Norway
Simulating Vented Hydrogen Deflagrations: Improved Modelling in the CFD Tool Flacs-Hydrogen
Sep 2019
Publication
This paper describes validation of the computational fluid dynamics tool FLACS-Hydrogen. The validation study focuses on concentration and pressure data from vented deflagration experiments performed in 20-foot shipping containers as part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA) funded by the Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU). The paper presents results for tests involving inhomogeneous hydrogen-air clouds generated from realistic releases performed during the HySEA project. For both experiments and simulations the peak overpressures obtained for the stratified mixtures are higher than those measured for lean homogeneous mixtures with the same amount of hydrogen. Using an in-house version of FLACS-Hydrogen with the numerical solver Flacs3 and improved physics models results in significantly improved predictions of the peak overpressures compared to the predictions by the standard Flacs2 solver. The paper includes suggestions for further improvements to the model system.
On Capital Utilization in the Hydrogen Economy: The Quest to Minimize Idle Capacity in Renewables-rich Energy Systems
Oct 2020
Publication
The hydrogen economy is currently experiencing a surge in attention partly due to the possibility of absorbing variable renewable energy (VRE) production peaks through electrolysis. A fundamental challenge with this approach is low utilization rates of various parts of the integrated electricity-hydrogen system. To assess the importance of capacity utilization this paper introduces a novel stylized numerical energy system model incorporating the major elements of electricity and hydrogen generation transmission and storage including both “green” hydrogen from electrolysis and “blue” hydrogen from natural gas reforming with CO2 capture and storage (CCS). Concurrent optimization of all major system elements revealed that balancing VRE with electrolysis involves substantial additional costs beyond reduced electrolyzer capacity factors. Depending on the location of electrolyzers greater capital expenditures are also required for hydrogen pipelines and storage infrastructure (to handle intermittent hydrogen production) or electricity transmission networks (to transmit VRE peaks to electrolyzers). Blue hydrogen scenarios face similar constraints. High VRE shares impose low utilization rates of CO2 capture transport and storage infrastructure for conventional CCS and of hydrogen transmission and storage infrastructure for a novel process (gas switching reforming) that enables flexible power and hydrogen production. In conclusion all major system elements must be considered to accurately reflect the costs of using hydrogen to integrate higher VRE shares.
HYDRIDE4MOBILITY: An EU HORIZON 2020 Project on Hydrogen Powered Fuel Cell Utility Vehicles Using Metal Hydrides in Hydrogen Storage and Refuelling Systems
Feb 2021
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Vladimir Linkov,
Sivakumar Pasupathi,
Moegamat Wafeeq Davids,
Gojmir Radica,
Roman V. Denys,
Jon Eriksen,
José Bellosta von Colbe,
Klaus Taube,
Giovanni Capurso,
Martin Dornheim,
Fahmida Smith,
Delisile Mathebula,
Dana Swanepoel,
Suwarno Suwarno and
Ivan Tolj
The goal of the EU Horizon 2020 RISE project 778307 “Hydrogen fuelled utility vehicles and their support systems utilising metal hydrides” (HYDRIDE4MOBILITY) is in addressing critical issues towards a commercial implementation of hydrogen powered forklifts using metal hydride (MH) based hydrogen storage and PEM fuel cells together with the systems for their refuelling at industrial customers facilities. For these applications high specific weight of the metallic hydrides has an added value as it allows counterbalancing of a vehicle with no extra cost. Improving the rates of H2 charge/discharge in MH on the materials and system level simplification of the design and reducing the system cost together with improvement of the efficiency of system “MH store-FC” is in the focus of this work as a joint effort of consortium uniting academic teams and industrial partners from two EU and associated countries Member States (Norway Germany Croatia) and two partner countries (South Africa and Indonesia).<br/>The work within the project is focused on the validation of various efficient and cost-competitive solutions including (i) advanced MH materials for hydrogen storage and compression (ii) advanced MH containers characterised by improved charge-discharge dynamic performance and ability to be mass produced (iii) integrated hydrogen storage and compression/refuelling systems which are developed and tested together with PEM fuel cells during the collaborative efforts of the consortium.<br/>This article gives an overview of HYDRIDE4MOBILITY project focused on the results generated during its first phase (2017–2019).
