Norway
Hydrogen Venting Under Variable Flow Conditions
Sep 2011
Publication
Safety distances for hydrogen plumes are currently derived using models developed for hydrocarbon releases. It is well known that hydrogen behaves in a significantly different manner to that of hydrocarbons when released to atmosphere. There are two main aspects involved with the development of safety distances for credible hydrogen releases; the intensity of the thermal radiation from such a plume should it be ignited and the distance downwind from the release point to the point where a flammable mixture with air no longer exists. A number of distinct areas of venting behaviour were investigated; Thermal radiation from ignited plumes from vertical open ended vent pipes Far field radiation measurements for direct comparison with models Thermal radiation from ignited plumes from vertical vent pipes terminating in a T-piece Thermal radiation measurements from ignited hydrogen with a 45 vent termination Hydrogen concentration measurements with a T-piece.
Modelling of Hydrogen Jet Fires Using CFD
Sep 2011
Publication
The computational fluid dynamics (CFD) software FLACS has primarily been developed to model dispersion and explosion phenomena; however models for the simulation of jet fires are under development. The aim is to be able to predict industrial fires efficiently and with good precision. Newly developed models include e.g. flame models for non-premixed flames discrete transfer radiation model as well as soot models. Since the time scales for fire simulations are longer than for explosions the computational speed is important. The recent development of non-compressible and parallel solvers in FLACS may therefore be important to ensure efficiency. Hydrogen flames may be invisible will generate no soot and tend to radiate less than hydrocarbon fuels. Due to high pressure storage the flame lengths can be significant. Simpler jet flame relations can not predict the jet flame interaction with objects and barriers and thus the heat loads on impacted objects. The development of efficient and precise CFD-tools for hydrogen fires is therefore important. In this paper the new models for the simulation of fire are described. These models are currently under development and this manuscript describes the current status of the work. Jet fire experiments performed by Health and Safety Laboratories (HSL) both free jets and impinging jets will also be simulated to evaluate the applicability and validity of the new fire models.
CFD and VR for Risk Communication and Safety Training
Sep 2011
Publication
There are new safety challenges with an increased use of hydrogen e.g. that people may not see dangerous jet flames in case of an incident. Compared to conventional fuels hydrogen has very different characteristics and physical properties and is stored at very high pressure or at very low temperatures. Thus the nature of hazard scenarios will be very different. Consequence modelling of ventilation releases explosions and fires can be used to predict and thus understand hazards. In order to describe the detailed development of a hazard scenario and evaluate ways of mitigation 3D Computational Fluid Dynamics (CFD) models will be required. Even with accurate modelling the communication of risk can be challenging. For this visualization in virtual reality (VR) may be of good help in which the CFD model predictions are presented in a realistic 3D environment with the possibility to include sounds like noise from a high pressure release explosion or fire. In cooperation with Statoil Christian Michelsen Research (CMR) and GexCon have developed the VRSafety application. VRSafety can visualize simulation results from FLACS (and another CFD-tool KFX) in an immersive VR-lab or on a PC. VRSafety can further be used to interactively control and start new CFD-simulations during the sessions. The combination of accurate CFD-modelling visualization and interactive use through VRSafety represents a powerful toolbox for safety training and risk communication to first-responders employees media and other stakeholders. It can also be used for lessons learned sessions studying incidents and accidents and to demonstrate what went wrong and how mitigation could have prevented accidents from happening. This paper will describe possibilities with VRSafety and give examples of use.
Simulation of DDT in Hydrogen-Air Behind a Single Obstacle
Sep 2011
Publication
Two-dimensional numerical simulations of deflagration-to-detonation transition (DDT) in hydrogen–air mixtures are presented and compared with experiments. The investigated geometry was a 3 m long square channel. One end was closed and had a single obstacle placed 1 m from the end and the other end was open to the atmosphere. The mixture was ignited at the closed end. Experiments and simulations showed that DDT occurred within 1 m behind the obstacle. The onset of detonation followed a series of local explosions occurring far behind the leading edge of the flame in a layer of unburned reactants between the flame and the walls. A local explosion was also seen in the experiments and the pressure records indicated that there may have been more. Furthermore local explosions were observed in the experiments and simulations which did not detonate. The explosions should have sufficient strength and should explode in a layer of sufficient height to result in a detonation. The numerical resolution was 0.5 mm per square cell and further details of the combustion model used are provided in the paper.
