Netherlands
The Effect of Hydrogen Content and Yield Strength on the Distribution of Hydrogen in Steel a Diffusion Coupled Micromechanical FEM Study
Mar 2021
Publication
In this study we investigate the effect of the heterogeneous micromechanical stress fields resulting from the grain-scale anisotropy on the redistribution of hydrogen using a diffusion coupled crystal plasticity model. A representative volume element with periodic boundary conditions was used to model a synthetic microstructure. The effect of tensile loading initial hydrogen content and yield strength on the redistribution of lattice (CL) and dislocation trapped (Cx) hydrogen was studied. It was found that the heterogeneous micromechanical stress fields resulted in the accumulation of both populations primarily at the grain boundaries. This shows that in addition to the well-known grain boundary trapping the interplay of the heterogeneous micromechanical hydrostatic stresses and plastic strains contribute to the accumulation of hydrogen at the grain boundaries. Higher yield strength reduced the amount of Cx due to the resulting lower plastic deformation levels. On the other side the resulting higher hydrostatic stresses increased the depletion of CL from the compressive regions and its diffusion toward the tensile ones. These regions with increased CL are expected to be potential damage initiation zones. This aligns with the observations that high-strength steels are more susceptible to hydrogen embrittlement than those with lower-strength.
Analysing Future Demand, Supply, and Transport of Hydrogen
Jun 2021
Publication
Hydrogen is crucial to Europe’s transformation into a climate-neutral continent by mid-century. This study concludes that the European Union (EU) and UK could see a hydrogen demand of 2300 TWh (2150-2750 TWh) by 2050. This corresponds to 20-25% of EU and UK final energy consumption by 2050. Achieving this future role of hydrogen depends on many factors including market frameworks legislation technology readiness and consumer choice.
The document can be download on their website
The document can be download on their website
The NederDrone: A Hybrid Lift, Hybrid Energy Hydrogen UAV
Mar 2021
Publication
Many Unmanned Air Vehicle (UAV) applications require vertical take-off and landing and very long-range capabilities. Fixed-wing aircraft need long runways to land and electric energy is still a bottleneck for helicopters which are not range efficient. In this paper we introduce the NederDrone a hybrid lift hybrid energy hydrogen-powered UAV that can perform vertical take-off and landings using its 12 propellers while flying efficiently in forward flight thanks to its fixed wings. The energy is supplied from a combination of hydrogen-driven Polymer Electrolyte Membrane fuel-cells for endurance and lithium batteries for high-power situations. The hydrogen is stored in a pressurized cylinder around which the UAV is optimized. This work analyses the selection of the concept the implemented safety elements the electronics and flight control and shows flight data including a 3h38 flight at sea while starting and landing from a small moving ship.
Materials for Hydrogen-based Energy Storage - Past, Recent Progress and Future Outlook
Dec 2019
Publication
Michael Hirscher,
Volodymyr A. Yartys,
Marcello Baricco,
José Bellosta von Colbe,
Didier Blanchard,
Robert C. Bowman Jr.,
Darren P. Broom,
Craig Buckley,
Fei Chang,
Ping Chen,
Young Whan Cho,
Jean-Claude Crivello,
Fermin Cuevas,
William I. F. David,
Petra E. de Jongh,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
Yaroslav Filinchuk,
George E. Froudakis,
David M. Grant,
Evan MacA. Gray,
Bjørn Christian Hauback,
Teng He,
Terry D. Humphries,
Torben R. Jensen,
Sangryun Kim,
Yoshitsugu Kojima,
Michel Latroche,
Hai-wen Li,
Mykhaylo V. Lototskyy,
Joshua W. Makepeace,
Kasper T. Møller,
Lubna Naheed,
Peter Ngene,
Dag Noreus,
Magnus Moe Nygård,
Shin-ichi Orimo,
Mark Paskevicius,
Luca Pasquini,
Dorthe B. Ravnsbæk,
M. Veronica Sofianos,
Terrence J. Udovic,
Tejs Vegge,
Gavin Walker,
Colin Webb,
Claudia Weidenthaler and
Claudia Zlotea
Globally the accelerating use of renewable energy sources enabled by increased efficiencies and reduced costs and driven by the need to mitigate the effects of climate change has significantly increased research in the areas of renewable energy production storage distribution and end-use. Central to this discussion is the use of hydrogen as a clean efficient energy vector for energy storage. This review by experts of Task 32 “Hydrogen-based Energy Storage” of the International Energy Agency Hydrogen TCP reports on the development over the last 6 years of hydrogen storage materials methods and techniques including electrochemical and thermal storage systems. An overview is given on the background to the various methods the current state of development and the future prospects. The following areas are covered; porous materials liquid hydrogen carriers complex hydrides intermetallic hydrides electro-chemical storage of energy thermal energy storage hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage
