information platform holding high quality information of accidents and incidents related to hydrogen technologies. The main goal of HIAD was to become not only a standard industrial accident database but also an open communication platform suitable for safety lessons learned and risk communication as well as a potential data source for risk assessment; it has been set up to improve the understanding of hydrogen unintended events to identify measures and strategies to avoid incidents/accidents and to reduce the consequence if an accident occurs.<br/>In order to achieve that goal the data collection is characterized by a significant degree of detail and information about recorded events (e.g. causes physical consequences lesson learned). Data are related not only to real incident and accidents but also to hazardous situations.<br/>The concept of a hydrogen accident database was generated in the frame of the project HySafe an EC co-funded NoE of the 6th Frame Work Programme. HIAD was built by EC-JRC and populated by many HySafe partners. After the end of the project the database has been maintained and populated by JRC with publicly available events. The original idea was to provide a tool also for quantitative risk assessment able to conduct simple analyses of the events; unfortunately that goal could not be reached because of a lack of required statistics: it was not possible to establish a link with potential event providers coming from private sector not willing to share information considered confidential. Starting from June 2016 JRC has been developing a new version of the database (i.e. HIAD 2.0); the structure of the database and the web-interface have been redefined and simplified resulting in a streamlined user interface compared to the previous version of HIAD. The new version is mainly focused to facilitate the sharing of lessons learned and other relevant information related to hydrogen technology; the database will be public and the events will be anonymized. The database will contribute to improve the safety awareness fostering the users to benefit from the experiences of others as well as to share information from their own experiences.
The Battle between Battery and Fuel Cell Powered Electric Vehicles: A BWM Approach
Oct 2017
Publication
The transition to a more sustainable personal transportation sector requires the widespread adoption of electric vehicles. However a dominant design has not yet emerged and a standards battle is being fought between battery and hydrogen fuel cell powered electric vehicles. The aim of this paper is to analyze which factors are most likely to influence the outcome of this battle thereby reducing the uncertainty in the industry regarding investment decisions in either of these technologies. We examine the relevant factors for standard dominance and apply a multi-criteria decision-making method best worst method to determine the relative importance of these factors. The results indicate that the key factors include technological superiority compatibility and brand reputation and credibility. Our findings show that battery powered electric vehicles have a greater chance of winning the standards battle. This study contributes to theory by providing further empirical evidence that the outcome of standards battles can be explained and predicted by applying factors for standard success. We conclude that technology dominance in the automotive industry is mostly driven by technological characteristics and characteristics of the format supporter.
An Assessment on the Quantification of Hydrogen Releases Through Oxygen Displacement Using Oxygen
Sep 2013
Publication
Contrary to several reports in the recent literature the use of oxygen sensors for indirectly monitoring ambient hydrogen concentration has serious drawbacks. This method is based on the assumption that a hydrogen release will displace oxygen which is quantified using oxygen sensors. Despite its shortcomings the draft Hydrogen Vehicle Global Technical Regulation lists this method as a means to monitor hydrogen leaks to verify vehicle fuel system integrity. Experimental evaluations that were designed to impartially compare the ability of commercial oxygen and hydrogen sensors to reliably measure and report hydrogen concentration changes are presented. Numerous drawbacks are identified and discussed.
Uncertainties in Risk Assessment of Hydrogen Discharges from Pressurized Storage Vessels Ranging from Cryogenic to Ambient Temperatures
Sep 2013
Publication
Evaluations of the uncertainties resulting from risk assessment tools to predict releases from the various hydrogen storage types are important to support risk informed safety management. The tools have to predict releases from a wide range of storage pressures (up to 80 MPa) and temperatures (at 20K) e.g. the cryogenic compressed gas storage covers pressures up to 35 MPa and temperatures between 33K and 338 K. Accurate calculations of high pressure releases require real gas EOS. This paper compares a number of EOS to predict hydrogen properties typical in different storage types. The vessel dynamics are modelled to evaluate the performance of various EOS to predict exit pressures and temperatures. The results are compared to experimental data and results from CFD calculations.
Trends in Gas Sensor Development for Hydrogen Safety
Sep 2013
Publication
Gas sensors are applied for facilitating the safe use of hydrogen in for example fuel cell and hydrogen fuelled vehicles. New sensor developments aimed at meeting the increasingly stringent performance requirements in emerging applications are presented based on in-house technical developments and a literature study. The strategy of combining different detection principles i.e. sensors based on electrochemical cells semiconductors or field effects in combination with thermal conductivity sensor or catalytic combustion elements in one new measuring system is reported. This extends the dynamic measuring range of the sensor while improving sensor reliability to achieve higher safety integrity through diverse redundancy. The application of new nanoscaled materials nano wires carbon tubes and graphene as well as the improvements in electronic components of field-effect resistive-type and optical systems are evaluated in view of key operating parameters such as sensor response time low energy consumption and low working temperature.
