Poland
Requirements for Hydrogen Resistance of Materials in CI Engine Toxic Substances Powered by Biofuels
Aug 2019
Publication
It has been described the conception of using platinum catalytic layer in multi hole fuel injector atomizer. The catalytic layer has been placed on not working part of atomizer needle. The aim of modification was activation of dehydrogenation reaction paraffin to olefin hydrocarbons with escape hydrogen molecule in CI engine bio fuel. The modification of atomizer with catalytic layer and reaction process leads to the presence of hydrogen and its influence on structural materials properties after the catalysis which requires the high hydrogen and crack resistance of used materials. There is used high speed steel as material. Article describes how hydrogen and combustion gases influence on thermal friction processes on this material. First of all the investigations were conduct 359 engine with biodiesel. During test had been observed nitrogen oxides carbon monoxide and particles emission. The obtained results show that there is possibility to lower toxic substances emission in exhaust gases CI engine powered by biodiesel. On the second it has been described the influence of biodiesel (including hydrogen) on fuel injector components and their influence on structural materials characteristics. There has been presented how biodiesel with hydrogen influences on precision elements and injection and return discharges. The investigation has been made by using engine test bench and fuel injector and pumps test equipment.
Study of the Effects of Changes in Gas Composition as Well as Ambient and Gas Temperature on Errors of Indications of Thermal Gas Meters
Oct 2020
Publication
Thermal gas meters represent a promising technology for billing customers for gaseous fuels however it is essential to ensure that measurement accuracy is maintained in the long term and in a broad range of operating conditions. The effect of hydrogen addition to natural gas will change the physicochemical properties of the mixture of natural gas and hydrogen. Such a mixture will be supplied through the gas system to consumers including households where the amounts of received gas will be metered. The physicochemical properties of hydrogen including the specific density or viscosity differ significantly from those of the natural gas components such as methane ethane propane nitrogen etc. Therefore it is of utmost importance to establish the impact of the changes in the gas composition caused by the addition of hydrogen to natural gas on the metrological properties of household gas meters including thermal gas meters. Furthermore since household gas meters can be installed outdoors and taking into account the fact that household gas meters are good heat exchangers the influence of ambient and gas temperature on the metrological properties of those meters should be investigated. This article reviews a test bench and a testing method concerning errors of thermal gas meter indicators using air and natural gas including the type containing hydrogen. The indication errors for thermal gas meters using air natural gas and natural gas with an addition of 2% 4% 5% 10% and 15% hydrogen were determined and then subjected to metrological analysis. Moreover the test method and test bench are discussed and the results of tests on the impact of ambient and gas temperatures (-25 ◦C and 55 ◦C respectively) on the errors of indications of thermal gas meters are presented. Conclusions for distribution system operators in terms of gas meter selection were drawn based on the test results.
Prospects for the Use of Hydrogen in the Armed Forces
Oct 2021
Publication
The energy security landscape that we envisage in 2050 will be different from that of today. Meeting the future energy needs of the armed forces will be a key challenge not least for military security. The World Energy Council’s World Energy Scenarios forecast that the world’s population will rise to 10 billion by 2050 which will also necessitate an increase in the size of the armed forces. In this context energy extraction distribution and storage become essential to stabilizing the imbalance between production and demand. Among the available solutions Power to Hydrogen (P2H) is one of the most appealing options. However despite the potential many obstacles currently hinder the development of the P2H market. This article aims to identify and analyse existing barriers to the introduction of P2H technologies that use hydrogen. The holistic approach used which was based on a literature survey identified obstacles and possible strategies for overcoming them. The research conducted presents an original research contribution at the level of hydrogen strategies considered in leading countries around the world. The research findings identified unresolved regulatory issues and sources of uncertainty in the armed forces. There is a lack of knowledge in the armed forces of some countries about the process of producing hydrogen energy and its benefits which raises concerns about the consistency of its exploitation. Negative attitudes towards hydrogen fuel energy can be a significant barrier to its deployment in the armed forces. Possible approaches and solutions have also been proposed to eliminate obstacles and to support decision makers in defining and implementing a strategy for hydrogen as a clean energy carrier. There are decisive and unresolved obstacles to its deployment not only in the armed forces
Study of the Microstructural and First Hydrogenation Properties of TiFe Alloy with Zr, Mn and V as Additives
Jul 2021
Publication
In this paper we report the effect of adding Zr + V or Zr + V + Mn to TiFe alloy on microstructure and hydrogen storage properties. The addition of only V was not enough to produce a minimum amount of secondary phase and therefore the first hydrogenation at room temperature under a hydrogen pressure of 20 bars was impossible. When 2 wt.% Zr + 2 wt.% V or 2 wt.% Zr + 2 wt.% V + 2 wt.% Mn is added to TiFe the alloy shows a finely distributed Ti2Fe-like secondary phase. These alloys presented a fast first hydrogenation and a high capacity. The rate-limiting step was found to be 3D growth diffusion controlled with decreasing interface velocity. This is consistent with the hypothesis that the fast reaction is likely to be the presence of Ti2Fe-like secondary phases that act as a gateway for hydrogen.