The Norwegian Government’s Hydrogen Strategy - Towards a Low Emission Society
Jun 2020
Publication
On Wednesday 3rd of June 2020 Norwegian Minister for Petroleum and Energy Tina Bru and Minister for Climate and Environment Sveinung Rotevatn presented the Norwegian government's hydrogen strategy.<br/>The strategy sets the course for the government's efforts to stimulate development of hydrogen-related technologies. Hydrogen as an energy carrier can contribute to reduction of greenhouse gases and create value for the Norwegian business sector. The government wishes to prioritise efforts in areas where Norway Norwegian enterprises and technology clusters may influence the development of hydrogen related technologies and where there are opportunites for increased value creation and green growth. For hydrogen to be a low-carbon or emission-free energy carrier it must be produced with no or low emissions such as through water electrolysis with renewable electricity or from natural gas with carbon capture and storage.<br/>Today technology maturity and high costs represent barriers for increased use of hydrogen especially in the transport sector and as feedstock in parts of industry. If hydrogen and hydrogen-based solutions such as ammonia are to be used in new areas both the technology and the solutions must become more mature. In this respect further technology development will be vital.
Experimental Measurements of Structural Displacement During Hydrogen Vented Deflagrations for FE Model Validation
Sep 2017
Publication
Vented deflagration tests were conducted by UNIPI at B. Guerrini Laboratory during the experimental campaign for HySEA project. Experiments included homogeneous hydrogen-air mixture in a 10-18% vol. range of concentrations contained in an about 1 m3 enclosure called SSE (Small Scale Enclosure). Displacement measurements of a test plate were taken in order to acquire useful data for the validation of FE model developed by IMPETUS Afea. In this paper experimental facility displacement measurement system and FE model are briefly described then comparison between experimental data and simulation results is discussed.
Structural Response for Vented Hydrogen Deflagrations: Coupling CFD and FE Tools
Sep 2017
Publication
This paper describes a methodology for simulating the structural response of vented enclosures during hydrogen deflagrations. The paper also summarises experimental results for the structural response of 20-foot ISO (International Organization for Standardization) containers in a series of vented hydrogen deflagration experiments. The study is part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA). The project is funded by the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 671461. The HySEA project focuses on vented hydrogen deflagrations in containers and smaller enclosures with internal congestion representative of industrial applications. The structural response modelling involves one-way coupling of pressure loads taken either directly from experiments or from simulations with the computational fluid dynamics (CFD) tool FLACS to the non-linear finite element (FE) IMPETUS Afea Solver. The performance of the FE model is evaluated for a range of experiments from the HySEA project in both small-scale enclosures and 20-foot ISO containers. The paper investigates the sensitivity of results from the FE model to the specific properties of the geometry model. The performance of FLACS is evaluated for a selected set of experiments from the HySEA project. Furthermore the paper discusses uncertainties associated with the combined modelling approach.
A Study of Hydrogen Flame Length with Complex Nozzle Geometry
Sep 2017
Publication
The growing number of hydrogen fillings stations and cars increases the need for accurate models to determine risk. The effect on hydrogen flame length was measured by varying the diameter of the spouting nozzle downstream from the chocked nozzle upstream. The results was compared with an existing model for flame length estimations. The experimental rig was setup with sensors that measured accurately temperature mass flow heat radiation and the pressure range from 0.1 to 11 MPa. The flame length was determined with an in-house developed image-processing tool which analyzed a high-speed film of the each experiment. Results show that the nozzle geometry can cause a deviation as high as 50% compared to estimated flame lengths by the model if wrong assumptions are made. Discharge coefficients for different nozzles has been calculated and presented.