Development of a Model Evaluation Protocol for CFD Analysis of Hydrogen Safety Issues – The SUSANA Project
Oct 2015
Publication
The “SUpport to SAfety aNAlysis of Hydrogen and Fuel Cell Technologies (SUSANA)” project aims to support stakeholders using Computational Fluid Dynamics (CFD) for safety engineering design and assessment of FCH systems and infrastructure through the development of a model evaluation protocol. The protocol covers all aspects of safety assessment modelling using CFD from release through dispersion to combustion (self-ignition fires deflagrations detonations and Deflagration to Detonation Transition - DDT) and not only aims to enable users to evaluate models but to inform them of the state of the art and best practices in numerical modelling. The paper gives an overview of the SUSANA project including the main stages of the model evaluation protocol and some results from the on-going benchmarking activities.
Effect of Precooled Inlet Gas Temperature and Mass flow Rate on Final State of Charge During Hydrogen Vehicle Refueling
Mar 2015
Publication
Short refuelling time and high final state of charge are among the main hydrogen car user's requirements. To meet these requirements without exceeding the tank materials safety limits hydrogen precooling is needed. Filling experiments with different inlet gas temperatures and mass flow rates have been executed using two different types of on-board tanks (type 3 and 4). State of charge has a strong dependency on the inlet gas temperature. This dependency is more visible for type 4 tanks. Lowest precooling temperature (−40 °C) is not always required in order to meet user's requirements so energy savings can be achieved if the initial conditions of the tank are correctly identified. The results of the experiments performed have been compared with the SAE J2601 look-up tables for non-communication fillings. A big safety margin has been observed in these tables. Refuelling could be performed faster and with less demanding precooling requirements if the initial conditions and the configuration of the hydrogen storage system are well known.
CFD Benchmark Based on Experiments of Helium Dispersion in a 1m3 Enclosure–intercomparisons for Plumes
Sep 2013
Publication
In the context of the French DIMITRHY project ANR-08-PANH006 experiments have been carried out to measure helium injections in a cubic 1 m3 box - GAMELAN in a reproducible and quantitative manner. For the present work we limit ourselves to the unique configuration of a closed box with a small hole at its base to prevent overpressure. This case leads to enough difficulties of modelisations to deserve our attention. The box is initially filled with air and injections of helium through a tube of diameter 20 mm is operated. The box is instrumented with catharometres to measure the helium volume concentration within an accuracy better than 0.1%. We present the CFD (Fluent and CASTEM ANSYS-CFX and ADREA-HF) calculations results obtained by 5 different teams participating to the benchmark in the following situation: the case of a plume release of helium in a closed box (4NL/min). Parts of the CFD simulations were performed in the European co-funded project HyIndoor others were performed in the French ANR-08-PANH006 DimitrHy project.
Assessment of a CFD Model for Simulations of Fast Filling of Hydrogen Tanks with Pre-cooling
Sep 2013
Publication
High gas temperatures can be reached inside a hydrogen tank during the filling process because of the large pressure increase (up to 70-80 MPa) and because of the short time (~3 minutes) of the process. High temperatures can potentially jeopardize the structural integrity of the storage system and one of the strategies to reduce the temperature increase is to pre-cool the hydrogen before injecting it into the tank. Computational Fluid Dynamics (CFD) tools have the capabilities of capturing the flow field and the temperature rise in the tank. The results of CFD simulations of fast filling with pre-cooling are shown and compared with experimental data to assess the accuracy of the CFD model
Risk Assessment of Hydrogen Explosion for Private Car with Hydrogen-driven Engine
Sep 2009
Publication
The aim of the study is to identify and quantify the additional risks related to hydrogen explosions during the operation of a hydrogen-driven car. In a first attempt the accidents or failures of a simple one-tank hydrogen storage system have been studied as a main source of risk. Three types of initiators are taken into account: crash accidents fire accidents without crash (no other cars are involved) and hydrogen leakages in normal situation with following ignition. The consequences of hydrogen ignition and/or explosion depend strongly on environmental conditions (geometry wind etc.) therefore the different configurations of operational and environmental conditions are specified.<br/>Then Event Tree/Fault Tree methods are applied for the risk assessment.<br/>The results of quantification permit to draw conclusions about the overall added risk of hydrogen technology as well as about the main contributors to the risk. Results of this work will eventually contribute to the on-going pre-normative research in the field of hydrogen safety.
Comparison of Modelling Approaches for CFD Simulations of High Pressure Hydrogen Releases
Sep 2011
Publication
Several approaches have been used in the past to model the source of a high pressure under-expanded jet such as the computationally expensive resolution of the jet shock structure and the simpler pseudo-source or notional nozzle approaches. In each approach assumptions are made introducing inaccuracies in the CFD calculations. This work assesses the effect of different source modelling approaches on the accuracy of CFD calculations by comparing simulation results to experimental data of the axial distribution of the flow velocity and H2 concentration.