A Multiobjective Optimization of a Catalyst Distribution in a Methane/Steam Reforming Reactor Using a Genetic Algorithm
May 2020
Publication
The presented research focuses on an optimization design of a catalyst distribution inside a small-scale methane/steam reforming reactor. A genetic algorithm was used for the multiobjective optimization which included the search for an optimum of methane conversion rate and a minimum of the difference between highest and lowest temperatures in the reactor. For the sake of computational time the maximal number of the segment with different catalyst densities was set to be thirty in this study. During the entire optimization process every part of the reactor could be filled either with a catalyst material or non-catalytic metallic foam. In both cases the porosity and pore size was also specified. The impact of the porosity and pore size on the active reaction surface and permeability was incorporated using graph theory and three-dimensional digital material representation. Calculations start with the generation of a random set of possible reactors each with a different catalyst distribution. The algorithm calls reforming simulation over each of the reactors and after obtaining concentration and temperature fields the algorithms calculated fitness function. The properties of the best reactors are combined to generate a new population of solutions. The procedure is repeated and after meeting the coverage criteria the optimal catalyst distribution was proposed. The paper is summarized with the optimal catalyst distribution for the given size and working conditions of the system.
Towards Computer-Aided Graphene Covered TiO2-Cu(CuxOy) Composite Design for the Purpose of Photoinduced Hydrogen Evolution
May 2021
Publication
In search a hydrogen source we synthesized TiO2-Cu-graphene composite photocatalyst for hydrogen evolution. The catalyst is a new and unique material as it consists of copper-decorated TiO2 particles covered tightly in graphene and obtained in a fluidized bed reactor. Both reduction of copper from Cu(CH3COO) at the surface of TiO2 particles and covering of TiO2-Cu in graphene thin layer by Chemical Vapour Deposition (CVD) were performed subsequently in the flow reactor by manipulating the gas composition. Obtained photocatalysts were tested in regard to hydrogen generation from photo-induced water conversion with methanol as sacrificial agent. The hydrogen generation rate for the most active sample reached 2296.27 µmol H2 h−1 gcat−1. Combining experimental and computational approaches enabled to define the optimum combination of the synthesis parameters resulting in the highest photocatalytic activity for water splitting for green hydrogen production. The results indicate that the major factor affecting hydrogen production is temperature of the TiO2-Cu-graphene composite synthesis which in turn is inversely correlated to photoactivity.
How Long Will Combustion Vehicles Be Used? Polish Transport Sector on the Pathway to Climate Neutrality
Nov 2021
Publication
Transformation of road transport sector through replacing of internal combustion vehicles with zero-emission technologies is among key challenges to achievement of climate neutrality by 2050. In a constantly developing economy the demand for transport services increases to ensure continuity in the supply chain and passenger mobility. Deployment of electric technologies in the road transport sector involves both businesses and households its pace depends on the technological development of zero-emission vehicles presence of necessary infrastructure and regulations on emission standards for new vehicles entering the market. Thus this study attempts to estimate how long combustion vehicles will be in use and what the state of the fleet will be in 2050. For obtainment of results the TR3E partial equilibrium model was used. The study simulates the future fleet structure in passenger and freight transport. The results obtained for Poland for the climate neutrality (NEU) scenario show that in 2050 the share of vehicles using fossil fuels will be ca. 30% in both road passenger and freight transport. The consequence of shifts in the structure of the fleet is the reduction of CO2 emissions ca. 80% by 2050 and increase of the transport demand for electricity and hydrogen.