Technical and Economic Analysis of One-Stop Charging Stations for Battery and Fuel Cell EV with Renewable Energy Sources
Jun 2020
Publication
Currently most of the vehicles make use of fossil fuels for operations resulting in one of the largest sources of carbon dioxide emissions. The need to cut our dependency on these fossil fuels has led to an increased use of renewable energy sources (RESs) for mobility purposes. A technical and economic analysis of a one-stop charging station for battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV) is investigated in this paper. The hybrid optimization model for electric renewables (HOMER) software and the heavy-duty refueling station analysis model (HDRSAM) are used to conduct the case study for a one-stop charging station at Technical University of Denmark (DTU)-Risø campus. Using HOMER a total of 42 charging station scenarios are analyzed by considering two systems (a grid-connected system and an off-grid connected system). For each system three different charging station designs (design A-hydrogen load; design B-an electrical load and design C-an integrated system consisting of both hydrogen and electrical load) are set up for analysis. Furthermore seven potential wind turbines with different capacity are selected from HOMER database for each system. Using HDRSAM a total 18 scenarios are analyzed with variation in hydrogen delivery option production volume hydrogen dispensing option and hydrogen dispensing option. The optimal solution from HOMER for a lifespan of twenty-five years is integrated into design C with the grid-connected system whose cost was $986065. For HDRSAM the optimal solution design consists of tube trailer as hydrogen delivery with cascade dispensing option at 350 bar together with high production volume and the cost of the system was $452148. The results from the two simulation tools are integrated and the overall cost of the one-stop charging station is achieved which was $2833465. The analysis demonstrated that the one-stop charging station with a grid connection is able to fulfil the charging demand cost-effectively and environmentally friendly for an integrated energy system with RESs in the investigated locations.
Explosion and Fire Risk Analyses of Maritime Fuel Cell Rooms with Hydrogen
Sep 2017
Publication
A methodology for explosion and fire risk analyses in enclosed rooms is presented. The objectives of this analysis are to accurately predict the risks associated with hydrogen leaks in maritime applications and to use the approach to provide decision support regarding design and risk-prevention and risk mitigating measures. The methodology uses CFD tools and simpler consequence models for ventilation dispersion and explosion scenarios as well as updated frequency for leaks and ignition. Risk is then efficiently calculated with a Monte Carlo routine capturing the transient behavior of the leak. This makes it possible to efficiently obtain effects of sensitivities and design options maintaining safety and reducing costs.
The Role of Lock-in Mechanisms in Transition Processes: The Case of Energy for Road Transport
Jul 2015
Publication
This paper revisits the theoretical concepts of lock-in mechanisms to analyse transition processes in energy production and road transportation in the Nordic countries focussing on three technology platforms: advanced biofuels e-mobility and hydrogen and fuel cell electrical vehicles. The paper is based on a comparative analysis of case studies.<br/>The main lock-in mechanisms analysed are learning effects economies of scale economies of scope network externalities informational increasing returns technological interrelatedness collective action institutional learning effects and the differentiation of power.<br/>We show that very different path dependencies have been reinforced by the lock-in mechanisms. Hence the characteristics of existing regimes set the preconditions for the development of new transition pathways. The incumbent socio-technical regime is not just fossil-based but may also include mature niches specialised in the exploitation of renewable sources. This implies a need to distinguish between lock-in mechanisms favouring the old fossil-based regime well-established (mature) renewable energy niches or new pathways.
A Review of Cohesive Zone Modelling as an Approach for Numerically Assessing Hydrogen Embrittlement of Steel Structures
Jun 2014
Publication
Simulation of hydrogen embrittlement (HE) requires a coupled approach; on one side the models describing hydrogen transport must account for local mechanical fields while on the other side the effect of hydrogen on the accelerated material damage must be implemented into the model describing crack initiation and growth. This study presents a review of coupled diffusion and cohesive zone modelling as a method for numerically assessing HE of a steel structure. While the model is able to reproduce single experimental results by appropriate fitting of the cohesive parameters there appears to be limitations in transferring these results to other hydrogen systems. Agreement may be improved by appropriately identifying the required input parameters for the particular system under study.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
PIV-measurements of Reactant Flow in Hydrogen-air Explosions
Sep 2017
Publication
The paper present the work on PIV-measurements of reactant flow velocity in front of propagating flames in hydrogen-air explosions. The experiments was performed with hydrogen-air mixture at atmospheric pressure and room temperature. The experimental rig was a square channel with 45 × 20 mm2 cross section 300 mm long with a single cylindrical obstacle of blockage ratio 1/3. The equipment used for the PIV-measurements was a Firefly diode laser from Oxford lasers Photron SA-Z high-speed camera and a particle seeder producing 1 μm droplets of water. The gas concentrations used in the experiments was 14 and 17 vol% hydrogen in air. The resulting explosion can be characterized as slow since the maximum flow velocity of the reactants was 13 m/s in the 14% mixture and 23 m/s in the 17% mixture. The maximum flow velocities was measured during the flame-vortex interaction and at two obstacle diameters behind the obstacle. The flame-vortex interaction contributed to the flame acceleration by increasing the overall reaction rate and the flow velocity. The flame area as a function of position is the same for both concentrations as the flame passes the obstacle.