Decarbonization Synergies From Joint Planning of Electricity and Hydrogen Production: A Texas Case Study
Oct 2020
Publication
Hydrogen (H2) shows promise as an energy carrier in contributing to emissions reductions from sectors which have been difficult to decarbonize like industry and transportation. At the same time flexible H2 production via electrolysis can also support cost-effective integration of high shares of variable renewable energy (VRE) in the power system. In this work we develop a least-cost investment planning model to co-optimize investments in electricity and H2 infrastructure to serve electricity and H2 demands under various low-carbon scenarios. Applying the model to a case study of Texas in 2050 we find that H2 is produced in approximately equal amounts from electricity and natural gas under the least-cost expansion plan with a CO2 price of $30–60/tonne. An increasing CO2 price favors electrolysis while increasing H2 demand favors H2 production from Steam Methane Reforming (SMR) of natural gas. H2 production is found to be a cost effective solution to reduce emissions in the electric power system as it provides flexibility otherwise provided by natural gas power plants and enables high shares of VRE with less battery storage. Additionally the availability of flexible electricity demand via electrolysis makes carbon capture and storage (CCS) deployment for SMR cost-effective at lower CO2 prices ($90/tonne CO2) than for power generation ($180/tonne CO2 ). The total emissions attributable to H2 production is found to be dependent on the H2 demand. The marginal emissions from H2 production increase with the H2 demand for CO2 prices less than $90/tonne CO2 due to shift in supply from electrolysis to SMR. For a CO2 price of $60/tonne we estimate the production weighted-average H2 price to be between $1.30–1.66/kg across three H2 demand scenarios. These findings indicate the importance of joint planning of electricity and H2 infrastructure for cost-effective energy system decarbonization.
Large Scale Experiments and Model Validation of Pressure Peaking Phenomena-ignited Hydrogen Releases
Jan 2021
Publication
The Pressure Peaking Phenomena (PPP) is the effect of introducing a light gas into a vented volume of denser gas. This will result in a nonequilibrium pressure as the light gas pushes the dense gas out at the vent. Large scale experiments have been performed to produce relevant evidence. The results were used to validate an analytical model. Pressure and temperature were measured inside a constant volume while the mass flow and vent area were varied. The analytical model was based on the conservation of mass and energy. The results showed that increasing the mass flow rate the peak pressure increases and with increasing the ventilation area the peak pressure decreases. Peak pressure was measured above 45 kPa. Longer combustion time resulted in higher temperatures increasing an underpressure effect. The experimental results showed agreement with the analytical model results. The model predicts the pressures within reasonable limits of+/-2 kPa. The pressure peaking phenomena could be very relevant for hydrogen applications in enclosures with limited ventilation. This could include car garages ship hull compartments as well as compressor shielding. This work shows that the effect can be modeled and results can be used in design to reduce the consequences.
Vented Hydrogen Deflagrations in Containers: Effect of Congestion for Homogeneous Mixtures
Sep 2017
Publication
This paper presents results from an experimental study of vented hydrogen deflagrations in 20-foot ISO containers. The scenarios investigated include 14 tests with explosion venting through the doors of the containers and 20 tests with venting through openings in the roof. The parameters investigated include hydrogen concentration vent area type of venting device and the level of congestion inside the containers. All tests involved homogeneous and initially quiescent hydrogen-air mixtures. The results demonstrate the strong effect of congestion on the maximum reduced explosion pressures which typically is not accounted for in current standards and guidelines for explosion protection. The work is a deliverable from work package 2 (WP2) in the project “Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations” or HySEA which receives funding from the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) under grant agreement no. 671461.
Magnesium Based Materials for Hydrogen Based Energy Storage: Past, Present and Future
Jan 2019
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Etsuo Akiba,
Rene Albert,
V. E. Antonov,
Jose-Ramón Ares,
Marcello Baricco,
Natacha Bourgeois,
Craig Buckley,
José Bellosta von Colbe,
Jean-Claude Crivello,
Fermin Cuevas,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
David M. Grant,
Bjørn Christian Hauback,
Terry D. Humphries,
Isaac Jacob,
Petra E. de Jongh,
Jean-Marc Joubert,
Mikhail A. Kuzovnikov,
Michel Latroche,
Mark Paskevicius,
Luca Pasquini,
L. Popilevsky,
Vladimir M. Skripnyuk,
Eugene I. Rabkin,
M. Veronica Sofianos,
Alastair D. Stuart,
Gavin Walker,
Hui Wang,
Colin Webb,
Min Zhu and
Torben R. Jensen
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The “Magnesium group” of international experts contributing to IEA Task 32 “Hydrogen Based Energy Storage” recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures kinetics and thermodynamics of the systems based on MgH2 nanostructuring new Mg-based compounds and novel composites and catalysis in the Mg based H storage systems. Finally thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.