Hydrogen Stratification in Enclosures in Dependence of the Gas Release Momentum
Sep 2021
Publication
The hydrogen dispersion phenomenon in an enclosure depends on the ratio of the gas buoyancy induced momentum. Random diffusive motions of individual gas particles become dominative when the release momentum is low. Then a uniform hydrogen concentration appears in the enclosure instead of the gas stratification below the ceiling. The paper justifies this hypothesis by demonstrating fullscale experimental results of hydrogen dispersion within a confined space under six different release variations. During the experiments hydrogen was released into the test room of 60 m3 volume in two methods: through a nozzle and through 21 points evenly distributed on the emission box cover (multipoint release). Each release method was tested with three different hydrogen volume flow rates (3.17·10−3 m3/s 1.63·10−3 m3/s 3.34·10−4 m3/s). The tests confirm the increase of hydrogen convective upward flow and its stratification tendency relative to increased volume flow. A tendency of more uniform hydrogen cloud distribution when Mach Reynolds and Froud number values decreased was demonstrated. Because the hydrogen dispersion phenomena impact fire and explosive hazards the presented experimental results could help fire protection systems be in an enclosure designed allowing their effectiveness optimization.
Hydrogen Embrittlement and Oxide Layer Effect in the Cathodically Charged Zircaloy-2
Apr 2020
Publication
Poland The present paper is aimed at determining the less investigated effects of hydrogen uptake on the microstructure and the mechanical behavior of the oxidized Zircaloy-2 alloy. The specimens were oxidized and charged with hydrogen. The different oxidation temperatures and cathodic current densities were applied. The scanning electron microscopy X-ray electron diffraction spectroscopy hydrogen absorption assessment tensile and nanoindentation tests were performed. At low oxidation temperatures an appearance of numerous hydrides and cracks and a slight change of mechanical properties were noticed. At high-temperature oxidation the oxide layer prevented the hydrogen deterioration of the alloy. For nonoxidized samples charged at different current density nanoindentation tests showed that both hardness and Young’s modulus revealed the minims at specific current value and the stepwise decrease in hardness during hydrogen desorption. The obtained results are explained by the barrier effect of the oxide layer against hydrogen uptake softening due to the interaction of hydrogen and dislocations nucleated by indentation test and hardening caused by the decomposition of hydrides. The last phenomena may appear together and result in hydrogen embrittlement in forms of simultaneous hydrogen-enhanced localized plasticity and delayed hydride cracking.
Studies on the Impact of Hydrogen on the Results of THT Measurement Devices
Dec 2021
Publication
An essential prerequisite for safe transport and use of natural gas is their appropriate odorization. This enables the detection of uncontrolled gas leaks. Proper and systematic odorization inspection ensures both safe use of gas and continuity of the process itself. In practice it is conducted through among others measuring odorant concentrations in gas. Control devices for rapid gas odorization measurements that are currently used on a large scale in the gas industry are equipped with electrochemical detectors selective for sulfur compounds like tetrahydrothiophene (THT). Because the selectivity of electrochemical detector response to one compound (e.g. THT) the available declarations of manufacturers show that detector sensitivity (indirectly also the quality of the measurement result) is influenced by the presence of increased e.g. sulfur or hydrogen compound content in the gas. Because of the lack of sufficient source literature data in this field it was necessary to experimentally verify this impact. The results of studies on experimental verification of suspected influence of increased amounts of hydrogen in gas on the response of electrochemical detector was carried out at the Oil and Gas Institute—National Research Institute (INiG—PIB). They are presented in this article. The data gathered in the course of researching the dependence between THT concentration measurement result quality and hydrogen content in gas composition enabled a preliminary assessment of the threat to the safety of end users of gaseous fuels caused by the introduction of this gas into the distribution network. Noticing the scope of necessary changes in the area of odorization is necessary to guarantee this safety.
Total Cost of Ownership and Its Potential Consequences for the Development of the Hydrogen Fuel Cell Powered Vehicle Market in Poland
Apr 2021
Publication
Electromobility is a growing technology for land transport constituting an important element of the concept of sustainable economic development. The article presents selected research results concerning one of the segments of this market-vehicles powered by hydrogen fuel cells. The subject of the research was to gain extensive knowledge on the economic factors influencing the future purchasing decisions of the demand side in relation to this category of vehicles. The research was based on a numerical experiment. For this purpose a comparative analysis of purchase prices in relation to the TCO of the vehicle after 3–5 years of use was performed. The research included selected models that are powered by both conventional and alternative fuels. The use of this method will allow to assess the real costs associated with the hydrogen vehicle. The authors emphasize the important role of economic factors in the form of the TCO index for the development of this market. The experimental approach may be helpful in understanding the essence of economic relations that affect the development of the electro-mobility market and the market demand for hydrogen fuel cell-powered vehicles in Poland.