Residual Performance of Composite Pressure Vessels Submitted to Mechanical Impacts
Sep 2017
Publication
Type IV pressure vessels are commonly used for hydrogen on-board stationary or bulk storages. During their lifetime they can be submitted to mechanical impacts creating damage within the composite structure not necessarily correlated to what is visible from the outside. When an impact is suspected or when a cylinder is periodically inspected it is necessary to determine whether it can safely stay in service or not. The FCH JU project Hypactor aims at creating a large database of impacts characterized by various non destructive testing (NDT) methods in order to provide reliable pass-fail criteria for damaged cylinders. This paper presents some of the tests results investigating short term burst) and long term (cycling) performance of impacted cylinders and the recommendations that can be made for impact testing and NDT criteria calibration.
Dynamic Load Analysis of Explosion in Inhomogeneous Hydrogen-air Mixtures
Sep 2017
Publication
This paper presents results from experiments on gas explosions in inhomogeneous hydrogen-air mixtures. The experimental channel is 3 m with a cross section of 100 mm by 100 mm and a 0.25 mm ID nozzle for hydrogen release into the channel. The channel is open in one end. Spectral analysis of the pressure in the channel is used to determine dynamic load factors for SDOF structures. The explosion pressures in the channel will fluctuate with several frequencies or modes and a theoretical high DLF is seen when the pressure frequencies and eigen frequencies of the structure matches.
Integration of Experimental Facilities: A Joint Effort for Establishing a Common Knowledge Base in Experimental Work on Hydrogen Safety
Sep 2009
Publication
With regard to the goals of the European HySafe Network research facilities are essential for the experimental investigation of relevant phenomena for testing devices and safety concepts as well as for the generation of validation data for the various numerical codes and models. The integrating activity ‘Integration of Experimental Facilities (IEF)’ has provided basic support for jointly performed experimental work within HySafe. Even beyond the funding period of the NoE HySafe in the 6th Framework Programme IEF represents a long lasting effort for reaching sustainable integration of the experimental research capacities and expertise of the partners from different research fields. In order to achieve a high standard in the quality of experimental data provided by the partners emphasis was put on the know-how transfer between the partners. The strategy for reaching the objectives consisted of two parts. On the one hand a documentation of the experimental capacities has been prepared and analysed. On the other hand a communication base has been established by means of biannual workshops on experimental issues. A total of 8 well received workshops has been organised covering topics from measurement technologies to safety issues. Based on the information presented by the partners a working document on best practice including the joint experimental knowledge of all partners with regard to experiments and instrumentation was created. Preserving the character of a working document it was implemented in the IEF wiki website which was set up in order to provide a central communication platform. The paper gives an overview of the IEF network activities over the last 5 years.
Development of Uniform Harm Criteria for Use in Quantitative Risk Analysis of the Hydrogen Infrastructure
Sep 2009
Publication
This paper discusses the preliminary results of the Risk Management subtask efforts within the International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) Task 19 on Hydrogen Safety to develop uniform harm criteria for use in the Quantitative Risk Assessments (QRAs) of hydrogen facilities. The IEA HIA Task 19 efforts are focused on developing guidelines and criteria for performing QRAs of hydrogen facilities. The performance of QRAs requires that the level of harm that is represented in the risk evaluation be established using deterministic models. The level of harm is a function of the type and level of hazard. The principle hazard associated with hydrogen facilities is uncontrolled accumulation of hydrogen in (semi) confined spaces and consecutive ignition. Another significant hazard is combustion of accidentally released hydrogen gas or liquid which may or may not happen instantaneously. The primary consequences from fire hazards consist of personnel injuries or fatalities or facility and equipment damage due to high air temperatures radiant heat fluxes or direct contact with hydrogen flames. The possible consequences of explosions on humans and structures or equipment include blast wave overpressure effects impact from fragments generated by the explosion the collapse of buildings and the heat effects from subsequent fire balls. A harm criterion is used to translate the consequences of an accident evaluated from deterministic models to a probability of harm to people structures or components. Different methods can be used to establish harm criteria including the use of threshold consequence levels and continuous functions that relate the level of a hazard to a probability of damage. This paper presents a survey of harm criteria that can be utilized in QRAs and makes recommendations on the criteria that should be utilized for hydrogen-related hazards.