Safe Hydrogen Fuel Handling and Use for Efficient Implementation – SH2IFT
Sep 2019
Publication
The SH2IFT project combines social and technical scientific methods to address knowledge gaps regarding safe handling and use of gaseous and liquid hydrogen. Theoretical approaches will be complemented by fire and explosion experiments with emphasis on topics of strategic importance to Norway such as tunnel safety maritime applications etc. Experiments include Rapid Phase Transition Boiling Liquid Expanding Vapour Explosion and jet fires. This paper gives an overview of the project and preliminary results.
Flexible Power and Hydrogen Production: Finding Synergy Between CCS and Variable Renewables
Dec 2019
Publication
The expansion of wind and solar power is creating a growing need for power system flexibility. Dispatchable power plants with CO2 capture and storage (CCS) offer flexibility with low CO2 emissions but these plants become uneconomical at the low running hours implied by renewables-based power systems. To address this challenge the novel gas switching reforming (GSR) plant was recently proposed. GSR can alternate between electricity and hydrogen production from natural gas offering flexibility to the power system without reducing the utilization rate of the capital stock embodied in CCS infrastructure. This study assesses the interplay between GSR and variable renewables using a power system model which optimizes investment and hourly dispatch of 13 different technologies. Results show that GSR brings substantial benefits relative to conventional CCS. At a CO2 price of V100/ton inclusion of GSR increases the optimal wind and solar share by 50% lowers total system costs by 8% and reduces system emissions from 45 to 4 kgCO2/MWh. In addition GSR produces clean hydrogen equivalent to about 90% of total electricity demand which can be used to decarbonize transport and industry. GSR could therefore become a key enabling technology for a decarbonization effort led by wind and solar power.
Validation of Flacs-Hydrogen CFD Consequence Prediction Model Against Large Scale H2 Explosion Experiments in the Flame Facility
Sep 2005
Publication
The FLACS CFD-tool for consequence prediction has been developed continuously since 1980. The initial focus was explosion safety on offshore oil platforms in recent years the tool is also applied to study dispersion hydrogen safety dust explosions and more. A development project sponsored by Norsk Hydro Statoil and Ishikawajima Heavy Industries (IHI) was carried out to improve the modelling and validation of hydrogen dispersion and explosions. In this project GexCon carried out 200 small-scale experiments on dispersion and explosion with H2 and mixtures with H2 and CO or N2. Experiments with varying confinement congestion concentration and ignition location were performed. Since the main purpose of the tests was to produce good validation data all tests were simulated with the FLACS-HYDROGEN tool. The simulations confirmed the ability to predict explosions effects for the wide range of scenarios studied. A few examples of comparisons will be shown. To build confidence in a consequence prediction model it is important that the scales used for validation are as close as possible to reality. Since the hazard to people and facilities and the risk will generally increase with scale validation against large-scale experiments is important. In the 1980s a series of large-scale explosion experiments with H2 was carried out in the Sandia FLAME facility and sponsored by the US Nuclear Regulatory Commission. The FLAME facility is a 30.5m x 1.83m x 2.44m channel tests were performed with H2 concentrations from 7% to 30% with varying degree of top venting (0% 13% and 50%) and congestion (with or without baffles blocking 33% of the channel cross-section). A wide range of flame speeds and overpressures were observed. Comparisons are made between FLACS simulations and FLAME tests. The main conclusion from this validation study is that the precision when predicting H2 explosion consequences with FLACS has been improved to a very acceptable level
A Microstructure Informed and Mixed-mode Cohesive Zone Approach to Simulating Hydrogen Embrittlement
Mar 2022
Publication
Hydrogen induced failure under uniaxial tension is simulated in a duplex stainless steel considering microstructural feature of the material. There are three key ingredients in the modelling approach: image processing and finite element representation of the experimentally observed microstructure stress driven hydrogen diffusion and diffusion coupled cohesive zone modelling of fracture considering mixed failure mode. The microstructure used as basis for the modelling work is obtained from specimens cut in the transverse and longitudinal directions. It is found that the microstructure significantly influences hydrogen diffusion and fracture. The austenite phase is polygonal and randomly distributed in the transverse direction where a larger effective hydrogen diffusion coefficient and a lower hydrogen fracture resistance is found compared to the specimen in the longitudinal direction where the austenite phase is slender and laminated. This indicates that the proper design and control of the austenite phase help improve hydrogen resistance of duplex stainless steel. The strength of the interface in the shear direction is found to dominate the fracture mode and initiation site which reveals the importance of considering mixed failure mode and calibrating the hydrogen induced strength reduction in shear.