Hydrogen-based Integrated Energy and Mobility System for a Real-life Office Environment
Mar 2020
Publication
The current focus on the massive CO2 reduction highlights the need for the rapid development of technology for the production storage transportation and distribution of renewable energy. In addition to electricity we need other forms of energy carriers that are more suitable for energy storage and transportation. Hydrogen is one of the main candidates for this purpose since it can be produced from solar or wind energy and then stored; once needed it can be converted back to electricity using fuel cells. Another important aspect of future energy systems is sector coupling where different sectors e.g. mobility and energy work together to provide better services. In such an integrated system electric vehicles – both battery and hydrogen-based fuel cell – can provide when parked electricity services such as backup power and balancing; when driving they produce no emissions. In this paper we present the concept design and energy management of such an integrated energy and mobility system in a real-life environment at the Shell Technology Centre in Amsterdam. Our results show that storage using hydrogen and salt caverns is much cheaper than using large battery storage systems. We also show that the integration of electric vehicles into the electricity network is technically and economically feasible and that they can provide a flexible energy buffer. Ultimately the results of this study show that using both electricity and hydrogen as energy carriers can create a more flexible reliable and cheaper energy system at an office building.
Potential for Hydrogen and Power-to-Liquid in a Low-carbon EU Energy System Using Cost Optimization
Oct 2018
Publication
Hydrogen represents a versatile energy carrier with net zero end use emissions. Power-to-Liquid (PtL) includes the combination of hydrogen with CO2 to produce liquid fuels and satisfy mostly transport demand. This study assesses the role of these pathways across scenarios that achieve 80–95% CO2 reduction by 2050 (vs. 1990) using the JRC-EU-TIMES model. The gaps in the literature covered in this study include a broader spatial coverage (EU28+) and hydrogen use in all sectors (beyond transport). The large uncertainty in the possible evolution of the energy system has been tackled with an extensive sensitivity analysis. 15 parameters were varied to produce more than 50 scenarios. Results indicate that parameters with the largest influence are the CO2 target the availability of CO2 underground storage and the biomass potential.
Hydrogen demand increases from 7 mtpa today to 20–120 mtpa (2.4–14.4 EJ/yr) mainly used for PtL (up to 70 mtpa) transport (up to 40 mtpa) and industry (25 mtpa). Only when CO2 storage was not possible due to a political ban or social acceptance issues was electrolysis the main hydrogen production route (90% share) and CO2 use for PtL became attractive. Otherwise hydrogen was produced through gas reforming with CO2 capture and the preferred CO2 sink was underground. Hydrogen and PtL contribute to energy security and independence allowing to reduce energy related import cost from 420 bln€/yr today to 350 or 50 bln€/yr for 95% CO2 reduction with and without CO2 storage. Development of electrolyzers fuel cells and fuel synthesis should continue to ensure these technologies are ready when needed. Results from this study should be complemented with studies with higher spatial and temporal resolution. Scenarios with global trading of hydrogen and potential import to the EU were not included.
Hydrogen demand increases from 7 mtpa today to 20–120 mtpa (2.4–14.4 EJ/yr) mainly used for PtL (up to 70 mtpa) transport (up to 40 mtpa) and industry (25 mtpa). Only when CO2 storage was not possible due to a political ban or social acceptance issues was electrolysis the main hydrogen production route (90% share) and CO2 use for PtL became attractive. Otherwise hydrogen was produced through gas reforming with CO2 capture and the preferred CO2 sink was underground. Hydrogen and PtL contribute to energy security and independence allowing to reduce energy related import cost from 420 bln€/yr today to 350 or 50 bln€/yr for 95% CO2 reduction with and without CO2 storage. Development of electrolyzers fuel cells and fuel synthesis should continue to ensure these technologies are ready when needed. Results from this study should be complemented with studies with higher spatial and temporal resolution. Scenarios with global trading of hydrogen and potential import to the EU were not included.