Multi-Criteria Comparative Analysis of Clean Hydrogen Production Scenarios
Aug 2020
Publication
Different hydrogen production scenarios need to be compared in regard to multiple and often distinct aspects. It is well known that hydrogen production technologies based on environmentally-friendly renewable energy sources have higher values of the economic indicators than methods based on fossil fuels. Therefore how should this decision criterion (environmental) prevail over the other types of decision criteria (technical and economic) to make a scenario where hydrogen production only uses renewable energy sources the most attractive option for a decision-maker? This article presents the results of a multi-variant comparative analysis of scenarios to annually produce one million tons of pure hydrogen (99.999%) via electrolysis in Poland. The compared variants were found to differ in terms of electricity sources feeding the electrolyzers. The research demonstrated that the scenario where hydrogen production uses energy from photovoltaics only becomes the best option for the environmental criterion weighting value at 61%. Taking the aging effect of photovoltaic installation (PV) panels and electrolyzers after 10 years of operation into account the limit value of the environmental criterion rises to 63%. The carried out analyses may serve as the basis for the creation of systems supporting the development of clean and green hydrogen production technologies.
Varying Load Distribution Impacts on the Operation of a Hydrogen Generator Plant
Oct 2021
Publication
This study advances several methods to evaluate the operation of a hydrogen generator plant. The model developed helps customize plants that contain multiple generators of varying powers using a decision module which determines the most efficient plant load distribution. Evaluation indices to assess individual devices within the plant are proposed and system flexibility maximizes the amount of renewable energy stored. Three case studies examined the variable load distribution of an electrolysis system connected to a 40 MW wind farm for energy storage purposes and incorporated a “night-valley” operational strategy. These methods facilitate the selection of the proper plant configuration and provide estimates for individual device effectiveness within the system.
Assessment of the Economic Efficiency of the Operation of Low-Emission and Zero-Emission Vehicles in Public Transport in the Countries of the Visegrad Group
Nov 2021
Publication
Transport is one of the key sectors of the European economy. However the intensive development of transport caused negative effects in the form of an increase in the emission of harmful substances. The particularly dramatic situation took place in the V4 countries. This made it necessary to implement solutions reducing emissions in transport including passenger transport. Such activities can be implemented in the field of implementation of low-emission and zero-emission vehicles for use. That is why the European Union and the governments of the Visegrad Group countries have developed numerous recommendations communications laws and strategies that order carriers to implement low- and zero-emission mobility. Therefore transport organizers and communication operators faced the choice of the type of buses. From an economic point of view each entrepreneur is guided by the economic efficiency of the vehicles used. Hence the main aim of the article was to conduct an economic evaluation of the operational efficiency of ecological vehicles. As more than 70% of vehicles in use in the European Union are still diesel driven the economic efficiency assessment was also made for vehicles with traditional diesel drive. To conduct the research the method of calculating the total cost of ownership of vehicles in operation was used. As a result of the research it was found that electric buses are the cheapest in the entire period of use (15 years) and then those powered by CNG. On the other hand the cost of using hydrogen buses is the highest. This is due to the high purchase prices of these vehicles. However the EU as well as the governments of individual countries support enterprises and communication operators by offering them financing for investments. The impact of the forecasted fuel and energy prices and the planned inflation on operating costs was also examined. In this case the analyses showed that the forecasted changes in fuel and energy prices as well as the expected inflation will significantly affect the costs of vehicle operation and the economic efficiency of using various types of drives. These changes will have a positive impact on the implementation of zero-emission vehicles into exploitation. Based on the analyses it was found that in 2035 hydrogen buses will have the lowest operating costs.
Renewable Hydrogen Implementations for Combined Energy Storage, Transportation and Stationary Applications
Dec 2019
Publication
The purpose of this paper is to discuss the potential of hydrogen obtained from renewable sources for energy generation and storage systems. The first part of analysis will address such issues as various methods of green hydrogen production storage and transportation. The review of hydrogen generation methods will be followed by the critical analysis and the selection of production method. This selection is justified by the results of the comparative research on alternative green hydrogen generation technologies with focus on their environmental impacts and costs. The comparative analysis includes the biomass-based methods as well as water splitting and photo-catalysis methods while water electrolysis is taken as a benchmark. Hydrogen storage and transportation issues will be further discussed in purpose to form the list of recommended solutions. In the second part of the paper the technology readiness and technical feasibility for joint hydrogen applications will be analysed. This will include the energy storage and production systems based on renewable hydrogen in combination with hydrogen usage in mobility systems as well as the stationary applications in buildings such as combined heat and power (CHP) plants or fuel cell electric generators. Based on the analysis of the selected case studies the author will discuss the role of hydrogen for the carbon emission reduction with the stress on the real value of carbon footprint of hydrogen depending on the gas source storage transportation and applications.