Determination Of Hazardous Zones For A Generic Hydrogen Station – A Case Study
Sep 2007
Publication
A method for determination of hazardous zones for hydrogen installations has been studied. This work has been carried out within the NoE HySafe. The method is based on the Italian Method outlined in Guide 31-30(2004) Guide 31–35(2001) Guide 31-35/A(2001) and Guide 31-35/A; V1(2003). Hazardous zones for a “generic hydrogen refuelling station”(HRS) are assessed based on this method. The method is consistent with the EU directive 1999/92/EC “Safety and Health Protection of Workers potentially at risk from explosive atmospheres” which is the basis for determination of hazardous zones in Europe. This regulation is focused on protection of workers and is relevant for hydrogen installations such as hydrogen refuelling stations repair shops and other stationary installations where some type of work operations will be involved. The method is also based on the IEC standard and European norm IEC/EN60079-10 “Electrical apparatus for explosive gas atmospheres. Part 10 Classification of hazardous areas”. This is a widely acknowledged international standard/norm and it is accepted/approved by Fire and Safety Authorities in Europe and also internationally. Results from the HySafe work and other studies relevant for hydrogen and hydrogen installations have been included in the case study. Sensitivity studies have been carried out to examine the effect of varying equipment failure frequencies and leak sizes as well as environmental condition (ventilation obstacles etc.). The discharge and gas dispersion calculations in the Italian Method are based on simple mathematical formulas. However in this work also CFD (Computational Fluid Dynamics) and other simpler numerical tools have been used to quantitatively estimate the effect of ventilation and of different release locations on the size of the flammable gas cloud. Concentration limits for hydrogen to be used as basis for the extent of the hazardous zones in different situations are discussed.
Development of Tools for Risk Assessment and Risk Communication for Hydrogen Applications
Sep 2005
Publication
For decades risk assessment has been an important tool in risk management of activities in several industries world wide. It provides among others authorities and stakeholders with a sound basis for creating awareness about existing and potential hazards and risks and making decisions related to how they can prioritise and plan expenditures on risk reduction. The overall goal of the ongoing HySafe project is to contribute to the safe transition to a more sustainable development in Europe by facilitating the safe introduction of hydrogen technologies and applications. An essential element in this is the demonstration of safety: that all safety aspects related to production transportation and public use are controlled to avoid that introducing hydrogen as energy carrier should pose unacceptable risk to the society.<br/>History has proven that introducing risk analysis to new industries is beneficial e.g. in transportation and power production and distribution. However this will require existing methods and standards to be adapted to the specific applications. Furthermore when trying to quantify risk it is of utmost importance to have access to relevant accident and incident information. Such data may in many cases not be readily available and the utilisation of them will then require specific and long lasting data collection initiatives.<br/>In this paper we will present the work that has been undertaken in the HySafe project in developing methodologies and collecting data for risk management of hydrogen infrastructure. Focus is laid on the development of risk acceptance criteria and on the demonstration of safety and benefits to the public. A trustworthy demonstration of safety will have to be based on facts especially on facts widely known and emphasis will thus be put on the efforts taken to establish and operate a database containing hydrogen accident and incident information which can be utilised in risk assessment of hydrogen applications. A demonstration of safety will also have to include a demonstration of risk control measures and the paper will also present work carried out on safety distances and ignition source control.