Optimal Design of Multi-energy Systems with Seasonal Storage
Oct 2017
Publication
Optimal design and operation of multi-energy systems involving seasonal energy storage are often hindered by the complexity of the optimization problem. Indeed the description of seasonal cycles requires a year-long time horizon while the system operation calls for hourly resolution; this turns into a large number of decision variables including binary variables when large systems are analyzed. This work presents novel mixed integer linear program methodologies that allow considering a year time horizon with hour resolution while significantly reducing the complexity of the optimization problem. First the validity of the proposed techniques is tested by considering a simple system that can be solved in a reasonable computational time without resorting to design days. Findings show that the results of the proposed approaches are in good agreement with the full-scale optimization thus allowing to correctly size the energy storage and to operate the system with a long-term policy while significantly simplifying the optimization problem. Furthermore the developed methodology is adopted to design a multi-energy system based on a neighborhood in Zurich Switzerland which is optimized in terms of total annual costs and carbon dioxide emissions. Finally the system behavior is revealed by performing a sensitivity analysis on different features of the energy system and by looking at the topology of the energy hub along the Pareto sets.
Onboard Compressed Hydrogen Storage: Fast Filling Experiments and Simulations
Nov 2021
Publication
Technology safety represents a key enabling factor for the commercial use of hydrogen within the automotive industry. In the last years considerable pre-normative and normative research effort has produced regulations at national European and global level as well as international standards. Their validation is at the moment on going internationally. Additional research is required to improve this regulatory and standardization frame which is also expected to have a beneficial effect on cost and product optimization. The present paper addresses results related to the experimental assessment and modeling of safety performance of high pressure onboard storage. To simulate the lifetime of onboard hydrogen tanks commercial tanks have been subjected to filling-emptying cycles encompassing a fast-filling phase as prescribed by the European regulation on type-approval of hydrogen vehicles. The local temperature history inside the tanks has been measured and compared with the temperature outside at the tank metallic bosses which is the measurement location identified by the regulation. Experimental activities are complemented by computational fluid-dynamics (CFD) modeling of the fast-filling process by means of a numerical model previously validated. The outcome of these activities is a set of scientifically based data which will serve as input to future regulations and standards improvement.
Direct Conversion of CO2 to Dimethyl Ether in a Fixed Bed Membrane Reactor: Influence of Membrane Properties and Process Conditions
Jun 2021
Publication
The direct hydrogenation of CO2 to dimethyl ether (DME) is a promising technology for CO2 valorisation. In this work a 1D phenomenological reactor model is developed to evaluate and optimize the performance of a membrane reactor for this conversion otherwise limited by thermodynamic equilibrium and temperature gradients. The co-current circulation of a sweep gas stream through the permeation zone promotes both water and heat removal from the reaction zone thus increasing overall DME yield (from 44% to 64%). The membrane properties in terms of water permeability (i.e. 4·10−7 mol·Pa−1m−2s−1) and selectivity (i.e. 50 towards H2 30 towards CO2 and CO 10 towards methanol) for optimal reactor performance have been determined considering for the first time non-ideal separation and non-isothermal operation. Thus this work sheds light into suitable membrane materials for this applications. Then the non-isothermal performance of the membrane reactor was analysed as a function of the process parameters (i.e. the sweep gas to feed flow ratio the gradient of total pressure across the membrane the inlet temperature to the reaction and permeation zone and the feed composition). Owing to its ability to remove 96% of the water produced in this reaction the proposed membrane reactor outperforms a conventional packed bed for the same application (i.e. with 36% and 46% improvement in CO2 conversion and DME yield respectively). The results of this work demonstrate the potential of the membrane reactor to make the CO2 conversion to DME a feasible process.
Energy, Exergy, and Environmental Analyses of Renewable Hydrogen Production Through Plasma Gasification of Microalgal Biomass
Feb 2021
Publication
In this study an energy exergy and environmental (3E) analyses of a plasma-assisted hydrogen production process from microalgae is investigated. Four different microalgal biomass fuels namely raw microalgae (RM) and three torrefied microalgal fuels (TM200 TM250 and TM300) are used as the feedstock for steam plasma gasification to generate syngas and hydrogen. The effects of steam-tobiomass (S/B) ratio on the syngas and hydrogen yields and energy and exergy efficiencies of plasma gasification (hEn;PG hEx;PG) and hydrogen production(hEn;H2 hEx;H2 ) are taken into account. Results show that the optimal S/B ratios of RM TM200 TM250 and TM300 are 0.354 0.443 0.593 and 0.760 respectively occurring at the carbon boundary points (CBPs) where the maximum values of hEn;PG hEx;PG hEn;H2 and hEx;H2 are also achieved. At CBPs torrefied microalgae as feedstock lower thehEn;PG hEx;PG hEn;H2 and hEx;H2 because of their improved calorific value after undergoing torrefaction and the increased plasma energy demand compared to the RM. However beyond CBPs the torrefied feedstock displays better performance. A comparative life cycle analysis indicates that TM300 exhibits the highest greenhouse gases (GHG) emissions and the lowest net energy ratio (NER) due to the indirect emissions associated with electricity consumption.