A Socio-technical Perspective on the Scope for Ports to Enable Energy Transition
Jan 2021
Publication
The paper applies the multi-level perspective (MLP) in a descriptive study of three Norwegian ports to shed new light on the sociotechnical processes that structure their efforts to develop into zero emission energy hubs. While exogenous pressures cause tensions over port governance the studied ports utilize their full spectre of functions; as landlords operators authorities and community managers to enable transition. The respective approaches vary related to their local context market situation and social networks including port's relations with their owners. Individual orientations and organizational capacity further influence their engagement with radical innovation niches (e.g. OPS hydrogen LNG). The study highlights the active role of ports in sustainability transition. It shows how the interaction between geographical factors and institutional work influences the scope for new solutions around the individual port and how this makes for different feedback loops and contributions to sustainability transition in wider transport and energy systems.
Validation of CFD Modelling of LH2 Spread and Evaporation Against Large-Scale Spill Experiments
Sep 2009
Publication
Hydrogen is widely recognized as an attractive energy carrier due to its low-level air pollution and its high mass-related energy density. However its wide flammability range and high burning velocity present a potentially significant hazard. A significant fraction of hydrogen is stored and transported as a cryogenic liquid. Therefore loss of hydrogen containments may lead to the formation of a pool on the ground. In general very large spills will give a pool whereas moderate sized spills may evaporate immediately. Accurate hazard assessments of storage systems require a proper prediction of the liquid hydrogen pool evaporation and spreading. A new pool model handling the spread and the evaporation of liquid spills on different surfaces has recently been developed in the 3D Computational Fluid Dynamics (CFD) tool FLACS [1-4]. As the influence of geometry on the liquid spread is taken into account in the new pool model realistic industrial scenarios can be investigated. The model has been validated for LNG spills on water with the Burro and Coyote experiments [56]. The model has previously been tested for LH2 release in the framework of the EU-sponsored Network of Excellence HySafe where experiments carried out by BAM were modelled. In the large scale BAM experiments [7] 280 kg of liquid hydrogen was spilled in 6 tests adjacent to buildings. In these tests the pool spreading the evaporation and the cloud formation were investigated. Simulations of these tests are found to compare reasonably well with the experimental results. In the present work the model is extended and the liquid hydrogen spill experiments carried out by NASA are simulated with the new pool model. The large scale NASA experiments [89] consisted of 7 releases of liquefied hydrogen at White Sand New Mexico. The release test 6 is used. During these experiments cloud concentrations were measured at several distances downwind of the spill point. With the new pool model feature the FLACS tool is shown to be an efficient and accurate tool for the investigation of complex and realistic accidental release scenarios of cryogenic liquids.
Benchmark Exercise on Risk Assessment Methods Applied to a Virtual Hydrogen Refuelling Station
Sep 2009
Publication
A benchmarking exercise on quantitative risk assessment (QRA) methodologies has been conducted within the project HyQRA under the framework of the European Network of Excellence (NoE) HySafe. The aim of the exercise was basically twofold: (i) to identify the differences and similarities in approaches in a QRA and their results for a hydrogen installation between nine participating partners representing a broad spectrum of background in QRA culture and history and (ii) to identify knowledge gaps in the various steps and parameters underlying the risk quantification. In the first step a reference case was defined: a virtual hydrogen refuelling station (HRS) in virtual surroundings comprising housing school shops and other vulnerable objects. All partners were requested to conduct a QRA according to their usual approach and experience. Basically participants were free to define representative release cases to apply models and frequency assessments according their own methodology and to present risk according to their usual format. To enable inter-comparison a required set of results data was prescribed like distances to specific thermal radiation levels from fires and distances to specific overpressure levels. Moreover complete documentation of assumptions base data and references was to be reported. It was not surprising that a wide range of results was obtained both in the applied approaches as well as in the quantitative outcomes and conclusions. This made it difficult to identify exactly which assumptions and parameters were responsible for the differences in results as the paper will show. A second phase was defined in which the QRA was determined by a more limited number of release cases (scenarios). The partners in the project agreed to assess specific scenarios in order to identify the differences in consequence assessment approaches. The results of this phase provide a better understanding of the influence of modelling assumptions and limitations on the eventual conclusions with regard to risk to on-site people and to the off-site public. This paper presents the results and conclusions of both stages of the exercise.
No more items...