Ia-HySafe Standard Benchmark Exercise Sbep-V21- Hydrogen Release and Accumulation within a Non-Ventilated Ambient Pressure Garage at Low Release Rates
Sep 2011
Publication
The successful Computational Fluid Dynamics (CFD) benchmarking activity originally started within the EC-funded Network of Excellence HySafe (2004-2009) continues within the research topics of the recently established “International Association of Hydrogen Safety” (IA-HySafe). The present contribution reports the results of the standard benchmark problem SBEP-V21. Focus is given to hydrogen dispersion and accumulation within a non-ventilated ambient pressure garage both during the release and post-release periods but for very low release rates as compared to earlier work (SBEP-V3). The current experiments were performed by CEA at the GARAGE facility under highly controlled conditions. Helium was vertically released from the centre of the 5.76 m (length) x 2.96 m (width) x 2.42 m (height) facility 22 cm from the floor from a 29.7 mm diameter opening at a volumetric rate of 18 L/min (0.027 g/s equivalent hydrogen release rate compared to 1 g/s for SBEP-V3) and for a period of 3740 seconds. Helium concentrations were measured with 57 catharometric sensors at various locations for a period up to 1.1 days. The simulations were performed using a variety of CFD codes and turbulence models. The paper compares the results predicted by the participating partners and attempts to identify the reasons for any observed disagreements.
Hydrogen as an Energy Carrier: An Evaluation of Emerging Hydrogen Value Chains
Nov 2018
Publication
Some 3% of global energy consumption today is used to produce hydrogen. Only 0.002% of this hydrogen about 1000 tonnes per annum(i) is used as an energy carrier. Yet as this timely position paper from DNV GL indicates hydrogen can become a major clean energy carrier in a world struggling to limit global warming.<br/>The company’s recently published 2018 Energy Transition Outlook(1) projects moderate uptake of hydrogen in this role towards 2050 then significant growth towards 2100. Building on that this position paper provides a more granular analysis of hydrogen as an energy carrier.
The Influence of H2 Safety Research on Relevant Risk Assessment
Sep 2019
Publication
Hydrogen is a valuable option of clean fuel to keep the global temperature rise below 2°C. However one of the main barriers in its transport and use is to ensure safety levels that are comparable with traditional fuels. In particular liquid hydrogen accidents may not be fully understood (yet) and excluded by relevant risk assessment. For instance as hydrogen is cryogenically liquefied to increase its energy density during transport Boiling Liquid Expanding Vapor Explosions (BLEVE) is a potential and critical event that is important addressing in the hazard identification phase. Two past BLEVE accidents involving liquid hydrogen support such thesis. For this reason results from consequence analysis of hydrogen BLEVE will not only improve the understanding of the related physical phenomenon but also influence future risk assessment studies. This study aims to show the extent of consequence analysis influence on overall quantitative risk assessment of hydrogen technologies and propose a systematic approach for integration of overall results. The Dynamic Procedure for Atypical Scenario Identification (DyPASI) is used for this purpose. The work specifically focuses on consequence models that are originally developed for other substances and adapted for liquid hydrogen. Particular attention is given to the parameters affecting the magnitude of the accident as currently investigated by a number of research projects on hydrogen safety worldwide. A representative example of consequence analysis for liquid hydrogen release is employed in this study. Critical conditions detected by the numerical simulation models are accurately identified and considered for subsequent update of the overall system risk assessment.
Assessment and Evaluation of 3rd Party Risk for Planned Hydrogen Demonstration Facility
Sep 2007
Publication
Potential risk exposure of 3rd parties i.e. people not involved in the actual operation of a plant is often a critical factor to gain authority approval and public acceptance for a development project. This is also highly relevant for development of demonstration facilities for hydrogen production and refuelling infrastructure. This paper presents and discusses results for risk exposure of 3rd parties based on risk assessment studies performed for the planned Hydrogen Technology Research Centre Hytrec in Trondheim. The methodology applied is outlined. Key assumptions and study uncertainties are identified and how these might affect the results are discussed.<br/>The purpose of Hytrec is to build a centre for research development and demonstration of hydrogen as an energy carrier. Hydrogen will be produced both by reforming of natural gas with CO2 capture and by electrolysis of water. The plant also includes a SOFC that will run on natural gas or hydrogen and produce heat and electricity for the Hytrec visitor centre. Hytrec will be located in a populated area without access control. Most of the units will be located within cabinets and modules.<br/>The authors acknowledge the Hytrec project and the Hytrec project partners Statoil Statkraft and DNV for their support and for allowing utilisation of results from the Hytrec QRA in this paper.