Empowering Hydrogen Storage Properties of Haeckelite Monolayers via Metal Atom Functionalization
Mar 2021
Publication
Using hydrogen as an energy carrier requires new technological solutions for its onboard storage. The exploration of two-dimensional (2D) materials for hydrogen storage technologies has been motivated by their open structures which facilitates fast hydrogen kinetics. Herein the hydrogen storage properties of lightweight metal functionalized r57 haeckelite sheets are studied using density functional theory (DFT) calculations. H2 molecules are adsorbed on pristine r57 via physisorption. The hydrogen storage capacity of r57 is improved by decorating it with alkali and alkaline-earth metals. In addition the in-plane substitution of r57 carbons with boron atoms (B@r57) both prevents the clustering of metals on the surface of 2D material and increases the hydrogen storage capacity by improving the adsorption thermodynamics of hydrogen molecules. Among the studied compounds B@r57-Li4 with its 10.0 wt% H2 content and 0.16 eV/H2 hydrogen binding energy is a promising candidate for hydrogen storage applications. A further investigation as based on the calculated electron localization functions atomic charges and electronic density of states confirm the electrostatic nature of interactions between the H2 molecules and the protruding metal atoms on 2D haeckelite sheets. All in all this work contributes to a better understanding of pure carbon and B-doped haeckelites for hydrogen storage.
Why Can’t We Just Burn Hydrogen? Challenges When Changing Fuels in an Existing Infrastructure
Feb 2021
Publication
The current global consumption of natural gas as a fuel is roughly 4 trillion cubic meters per year. In terms of energy the demand for natural gas exceeds the global demand for fossil fuels for transportation. Despite this observation the challenges to natural gas end use that arise when changing the composition of the fuel are largely absent from public policy and research agendas whereas for transportation fuels the issues are more appreciated. Natural gas is delivered via complex networks of interconnected pipelines to end users for direct and indirect heating in household and industrial sectors and for power generation. This interconnectedness is a crucial aspect of the challenge for introducing new fuels.<br/>In this paper we discuss the issues that arise from changing fuel properties for an existing population of end-use equipment. To illustrate the issues we will consider the changes in (combustion) performance of domestic combustion equipment and gas engines for power generation in response to substituting natural gas by hydrogen or hydrogen/natural gas blends. During the discussion we shall also indicate methods for characterizing the properties of the fuel and identify the combustion challenges that must be addressed for a successful transition from the current fuel mix to whatever the future mix may be.
Ammonia Production from Clean Hydrogen and the Implications for Global Natural Gas Demand
Jan 2023
Publication
Non-energy use of natural gas is gaining importance. Gas used for 183 million tons annual ammonia production represents 4% of total global gas supply. 1.5-degree pathways estimate an ammonia demand growth of 3–4-fold until 2050 as new markets in hydrogen transport shipping and power generation emerge. Ammonia production from hydrogen produced via water electrolysis with renewable power (green ammonia) and from natural gas with CO2 storage (blue ammonia) is gaining attention due to the potential role of ammonia in decarbonizing energy value chains and aiding nations in achieving their net-zero targets. This study assesses the technical and economic viability of different routes of ammonia production with an emphasis on a systems level perspective and related process integration. Additional cost reductions may be driven by optimum sizing of renewable power capacity reducing losses in the value chain technology learning and scale-up reducing risk and a lower cost of capital. Developing certification and standards will be necessary to ascertain the extent of greenhouse gas emissions throughout the supply chain as well as improving the enabling conditions including innovative finance and de-risking for facilitating international trade market creation and large-scale project development.