CFD Investigation of Filling and Emptying of Hydrogen Tanks
Oct 2015
Publication
During the filling of hydrogen tanks high temperatures can be generated inside the vessel because of the gas compression while during the emptying low temperatures can be reached because of the gas expansion. The design temperature range goes from −40 °C to 85 °C. Temperatures outside that range could affect the mechanical properties of the tank materials. CFD analyses of the filling and emptying processes have been performed in the HyTransfer project. To assess the accuracy of the CFD model the simulation results have been compared with new experimental data for different filling and emptying strategies. The comparison between experiments and simulations is shown for the temperatures of the gas inside the tank for the temperatures at the interface between the liner and the composite material and for the temperatures on the external surface of the vessel.
Hydrogen Tank Filling Experiments at the JRC-IE Gastef Facility
Sep 2011
Publication
Storage of gases under pressure including hydrogen is a well-known technique. However the use in vehicles of hydrogen at pressures much higher than those applicable in natural gas cars still requires safety and performance studies with respect to the verification of the existing standards and regulations. The JRC-IE has developed a facility GasTeF for carrying out tests on full-scale high pressure vehicle’s tanks for hydrogen or natural gas. Typical tests performed in GasTeF are static permeation measurements of the storage system and hydrogen cycling in which tanks are fast filled and slowly emptied using hydrogen pressurised up to 70 MPa for at least 1000 times according to the requirements of the EU regulation on type-approval of hydrogen-powered motor vehicles. Moreover the temperature evolution of the gas inside and outside the tank is monitored using an ad-hoc designed thermocouples array system. This paper reports the first experimental results on the temperature distribution during hydrogen cycling tests.
Ia-HySafe Standard Benchmark Exercise Sbep-V21- Hydrogen Release and Accumulation within a Non-Ventilated Ambient Pressure Garage at Low Release Rates
Sep 2011
Publication
The successful Computational Fluid Dynamics (CFD) benchmarking activity originally started within the EC-funded Network of Excellence HySafe (2004-2009) continues within the research topics of the recently established “International Association of Hydrogen Safety” (IA-HySafe). The present contribution reports the results of the standard benchmark problem SBEP-V21. Focus is given to hydrogen dispersion and accumulation within a non-ventilated ambient pressure garage both during the release and post-release periods but for very low release rates as compared to earlier work (SBEP-V3). The current experiments were performed by CEA at the GARAGE facility under highly controlled conditions. Helium was vertically released from the centre of the 5.76 m (length) x 2.96 m (width) x 2.42 m (height) facility 22 cm from the floor from a 29.7 mm diameter opening at a volumetric rate of 18 L/min (0.027 g/s equivalent hydrogen release rate compared to 1 g/s for SBEP-V3) and for a period of 3740 seconds. Helium concentrations were measured with 57 catharometric sensors at various locations for a period up to 1.1 days. The simulations were performed using a variety of CFD codes and turbulence models. The paper compares the results predicted by the participating partners and attempts to identify the reasons for any observed disagreements.
Uncertainties in Explosion Risk Assessment for a Hydrogen Refuelling Station
Sep 2011
Publication
The project “Towards a Hydrogen Refuelling Infrastructure for Vehicles” (THRIVE) aimed at the determination of conditions to stimulate the building of a sustainable infrastructure for hydrogen as a car fuel in The Netherlands. Economic scenarios were constructed for the development of such an infrastructure for the next one to four decades. The eventual horizon will require the erection of a few hundred to more than a thousand hydrogen refuelling stations (HRS) in The Netherlands. The risk acceptability policy in The Netherlands implemented in the External Safety Establishments decree requires the assessment and management of safety risks imposed on the public by car fuelling stations. In the past a risk-informed policy has been developed for the large scale introduction of liquefied petroleum gas (LPG) as a car fuel and a similar policy will also be required if hydrogen is introduced in the public domain. A risk assessment methodology dedicated to cope with accident scenarios relevant for hydrogen applications is to be developed. Within the THRIVE project a demo risk assessment was conducted for the possible implementation of an HRS within an existing station for conventional fuels. The studied station is located in an urban area occupied with housing and commercial activities. The HRS is based on delivery and on-site storage of liquid hydrogen and dispensing of high pressure gaseous hydrogen into vehicles. The main challenges in the risk assessment were in the modelling of release and dispersion of liquid hydrogen. Definition of initial conditions for computational fluid dynamics (CFD) modelling to evaluate dispersion of a cold hydrogen air mixture appears rather complex and is not always fully understood. The modelling assumptions in the initial conditions determine to a large extent the likelihood and severity of potential explosion effects. The paper shows the results of the investigation and the sensitivity to the basic assumptions in the model input.
HIAD – Hydrogen Incident and Accident Database
Sep 2011
Publication
The Hydrogen Incident and Accident Database (HIAD) is being developed as a repository of systematic data describing in detail hydrogen-related undesired events (incidents or accidents). It is an open web-based information system serving various purposes such as a data source for lessons learnt risk communication and partly risk assessment. The paper describes the features of the three HIAD modules – the Data Entry Module (DEM) the Data Retrieval Module (DRM) and the Data Analysis Module (DAM) – and the potential impact the database may have on hydrogen safety. The importance of data quality assurance process is also addressed.