Thermal Efficiency of On-site, Small-scale Hydrogen Production Technologies using Liquid Hydrocarbon Fuels in Comparison to Electrolysis a Case Study in Norway
Oct 2018
Publication
The main goal of this study was to assess the energy efficiency of a small-scale on-site hydrogen production and dispensing plant for transport applications. The selected location was the city of Narvik in northern Norway where the hydrogen demand is expected to be 100 kg/day. The investigated technologies for on-site hydrogen generation starting from common liquid fossil fuels such as heavy naphtha and diesel were based on steam reforming and partial oxidation. Water electrolysis derived by renewable energy was also included in the comparison. The overall thermal efficiency of the hydrogen station was computed including compression and miscellaneous power consumption.
Risk Modelling of a Hydrogen Refuelling Station Using a Bayesian Network
Sep 2009
Publication
Fault trees and event trees have for decades been the most commonly applied modelling tools in both risk analysis in general and the risk analysis of hydrogen applications including infrastructure in particular. It is sometimes found challenging to make traditional Quantitative Risk Analyses sufficiently transparent and it is frequently challenging for outsiders to verify the probabilistic modelling. Bayesian Networks (BN) are a graphical representation of uncertain quantities and decisions that explicitly reveal the probabilistic dependence between the variables and the related information flow. It has been suggested that BN represent a modelling tool that is superior to both fault trees and event trees with respect to the structuring and modelling of large complex systems. This paper gives an introduction to BN and utilises a case study as a basis for discussing and demonstrating the suitability of BN for modelling the risks associated with the introduction of hydrogen as an energy carrier. In this study we explore the benefits of modelling a hydrogen refuelling station using BN. The study takes its point of departure in input from a traditional detailed Quantitative Risk Analysis conducted by DNV during the HyApproval project. We compare and discuss the two analyses with respect to their advantages and disadvantages. We especially focus on a comparison of transparency and the results that may be extracted from the two alternative procedures.
Enhancing the Efficiency of Power- and Biomass-to-liquid Fuel Processes Using Fuel-assisted Solid Oxide Electrolysis Cells
Apr 2022
Publication
Power- and biomass-to-liquid fuel processes (PBtL) can utilize renewable energy and residual forestry waste to produce liquid synthetic fuels which have the potential to mitigate the climate impacts of the current transportation infrastructure including the long-haul aviation sector. In a previous study we demonstrated that implementing a solid oxide electrolysis cell (SOEC) in the PBtL process can significantly increase the energy efficiency of fuel production by supplying the produced hydrogen to a reverse water gas shift (RWGS) reactor to generate syngas which is then fed downstream to a Fischer–Tropsch (FT) reactor. The tail gas emitted from the FT reactor consists primarily of a mixture of hydrogen carbon monoxide and methane and is often recycled to the entrained flow gasifier located at the beginning of the process. In this analysis we investigate the efficiency gains of the PBtL process as a result of redirecting the tail gas of the FT reactor to the anode of an SOEC to serve as fuel. Supplying fuel to an SOEC can lower the electrical work input required to facilitate steam electrolysis when reacting electrochemically with oxide ions in the anode which in turn can reduce oxygen partial pressures and thus alleviate material degradation. Accordingly we develop a thermodynamic framework to reveal the performance limits of fuel-assisted SOECs (FASOECs) and provide strategies to minimize oxygen partial pressures in the SOEC anode. Additionally we elucidate how much fuel is required to match the heating demands of a cell when steam is supplied to the cathode over a broad range of inlet temperatures and demonstrate the influence of a set of reaction pathways of the supplied fuel on the operating potential of an FASOEC and the corresponding efficiency gain of the PBtL process. Based on preliminary calculations we estimate that implementing an FASOEC in the PBtL process can increase the energy efficiency of fuel production to more than 90% depending on the amount of FT tail gas available to the system.
No more items...