On the Climate Impacts of Blue Hydrogen Production
Nov 2021
Publication
Natural gas based hydrogen production with carbon capture and storage is referred to as blue hydrogen. If substantial amounts of CO2 from natural gas reforming are captured and permanently stored such hydrogen could be a low-carbon energy carrier. However recent research raises questions about the effective climate impacts of blue hydrogen from a life cycle perspective. Our analysis sheds light on the relevant issues and provides a balanced perspective on the impacts on climate change associated with blue hydrogen. We show that such impacts may indeed vary over large ranges and depend on only a few key parameters: the methane emission rate of the natural gas supply chain the CO2 removal rate at the hydrogen production plant and the global warming metric applied. State-of-the-art reforming with high CO2 capture rates combined with natural gas supply featuring low methane emissions does indeed allow for substantial reduction of greenhouse gas emissions compared to both conventional natural gas reforming and direct combustion of natural gas. Under such conditions blue hydrogen is compatible with low-carbon economies and exhibits climate change impacts at the upper end of the range of those caused by hydrogen production from renewable-based electricity. However neither current blue nor green hydrogen production pathways render fully “net-zero” hydrogen without additional CO2 removal.
A Positive Shift in the Public Acceptability of a Low-Carbon Energy Project After Implementation: The Case of a Hydrogen Fuel Station
Apr 2019
Publication
Public acceptability of low-carbon energy projects is often measured with one-off polls. This implies that opinion-shifts over time are not always taken into consideration by decision makers relying on these polls. Observations have given the impression that public acceptability of energy projects increases after implementation. However this positive shift over time has not yet been systematically studied and is not yet understood very well. This paper aims to fill this gap. Based on two psychological mechanisms loss aversion and cognitive dissonance reduction we hypothesize that specifically people who live in proximity of a risky low-carbon technology—a hydrogen fuel station (HFS) in this case—evaluate this technology as more positive after its implementation than before. We conducted a survey among Dutch citizen living nearby a HFS and indeed found a positive shift in the overall evaluation of HFS after implementation. We also found that the benefits weighed stronger and the risks weaker after the implementation. This shift did not occur for citizens living further away from the HFS. The perceived risks and benefits did not significantly change after implementation neither for citizens living in proximity nor for citizens living further away. The societal implications of the findings are discussed.
Combined Effects of Stress and Temperature on Hydrogen Diffusion in Non-hydride Forming Alloys Applied in Gas Turbines
Jul 2022
Publication
Hydrogen plays a vital role in the utilisation of renewable energy but ingress and diffusion of hydrogen in a gas turbine can induce hydrogen embrittlement on its metallic components. This paper aims to investigate the hydrogen transport in a non-hydride forming alloy such as Alloy 690 used in gas turbines inspired by service conditions of turbine blades i.e. under the combined effects of stress and temperature. An appropriate hydrogen transport equation is formulated accounting for both stress and temperature distributions of the domain in the non-hydride forming alloy. Finite element (FE) analyses are performed to predict steady-state hydrogen distribution in lattice sites and dislocation traps of a double notched specimen under constant tensile load and various temperature fields. Results demonstrate that the lattice hydrogen concentration is very sensitive to the temperature gradients whilst the stress concentration only slightly increases local lattice hydrogen concentration. The combined effects of stress and temperature result in the highest concentration of the dislocation trapped hydrogen in low-temperature regions although the plastic strain is only at a moderate level. Our results suggest that temperature gradients and stress concentrations in turbine blades due to cooling channels and holes make the relatively low-temperature regions susceptible to hydrogen embrittlement.
Microfluidics-based Analysis of Dynamic Contact Angles Relevant for Underground Hydrogen Storage
May 2022
Publication
Underground Hydrogen Storage (UHS) is an attractive technology for large-scale (TWh) renewable energy storage. To ensure the safety and efficiency of the UHS it is crucial to quantify the H2 interactions with the reservoir fluids and rocks across scales including the micro scale. This paper reports the experimental measurements of advancing and receding contact angles for different channel widths for a H2 /water system at P = 10 bar and T = 20 ◦C using a microfluidic chip. To analyse the characteristics of the H2 flow in straight pore throats the network is designed such that it holds several straight channels. More specifically the width of the microchannels range between 50 μm and 130 μm. For the drainage experiments H2 is injected into a fully water saturated system while for the imbibition tests water is injected into a fully H2 -saturated system. For both scenarios high-resolution images are captured starting the introduction of the new phase into the system allowing for fully-dynamic transport analyses. For better insights N2 /water and CO2 /water flows were also analysed and compared with H2 /water. Results indicate strong water-wet conditions with H2 /water advancing and receding contact angles of respectively 13◦–39◦ and 6◦–23◦ . It was found that the contact angles decrease with increasing channel widths. The receding contact angle measured in the 50 μm channel agrees well with the results presented in the literature by conducting a core-flood test for a sandstone rock. Furthermore the N2 /water and CO2 /water systems showed similar characteristics as the H2 /water system. In addition to the important characterization of the dynamic wettability the results are also crucially important for accurate construction of pore-scale simulators.