Reversible Ammonia-based and Liquid Organic Hydrogen Carriers for High-density Hydrogen Storage: Recent Progress
Feb 2019
Publication
Liquid hydrogen carriers are considered to be attractive hydrogen storage options because of their ease of integration into existing chemical transportation infrastructures when compared with liquid or compressed hydrogen. The development of such carriers forms part of the work of the International Energy Agency Task 32: Hydrogen-Based Energy Storage. Here we report the state-of-the-art for ammonia-based and liquid organic hydrogen carriers with a particular focus on the challenge of ensuring easily regenerable high-density hydrogen storage.
On the Use of Hydrogen in Confined Spaces: Results from the Internal Project InsHyde
Sep 2009
Publication
Alexandros G. Venetsanos,
Paul Adams,
Inaki Azkarate,
A. Bengaouer,
Marco Carcassi,
Angunn Engebø,
E. Gallego,
Olav Roald Hansen,
Stuart J. Hawksworth,
Thomas Jordan,
Armin Keßler,
Sanjay Kumar,
Vladimir V. Molkov,
Sandra Nilsen,
Ernst Arndt Reinecke,
M. Stöcklin,
Ulrich Schmidtchen,
Andrzej Teodorczyk,
D. Tigreat,
N. H. A. Versloot and
L. Boon-Brett
The paper presents an overview of the main achievements of the internal project InsHyde of the HySafe NoE. The scope of InsHyde was to investigate realistic small-medium indoor hydrogen leaks and provide recommendations for the safe use/storage of indoor hydrogen systems. Additionally InsHyde served to integrate proposals from HySafe work packages and existing external research projects towards a common effort. Following a state of the art review InsHyde activities expanded into experimental and simulation work. Dispersion experiments were performed using hydrogen and helium at the INERIS gallery facility to evaluate short and long term dispersion patterns in garage like settings. A new facility (GARAGE) was built at CEA and dispersion experiments were performed there using helium to evaluate hydrogen dispersion under highly controlled conditions. In parallel combustion experiments were performed by FZK to evaluate the maximum amount of hydrogen that could be safely ignited indoors. The combustion experiments were extended later on by KI at their test site by considering the ignition of larger amounts of hydrogen in obstructed environments outdoors. An evaluation of the performance of commercial hydrogen detectors as well as inter-lab calibration work was jointly performed by JRC INERIS and BAM. Simulation work was as intensive as the experimental work with participation from most of the partners. It included pre-test simulations validation of the available CFD codes against previously performed experiments with significant CFD code inter-comparisons as well as CFD application to investigate specific realistic scenarios. Additionally an evaluation of permeation issues was performed by VOLVO CEA NCSRD and UU by combining theoretical computational and experimental approaches with the results being presented to key automotive regulations and standards groups. Finally the InsHyde project concluded with a public document providing initial guidance on the use of hydrogen in confined spaces.
Workshop Report: Summary & Outcomes, Putting Science into Standards Power-to-Hydrogen and HCNG
Oct 2014
Publication
The Joint Research Centre (JRC) of the European Commission together with the European Association of Research and Technology Organisations (EARTO) the European Standards Organisations (ESO) CEN and CENELEC and the European Commission Directorate-General Enterprise and Industry (ENTR) have launched an initiative within the context of the European Forum on Science and Industry to bring the scientific and standardization communities closer together. The second and very successful workshop in a series entitled “Putting Science into Standards" was held in at the Institute for Energy and Transport of the JRC in Petten on 21-22 October 2014.<br/>The workshop focused on Power to Hydrogen (P2H) and Hydrogen Compressed Natural Gas (HCNG) which represent a promising and major contribution to the challenging management of increased integration of renewable energy sources in the overall energy system. The workshop offered a platform to exchange ideas on technologies policy and standardization issues. The participation of major stakeholders from both industry and research to this event proved fruitful in moving towards consensus on the relevant technical issues involved and at identifying a common way forward to increase the maturity and market visibility of P2H components and systems. Other outcomes include a clarification of expectations of industry of where and how policy and standardization can contribute to a competitive development of P2H and related issues. The workshop results will be used to devise a roadmap on "Opportunities for Power to Hydrogen and HCNG" by CEN/CENELEC outlining the next steps of standardization activities.
Safe Operation of Natural Gas Appliances Fuelled with Hydrogen & Natural Gas Mixtures (Progress Obtained in the Naturalhy-Project)
Sep 2007
Publication
Considering the transition towards the hydrogen economy dependent on hydrogen penetration scenario the cost of a new hydrogen pipeline infrastructure in Europe may amount to several thousands of billions of EURO’s. Therefore the examination of the potential contribution of the existing natural gas assets is a practical and logical first step. As the physical and chemical properties of hydrogen differ significantly from those of natural gas it is not at all possible to simply exchange natural gas by hydrogen in the existing infrastructure. In this paper first a brief overview will be given of the NATURALHY-project. Further the focus will be on the impact of added hydrogen on the performance of existing natural gas domestic end user appliances which is related to the operation of the natural gas grid connecting the different types of appliance. The application of the fundamental insights and carefully designed experiments comparing the behaviour of gases using justified reference conditions have been shown to offer essential progress. The Wobbe index limits of the natural gas distributed pose a first limiting factor upon the maximum allowable hydrogen concentration. Constant-Wobbe index and decreasing-Wobbe index options of H2 admixture have been studied. Considering the appliance light back H2 limiting factor for domestic appliances fuel-rich appliances are the critical ones. Also taking into account stationary gas engines gas turbines industrial applications and natural gas grid management it is not yet justified to present statements on what level of hydrogen concentration could be safely allowed in which specific natural gas distribution region. But more clarity has been obtained on combustion safety aspects of existing domestic appliances on the connection with Wobbe distribution conditions and on the bottlenecks still to be handled.