Microalgal Hydrogen Production in Relation to Other Biomass‐Based Technologies—A Review
Sep 2021
Publication
Hydrogen is an environmentally friendly biofuel which if widely used could reduce atmospheric carbon dioxide emissions. The main barrier to the widespread use of hydrogen for power generation is the lack of technologically feasible and—more importantly—cost‐effective methods of production and storage. So far hydrogen has been produced using thermochemical methods (such as gasification pyrolysis or water electrolysis) and biological methods (most of which involve anaerobic digestion and photofermentation) with conventional fuels waste or dedicated crop biomass used as a feedstock. Microalgae possess very high photosynthetic efficiency can rapidly build biomass and possess other beneficial properties which is why they are considered to be one of the strongest contenders among biohydrogen production technologies. This review gives an account of present knowledge on microalgal hydrogen production and compares it with the other available biofuel production technologies.
Analysis of the Polish Hydrogen Strategy in the Context of the EU’s Strategic Documents on Hydrogen
Oct 2021
Publication
In December 2019 the European Commission unveiled an ambitious project the European Green Deal which aims to lead the European Union to climate neutrality by 2050. This is a significant challenge for all EU countries and especially for Poland. The role of hydrogen in the processes of decarbonization of the economy and transport is being discussed in many countries around the world to find rational solutions to this difficult and complex problem. There is an ongoing discussion about the hydrogen economy which covers the production of hydrogen its storage transport and conversion to the desired forms of energy primarily electricity mechanical energy and new fuels. The development of the hydrogen economy can significantly support the achievement of climate neutrality. The belief that hydrogen plays an important role in the transformation of the energy sector is widespread. There are many technical and economic challenges as well as legal and logistical barriers to deal with in the transition process. The development of hydrogen technologies and a global sustainable energy system that uses hydrogen offers a real opportunity to solve the challenges facing the global energy industry: meeting the need for clean fuels increasing the efficiency of fuel and energy production and significantly reducing greenhouse gas emissions. The paper provides an in-depth analysis of the Polish Hydrogen Strategy a document that sets out the directions for the development of hydrogen use (competences and technologies) in the energy transport and industrial sectors. This analysis is presented against the background of the European Commission’s document ‘A Hydrogen Strategy for a Climate-Neutral Europe’. The draft project presented is a good basis for further discussion on the directions of development of the Polish economy. The Polish Hydrogen Strategy although it was created later than the EU document does not fully follow its guidelines. The directions for further work on the hydrogen strategy are indicated so that its final version can become a driving force for the development of the country’s economy.
Problems of Hydrogen Doping in the Methane Fermentation Process and of Energetic Use of the Gas Mixture
Jul 2021
Publication
This article discusses the technology for doping hydrogen into the fermenter to increase methane production and the amount of energy in the mixture. Hydrogen doping is anticipated to enable more carbon to be applied to produce methane. Hydrogen is proposed to be produced by using excess electricity from for example off-peak electricity hours at night. The possibilities of using a mixture of hydrogen and biogas for combustion in boilers and internal combustion engines have been determined. It has been proven that the volumetric addition of hydrogen reduces the heat of combustion of the mixture. Problems arising from hydrogen doping during the methane fermentation process have been identified.
Magnesium-Based Materials for Hydrogen Storage—A Scope Review
Sep 2020
Publication
Magnesium hydride and selected magnesium-based ternary hydride (Mg2FeH6 Mg2NiH4 and Mg2CoH5) syntheses and modification methods as well as the properties of the obtained materials which are modified mostly by mechanical synthesis or milling are reviewed in this work. The roles of selected additives (oxides halides and intermetallics) nanostructurization polymorphic transformations and cyclic stability are described. Despite the many years of investigations related to these hydrides and the significant number of different additives used there are still many unknown factors that affect their hydrogen storage properties reaction yield and stability. The described compounds seem to be extremely interesting from a theoretical point of view. However their practical application still remains debatable.
The Significance of Formal & Legal Factors in Selecting a Location for a Hydrogen Buffer to Stabilize the Operation of Power Distribution Networks
Oct 2022
Publication
This article presents the conceptual assumptions for the process of identifying and evaluating the formal & legal factors that impact the choice of a hydrogen buffer location to stabilize the operation of power distribution networks. The assumption for the research process was establishing a methodological framework for an in-depth analysis of legislative acts (the EU legislation and the national law) to enable identification of synthetic groups of formal & legal factors to be further analyzed using the DEMATEL method. As a result the cause-and-effect relations between the variables were examined and an in-depth analysis was carried out to investigate the level of impact of the formal & legal factors on the functioning and location of a hydrogen energy buffer.
No more items...