Experimental Investigation on CO2 Methanation Process for Solar Energy Storage Compared to CO2-Based Methanol Synthesis
Jun 2017
Publication
The utilization of the captured CO2 as a carbon source for the production of energy storage media offers a technological solution for overcoming crucial issues in current energy systems. Solar energy production generally does not match with energy demand because of its intermittent and non-programmable nature entailing the adoption of storage technologies. Hydrogen constitutes a chemical storage for renewable electricity if it is produced by water electrolysis and is also the key reactant for CO2 methanation (Sabatier reaction). The utilization of CO2 as a feedstock for producing methane contributes to alleviate global climate changes and sequestration related problems. The produced methane is a carbon neutral gas that fits into existing infrastructure and allows issues related to the aforementioned intermittency and non-programmability of solar energy to be overcome. In this paper an experimental apparatus composed of an electrolyzer and a tubular fixed bed reactor is built and used to produce methane via Sabatier reaction. The objective of the experimental campaign is the evaluation of the process performance and a comparison with other CO2 valorization paths such as methanol production. The investigated pressure range was 2–20 bar obtaining a methane volume fraction in outlet gaseous mixture of 64.75% at 8 bar and 97.24% at 20 bar with conversion efficiencies of respectively 84.64% and 99.06%. The methanol and methane processes were compared on the basis of an energy parameter defined as the spent energy/stored energy. It is higher for the methanol process (0.45) with respect to the methane production process (0.41–0.43) which has a higher energy storage capability.
An Innovative Approach for Energy Transition in China? Chinese National Hydrogen Policies from 2001 to 2020
Jan 2023
Publication
To accelerate clean energy transition China has explored the potential of hydrogen as an energy carrier since 2001. Until 2020 49 national hydrogen policies were enacted. This paper explores the relevance of these policies to the development of the hydrogen industry and energy transition in China. We examine the reasons impacts and challenges of Chinese national hydrogen policies through the conceptual framework of Thomas Dye’s policy analysis method and the European Training Foundation’s policy analysis guide. This research provides an ex‐post analysis for previous policies and an ex‐ante analysis for future options. We argue that the energy supply revolution and energy technology revolution highlight the importance of hydrogen development in China. Particularly the pressure of the automobile industry transition leads to experimentation concerning the application of hydrogen in the transportation sector. This paper also reveals that hydro‐ gen policy development coincides with an increase in resource input and has positive spill over effects. Furthermore we note that two challenges have impeded progress: a lack of regulations for the industry threshold and holistic planning. To address these challenges the Chinese government can design a national hydrogen roadmap and work closely with other countries through the Belt and Road Initiative.
A Comparison of Steam Reforming Concepts in Solid Oxide Fuel Cell Systems
Mar 2020
Publication
Various concepts have been proposed to use hydrocarbon fuels in solid oxide fuel cell (SOFC) systems. A combination of either allothermal or adiabatic pre-reforming and water recirculation (WR) or anode off-gas recirculation (AOGR) is commonly used to convert the fuel into a hydrogen rich mixture before it is electrochemically oxidised in the SOFC. However it is unclear how these reforming concepts affect the electrochemistry and temperature gradients in the SOFC stack. In this study four reforming concepts based on either allothermal or adiabatic pre-reforming and either WR or AOGR are modelled on both stack and system level. The electrochemistry and temperature gradients in the stack are simulated with a one-dimensional SOFC model and the results are used to calculate the corresponding system efficiencies. The highest system efficiencies are obtained with allothermal pre-reforming and WR. Adiabatic pre-reforming and AOGR result in a higher degree of internal reforming which reduces the cell voltage compared to allothermal pre-reforming and WR. Although this lowers the stack efficiency higher degrees of internal reforming reduce the power consumption by the cathode air blower as well leading to higher system efficiencies in some cases. This illustrates that both stack and system operation need to be considered to design an efficient SOFC system and predict potentially deteriorating temperature gradients in the stack.
No more items...