Assessing the Durability and Integrity of Natural Gas Infrastructures for Transporting and Distributing Mixtures of Hydrogen and Natural Gas
Sep 2005
Publication
Extensive infrastructure exists for the transport of natural gas and it is an obvious step to assess its use for the movement of hydrogen. The Naturalhy project’s objective is to prepare the European natural gas industry for the introduction of hydrogen by assessing the capability of the natural gas infrastructure to accept mixtures of hydrogen and natural gas. This paper presents the ongoing work within both Durability and Integrity Work Packages of the Naturalhy project. This work covers a gap in knowledge on risk assessment required for delivering H2+natural gas blends by means of the existing natural gas grids in safe operation.<br/>Experiments involving several parts of the existing infrastructure will be described that are being carried out to re-examine the major risks previously studied for natural gas including: effect of H2 on failure behaviour and corrosion of transmission pipes and their burst resistance (link to the Work Package Safety) on permeability and ageing of distribution pipes on reliability and ageing of domestic gas meters tightness to H2 of domestic appliances and their connexions. The information will be integrated into existing Durability assessment methodologies originally developed for natural gas.<br/>An Integrity Management Tool will be developed taking account of the effect of hydrogen on the materials properties. The tool should enable a cost effective selection of appropriate measures to control the structural integrity and maintaining equipment. The main measures considered are monitoring non destructive examination (pigging and non pigging) and repair strategies. The tool will cover a number of parameters e.g.: percentage of hydrogen in the gas mixture material of construction operating conditions and condition of cathodic protection. Thus the Integrity Management Tool will yield an inspection and maintenance plan based on the specific circumstances.
Safety of Laboratories for New Hydrogen Techniques
Sep 2007
Publication
In this paper a case of hydrogen release in a typical research laboratory for the characterisation of hydrogen solid-state storage materials has been considered. The laboratory is equipped with various testing equipments for the assessment of hydrogen capacity in materials typically in the 1 to 200 bar pressure range and temperatures up to 500°C. Hydrogen is delivered at 200 bar by a 50 l gas bottle and a compressor located outside the laboratory. The safety measures directly related to hydrogen hazard consist in a distributed ventilation of the laboratory and air extraction fume hoods located on top of each instrument. Goal of this work is the modelling of hydrogen accidental release in a real laboratory case in order to provide a more fundamental basis for the laboratory safety design and assist the decision on the number and position of the safety sensors. The computational fluid dynamics code (CFD) ANSYS-CFX has been selected in order to perform the numerical investigations. Two basic accidental release scenarios have been assumed both at 200 bar: a major leak corresponding to a guillotine breaking of the hydrogen distribution line and a smaller leak typical for a not properly tight junction.
Simulation of the Fast Filling of Hydrogen Tanks
Sep 2009
Publication
High pressure storage of hydrogen in tanks is a promising option to provide the necessary fuel for transportation purposes. The fill process of a high-pressure tank should be reasonably short but must be designed to avoid too high temperatures in the tank. The shorter the fill should be the higher the maximum temperature in the tank climbs. For safety reasons an upper temperature limit is included in the requirements for refillable hydrogen tanks (ISO 15869) which sets the limit for any fill optimization. It is crucial to understand the phenomena during a tank fill to stay within the safety margins.<br/>The paper describes the fast filling process of hydrogen tanks by simulations based on the Computational Fluid Dynamics (CFD) code CFX. The major result of the simulations is the local temperature distribution in the tank depending on the materials of liner and outer thermal insulation. Different material combinations (type III and IV) are investigated.<br/>Some measurements from literature are available and are used to validate the approach followed in CFX to simulate the fast filling of tanks. Validation has to be continued in future to further improve the predictability of the calculations for arbitrary geometries and material combinations.
Measurement Challenges for Hydrogen Vehicles
Apr 2019
Publication
Uptake of hydrogen vehicles is an ideal solution for countries that face challenging targets for carbon dioxide reduction. The advantage of hydrogen fuel cell electric vehicles is that they behave in a very similar way to petrol engines yet they do not emit any carbon containing products during operation. The hydrogen industry currently faces the dilemma that they must meet certain measurement requirements (set by European legislation) but cannot do so due to a lack of available methods and standards. This paper outlines the four biggest measurement challenges that are faced by the hydrogen industry including flow metering quality assurance quality control and sampling.
