Russian Federation
Small-Scaled Production of Blue Hydrogen with Reduced Carbon Footprint
Aug 2021
Publication
This article reviews a method of hydrogen production based on partial non-catalytic oxidation of natural gas in an original synthesis gas generator. The working principles of the unit are similar to those of liquid-propellant rocket engines. This paper presents a description of the operation and technical characteristics of the synthesis gas generator. Its application in the creation of small-scaled plants with a capacity of up to 5–7 thousand m3/h of hydrogen is justified. Hydrogen production in the developed installation requires a two-stage method and includes a technological unit for producing a hydrogen-containing gas. Typical balance compositions of hydrogen-containing gas at the synthesis gas generator’s outlet are given. To increase the hydrogen concentration it is proposed to carry out a two-stage steam catalytic conversion of carbon monoxide contained in the hydrogen-containing gas at the synthesis gas generator’s outlet using a single Cu–Zn–cementcontaining composition. Based on thermodynamic calculations quasi-optimal modes of natural gas partial oxidation with oxygen are formulated and the results of material balance calculation for the installation are presented. In order to produce “blue” hydrogen the scheme of carbon dioxide separation and liquefaction is developed. The conclusion section of the paper contains the test results of a pilot demonstration unit and the recommendations for improving the technology and preventing soot formation.
Experimental Study of Hydrogen Production Using Electrolyte Nanofluids with a Simulated Light Source
Dec 2021
Publication
In this research we conducted water electrolysis experiments of a carbon black (CB) based sodium sulfate electrolyte using a Hoffman voltameter. The main objective was to investigate hydrogen production in such systems as well as analyse the electrical properties and thermal properties of nanofluids. A halogen lamp mimicking solar energy was used as a radiation source and a group of comparative tests were also conducted with different irradiation areas. The results showed that by using CB and light it was possible to increase the hydrogen production rate. The optimal CB concentration was 0.1 wt %. At this concentration the hydrogen production rate increased by 30.37% after 20 min of electrolysis. Hence we show that using CB in electrolytes irradiated by solar energy could save the electrical energy necessary for electrolysis processes.
Development and Operation Modes of Hydrogen Fuel Cell Generation System for Remote Consumers’ Power Supply
Aug 2021
Publication
At the present stage of electric power industry development special attention is being paid to the development and research of new efficient energy sources. The use of hydrogen fuel cells is promising for remote autonomous power supply systems. The authors of the paper have developed the structure and determined the optimal composition of a hybrid generation system based on hydrogen fuel cells and battery storage and have conducted studies of its operating modes and for remote consumers’ power supply efficiency. A simulation of the electromagnetic processes was carried out to check the operability of the proposed hybrid generation system structure. The simulation results confirmed the operability of the structure under consideration the calculation of its parameters reliability and the high quality of the output voltage. The electricity cost of a hybrid generation system was estimated according to the LCOE (levelized cost of energy) indicator its value being 1.17 USD/kWh. The factors influencing the electricity cost of a hydrogen generation system have been determined and ways for reducing its cost identified.
Brief Review on High-Temperature Electrochemical Hydrogen Sensors
Dec 2022
Publication
Hydrogen sensors especially those operating at high temperatures are essential tools for the emerging hydrogen economy. Monitoring hydrogen under process conditions to control the reactions for detecting confined species is crucial to the safe widespread use and public acceptance of hydrogen as fuel. Hydrogen sensors must have a sensitivity ranging from traces of hydrogen (parts per million (ppm)) up to levels near the lower explosive limit (LEL = 4% H2 in the air) for safety reasons. Furthermore they need to operate in cryogenic ambient and high-temperature environments. Herein emphasis is given to hydrogen sensors based on solid oxide electrolytes (operating at high temperatures) in particular oxygen ion and proton conductors. The review is devoted to potentiometric amperometric and combined amperometric-potentiometric hydrogen sensors. Experimental results already reported in the international literature are presented and analyzed to reveal the configuration principle of operation and the applied solid electrolytes and electrodes of the high-temperature hydrogen sensors. Additionally an amperometric sensor able to detect hydrogen and steam in atmospheric air through a two-stage procedure is presented and thoroughly discussed. The discussion reveals that high-temperature hydrogen sensors face different challenges in terms of the electrodes and solid electrolytes to be used depending on the operating principle of each sensor type.
An Overview of the Recent Advances in Composite Materials and Artificial Intelligence for Hydrogen Storage Vessels Design
Mar 2023
Publication
The environmental impact of CO2 emissions is widely acknowledged making the development of alternative propulsion systems a priority. Hydrogen is a potential candidate to replace fossil fuels for transport applications with three technologies considered for the onboard storage of hydrogen: storage in the form of a compressed gas storage as a cryogenic liquid and storage as a solid. These technologies are now competing to meet the requirements of vehicle manufacturers; each has its own unique challenges that must be understood to direct future research and development efforts. This paper reviews technological developments for Hydrogen Storage Vessel (HSV) designs including their technical performance manufacturing costs safety and environmental impact. More specifically an up-to-date review of fiber-reinforced polymer composite HSVs was explored including the end-of-life recycling options. A review of current numerical models for HSVs was conducted including the use of artificial intelligence techniques to assess the performance of composite HSVs leading to more sophisticated designs for achieving a more sustainable future.