Government Strategy on Hydrogen - The Netherlands
Apr 2020
Publication
Low-carbon gases are indispensable to any energy system that is reliable clean affordable safe and is suited to spatial integration and zero-carbon hydrogen is a crucial link in that chain1. The most common element in the universe seems to have a highly bonding effect in the Netherlands – particularly as a result of the unique starting position of our country. This is made clear in the agreements of the National Climate Agreement which includes an ambitious target for hydrogen supported by a large and broad group of stakeholders. Industrial clusters and ports regard hydrogen as an indispensable part of their future and sustainability strategy. For the transport sector hydrogen (in combination with fuel cells) is crucial to achieving zero emissions transport. The agricultural sector has identified opportunities for the production of hydrogen and for its use. Cities regions and provinces are keen to get started on implementing hydrogen.<br/>The government embraces these targets and recognises the power of the framework for action demonstrated by so many parties. The focus on clean hydrogen in the Netherlands will lead to the creation of new jobs improvements to air quality and moreover is crucial to the energy transition.
Hysafe SBEP-V20: Numerical Predictions of Release Experiments Inside a Residential Garage With Passive Ventilation
Sep 2009
Publication
This work presents the results of the Standard Benchmark Exercise Problem (SBEP) V20 of Work Package 6 (WP6) of HySafe Network of Excellence (NoE) co-funded by the European Commission in the frame of evaluating the quality and suitability of codes models and user practices by comparative assessments of code results. The benchmark problem SBEP-V20 covers release scenarios that were experimentally investigated in the past using helium as a substitute to hydrogen. The aim of the experimental investigations was to determine the ventilation requirements for parking hydrogen fuelled vehicles in residential garages. Helium was released under the vehicle for 2 h with 7.200 l/h flow rate. The leak rate corresponded to a 20% drop of the peak power of a 50 kW fuel cell vehicle. Three double vent garage door geometries are considered in this numerical investigation. In each case the vents are located at the top and bottom of the garage door. The vents vary only in height. In the first case the height of the vents is 0.063 m in the second 0.241 m and in the third 0.495 m. Four HySafe partners participated in this benchmark. The following CFD packages with the respective models were applied to simulate the experiments: ADREA-HF using k–ɛ model by partner NCSRD FLACS using k–ɛ model by partner DNV FLUENT using k–ɛ model by partner UPM and CFX using laminar and the low-Re number SST model by partner JRC. This study compares the results predicted by the partners to the experimental measurements at four sensor locations inside the garage with an attempt to assess and validate the performance of the different numerical approaches.
Material Testing and Design Recommendations for Components Exposed to Hydrogen Enhanced Fatigue – the Mathryce Project
Sep 2013
Publication
The three years European MATHRYCE project dedicated to material testing and design recommendations for components exposed to hydrogen enhanced fatigue started in October 2012. Its main goal is to provide an “easy” to implement methodology based on lab-scale experimental tests under hydrogen gas to assess the service life of a real scale component taking into account fatigue loading under hydrogen gas. Dedicated experimental tests will be developed for this purpose. In the present paper the proposed approach is presented and compared to the methodologies currently developed elsewhere in the world.
Dynamic modelling of a direct internal reforming solid oxide fuel cell stack based on single cell experiments
May 2018
Publication
Direct internal reforming enables optimal heat integration and reduced complexity in solid oxide fuel cell (SOFC) systems but thermal stresses induced by the increased temperature gradients may inflict damage to the stack. Therefore the development of adequate control strategies requires models that can accurately predict the temperature profiles in the stack. A 1D dynamic modelling platform is developed in this study and used to simulate SOFCs in both single cell and stack configurations. The single cell model is used to validate power law and Hougen-Watson reforming kinetics derived from experiments in previous work. The stack model based on the same type of cells accounts for heat transfer in the inactive area and to the environment and is validated with data reported by the manufacturer. The reforming kinetics are then implemented in the stack model to simulate operation with direct internal reforming. Although there are differences between the temperature profiles predicted by the two kinetic models both are more realistic than assuming chemical equilibrium. The results highlight the need to identify rate limiting steps for the reforming and hydrogen oxidation reactions on anodes of functional SOFC assemblies. The modelling approach can be used to study off-design conditions transient operation and system integration as well as to develop adequate energy management and control strategies.
Statistics, Lessons Learned and Recommendations from Analysis of HIAD 2.0 Database
Mar 2022
Publication
The manuscript firstly describes the data collection and validation process for the European Hydrogen Incidents and Accidents Database (HIAD 2.0) a public repository tool collecting systematic data on hydrogen-related incidents and near-misses. This is followed by an overview of HIAD 2.0 which currently contains 706 events. Subsequently the approaches and procedures followed by the authors to derive lessons learned and formulate recommendations from the events are described. The lessons learned have been divided into four categories including system design; system manufacturing installation and modification; human factors and emergency response. An overarching lesson learned is that minor events which occurred simultaneously could still result in serious consequences echoing James Reason's Swiss Cheese theory. Recommendations were formulated in relation to the established safety principles adapted for hydrogen by the European Hydrogen Safety Panel considering operational modes industrial sectors and human factors. This work provide an important contribution to the safety of systems involving hydrogen benefitting technical safety engineers emergency responders and emergency services. The lesson learned and the discussion derived from the statistics can also be used in training and risk assessment studies being of equal importance to promote and assist the development of sound safety culture in organisations.
Requirements for the Safety Assessment for the Approval of a Hydrogen Refueling Station
Sep 2007
Publication
The EC 6th framework research project HyApproval will draft a Handbook which will describe all relevant issues to get approval to construct and operate a Hydrogen Refuelling Station (HRS) for hydrogen vehicles. In WP3 of the HyApproval project it is under investigation which safety information competent authorities require to give a licence to construct an operate an HRS. The paper describes the applied methodology to collect the information from the authorities in 5 EC countries and the USA. The results of the interviews and recommendations for the information to include in the Handbook are presented.
An Intercomparison Exercise on the Capabilities of CFD Models to Predict Deflagration of a Large-Scale H2-Air Mixture in Open Atmosphere
Sep 2005
Publication
This paper presents a compilation of the results supplied by HySafe partners participating in the Standard Benchmark Exercise Problem (SBEP) V2 which is based on an experiment on hydrogen combustion that is first described. A list of the results requested from participants is also included. The main characteristics of the models used for the calculations are compared in a very succinct way by using tables. The comparison between results together with the experimental data when available is made through a series of graphs. The results show quite good agreement with the experimental data. The calculations have demonstrated to be sensitive to computational domain size and far field boundary condition.
Sensitivity to Detonation and Detonation Cellular Structure of H2-O2-AIr-H2O2 Gas Mixtures
Sep 2005
Publication
Today it is not known – neither qualitatively not quantitatively - how large the impact can be of the promoters on sensitivity to hydrogen-air detonation in hypothetical accidents at hydrogen-containing installations transport or storage facilities. Report goal is to estimate theoretically an effect of hydrogen-peroxide (as representative promoter) on sensitivity to detonation of the stoichiometric hydrogen-oxygen gas mixtures. The classical H2-O2-Ar (2:1:7) gas mixture was chosen as reference system with the well established and unambiguously interpreted experimental data. In kinetic simulations it was found that the ignition delay time is sensitive to H2O2addition for small initial H2O2concentrations and is nearly constant for the large ones. Parametric reactive CFD studies of two dimensional cellular structure of 2H2-O2-7Ar-H2O2 detonations with variable hydrogen peroxide concentration (up to 10 vol.%) were also performed. Two un-expected results were obtained. First result: detonation cell size is practically independent upon variation of initial hydrogen peroxide concentration. For practical applications it means that presence of hydrogen-peroxide did not change drastically sensitivity of the stoichiometric hydrogen-oxygen gas mixtures. These theoretical speculations require an experimental verification. Second result: for large enough initial H2O2concentrations (> 1 vol.% at least) a new element of cellular structure of steady detonation wave was revealed. It is a system of multiple secondary longitudinal shock waves (SLSW) which propagates in the direction opposite to that of the leading shock wave. Detailed mechanism of SLSW formation is proposed.
Testing of Hydrogen Safety Sensors in Service Simulated Conditions
Sep 2005
Publication
Reliable and effective sensors for the accurate detection of hydrogen concentrations in air are essential for the safe operation of fuel cells hydrogen fuelled systems (e.g. vehicles) and hydrogen production distribution and storage facilities. The present paper describes the activity on-going at JRC for the establishment of a facility that can be used for testing and validating the performance of hydrogen sensors under a range of conditions representative of those to be encountered in service. Potential aspects to be investigated in relation to the sensors performances are the influence of temperature humidity and pressure (simulating variations in altitude) the sensitivity to target gas and the cross sensitivity to other gases/vapours the reaction and recovery time and the sensors’ lifetime. The facility set up at JRC for the execution of these tests is described including the program for its commissioning. The results of a preliminary test are presented and discussed as an example.
An Inter-Comparison Exercise on the Capabilities of CFD Models to Predict the Short and Long Term Distribution and Mixing of Hydrogen in a Garage
Sep 2007
Publication
Alexandros G. Venetsanos,
E. Papanikolaou,
J. García,
Olav Roald Hansen,
Matthias Heitsch,
Asmund Huser,
Wilfried Jahn,
Jean-Marc Lacome,
Thomas Jordan,
H. S. Ledin,
Dmitry Makarov,
Prankul Middha,
Etienne Studer,
Andrei V. Tchouvelev,
Franck Verbecke,
M. M. Voort,
Andrzej Teodorczyk and
M. A. Delichatsios
The paper presents the results of the CFD inter-comparison exercise SBEP-V3 performed within the activity InsHyde internal project of the HYSAFE network of excellence in the framework of evaluating the capability of various CFD tools and modelling approaches in predicting the physical phenomena associated to the short and long term mixing and distribution of hydrogen releases in confined spaces. The experiment simulated was INERIS-TEST-6C performed within the InsHyde project by INERIS consisting of a 1 g/s vertical hydrogen release for 240 s from an orifice of 20 mm diameter into a rectangular room (garage) of dimensions 3.78x7.2x2.88 m in width length and height respectively. Two small openings at the front and bottom side of the room assured constant pressure conditions. During the test hydrogen concentration time histories were measured at 12 positions in the room for a period up to 5160 s after the end of release covering both the release and the subsequent diffusion phases. The benchmark was organized in two phases. The first phase consisted of blind simulations performed prior to the execution of the tests. The second phase consisted of post calculations performed after the tests were concluded and the experimental results made available. The participation in the benchmark was high: 12 different organizations (2 non-HYSAFE partners) 10 different CFD codes and 8 different turbulence models. Large variation in predicted results was found in the first phase of the benchmark between the various modelling approaches. This was attributed mainly to differences in turbulence models and numerical accuracy options (time/space resolution and discretization schemes). During the second phase of the benchmark the variation between predicted results was reduced.
The Safe Use of the Existing Natural Gas System for Hydrogen (Overview of the NATURALHY-Project)
Sep 2005
Publication
The transition period towards the situation in which hydrogen will become an important energy carrier will be lengthy (decades) costly and needs a significant R&D effort. It’s clear therefore that the development of a hydrogen system requires a practical strategy within the context of the existing assets. Examining the potential of the existing extensive natural gas chain (transmission - distribution - end user infrastructures and appliances) is a logical first step towards the widespread delivery of hydrogen.
The project will define the conditions under which hydrogen can be mixed with natural gas for delivery by the existing natural gas system and later withdrawn selectively from the pipeline system by advanced separation technologies. Membranes will be developed to enable this separation. The socio-economic and life cycle consequences of this hydrogen delivery approach will be mapped out. By adding hydrogen to natural gas the physical and chemical properties of the mixture will differ from “pure” natural gas. As this may have a major effect on safety issues and durability issues (which also have a safety component) related to the gas delivery and the performance of end use appliances these issues are particularly addressed in the project.
The project is executed by a European consortium of 39 partners (including 15 from the gas industry). In this project set up under the auspices of GERG The European Gas Research Group there are leading roles for N.V. Nederlandse Gasunie (NL) Gaz de France (F) TNO (NL) ISQ (P) the Universities of Loughborough and Warwick (UK) and Exergia (GR). Guidance will be provided by a Strategic Advisory Committee consisting of representatives from relevant (inter)national organizations.
The project started on 1st May 2004 and will run for 5 years. The European Commission has selected the Integrated Project NATURALHY for financial support within the Sixth Framework Programme.
The project will define the conditions under which hydrogen can be mixed with natural gas for delivery by the existing natural gas system and later withdrawn selectively from the pipeline system by advanced separation technologies. Membranes will be developed to enable this separation. The socio-economic and life cycle consequences of this hydrogen delivery approach will be mapped out. By adding hydrogen to natural gas the physical and chemical properties of the mixture will differ from “pure” natural gas. As this may have a major effect on safety issues and durability issues (which also have a safety component) related to the gas delivery and the performance of end use appliances these issues are particularly addressed in the project.
The project is executed by a European consortium of 39 partners (including 15 from the gas industry). In this project set up under the auspices of GERG The European Gas Research Group there are leading roles for N.V. Nederlandse Gasunie (NL) Gaz de France (F) TNO (NL) ISQ (P) the Universities of Loughborough and Warwick (UK) and Exergia (GR). Guidance will be provided by a Strategic Advisory Committee consisting of representatives from relevant (inter)national organizations.
The project started on 1st May 2004 and will run for 5 years. The European Commission has selected the Integrated Project NATURALHY for financial support within the Sixth Framework Programme.
Modelling of Lean Uniform and Non-Uniform Hydrogen-Air Mixture Explosions in a Closed Vessel
Sep 2009
Publication
Simulation of hydrogen-air mixture explosions in a closed large-scale vessel with uniform and nonuniform mixture compositions was performed by the group of partners within the EC funded project “Hydrogen Safety as an Energy Carrier” (HySafe). Several experiments were conducted previously by Whitehouse et al. in a 10.7 m3 vertically oriented (5.7-m high) cylindrical facility with different hydrogen-air mixture compositions. Two particular experiments were selected for simulation and comparison as a Standard Benchmark Exercise (SBEP) problem: combustion of uniform 12.8% (vol.) hydrogen-air mixture and combustion of non-uniform hydrogen-air mixture with average 12.6% (vol.) hydrogen concentration across the vessel (vertical stratification 27% vol. hydrogen at the top of the vessel 2.5% vol. hydrogen at the bottom of the vessel); both mixtures were ignited at the top of the vessel. The paper presents modelling approaches used by the partners comparison of simulation results against the experiment data and conclusions regarding the non-uniform mixture combustion modelling in real-life applications.
No more items...