Kinetics of Brittle Fracture in Metals Under the Influence of Hydrogen
Jan 2020
Publication
Some aspects of damage accumulation modelling and brittle fracture processes mechanisms under the combined effect of mechanical loading and hydrogen has been discussed in the article. New mechanism of brittle fracture for metallic materials based on dislocation and phonon structure fingerprints and lattice hydrogen content under the static and dynamic loading at low temperature condition has been proposed. The mechanism based on theoretical research and experimental and numerical studies. The experiments include the energy spectrum of internal friction determination and impact toughness testing for low-temperature brittle-ductile transition revealing. The numerical study based on damage accumulation modeling under the influence of up-hill diffusion in the elastic-plastic problem of solid state by finite element method. A new simple activation model of low temperature and hydrogen influence on damage accumulation process has been proposed. The model shows the rate of damage strong dependence of stress level and hydrogen content and test temperature. The combination of low temperature and high hydrogen content is most dangerous so the weld structures in extreme environment such as the Arctic and Subarctic regions have a high risk of breakage. So it is possible to estimate the energy and phonon spectrum of crystal lattice and predict the properties of microcrystalline and nanostructured materials with the high cold-short threshold on the base of such the approach. There are the recommendations propose to improve the cold resistance of steels and alloys by controlling the characteristics of the dislocation structure of new materials with polycrystalline and ultrafine-grained structure.
Application of Hydrogen and Hydrogen-containing Gases in Internal Combustion Engines
Nov 2019
Publication
The results of studies of the influence of hydrogen and hydrogen-containing gas additives on the parameters of various types of internal combustion engines are analyzed and summarized. It made possible to identify the features of the effect on the combustion of fuel during internal combustion engine operation at partial loads. The dependences of reducing the toxicity and fuel consumption of internal combustion engine on the amount of addition of hydrogen and a hydrogen-containing gas to the air-fuel mixture were obtained. It allowed to establish quantitative effects of free hydrogen in particular to quantify the region of small hydrogen additives and the conditions under which hydrogen exhibits the qualities of a chemically active component of the mixture.
Critical Morphological Phenomena During Ultra-lean Hydrogen-air Combustion in Closed Horizontal Hele-Shaw Cell
Sep 2021
Publication
Free quasi-two-dimensional outward propagation of the ultra-lean hydrogen-air flames was studied in a horizontal closed flat channel in order to minimize the influences of gravity and natural convection. Experiments were carried out with a sequential change of initial hydrogen concentration in the premixed gaseous hydrogen-air mixtures in the range from 3 to 12 vol. % H2 under normal pressure and temperature conditions. Two types of critical (in term of concentration threshold behavior) morphological phenomena were observed - formation of a pre-flame kernel and primary bifurcation of the pre-flame kernel and the higher order (secondary tertiary etc.) bifurcations of the individual locally spherical and restricted in space flame fronts. For the given initial ambient conditions (channel thickness initial gas mixture pressure and temperature) variation of initial mixture stoichiometry results in a few substantial changes in overall flame shape. These changes were recorded at the specific concentration limits which delineate three characteristic macroscopic morphological forms (morphotypes) of the ultra-lean hydrogen-air flame's ""trails"" - ""ray-like"" ""dendritic"" and ""quasi-uniform"". Transitions between the revealed basic flame morphotypes took place in different ways. The ""pre-flame kernel-to- rays"" and ""rays-to-dendrites"" transitions were abrupt and resembled the first order transitions in physics. -to-quasi-uniform morphology"" were significantly blurred and can be regarded as analogue to the second order transitions.
A New Model For Hydrogen-Induced Crack (HIC) Growth in Metal Alloy Pipelines Under Extreme Pressure
Dec 2020
Publication
Pipeline failure caused by Hydrogen-Induced Cracking (HIC) also known as Hydrogen Embrittlement (HE) is a pressing issue for the oil and natural gas industry. Bursts in pipelines are devastating and extremely costly. The explosive force of a bursting pipe can inflict fatal injuries to workers while the combined loss of product and effort to repair are highly costly to producers. Further pipeline failures due to HIC have a long lasting impact on the surrounding environment. Safe use and operation of such pipelines depend on a good understanding of the underlying forces that cause HIC. Specifically a reliable way to predict the growth rate of hydrogen-induced cracks is needed to establish a safe duration of service for each length of pipeline. Pipes that have exceeded or are near the end of their service life can then be retired before the risk of HIC-related failures becomes too high. However little is known about the mechanisms that drive HIC. To date no model has been put forth that accurately predicts the growth rate of fractures due to HIC under extreme pressures such as in the context of natural gas and petroleum pipelines. Herein a mathematical model for the growth of fractures by HIC under extreme pressures is presented. This model is derived from first principles and the results are compared with other models. The implications of these findings are discussed and a description of future work based on these findings is presented.
Adsorption-Based Hydrogen Storage in Activated Carbons and Model Carbon Structures
Jul 2021
Publication
The experimental data on hydrogen adsorption on five nanoporous activated carbons (ACs) of various origins measured over the temperature range of 303–363 K and pressures up to 20 MPa were compared with the predictions of hydrogen density in the slit-like pores of model carbon structures calculated by the Dubinin theory of volume filling of micropores. The highest amount of adsorbed hydrogen was found for the AC sample (ACS) prepared from a polymer mixture by KOH thermochemical activation characterized by a biporous structure: 11.0 mmol/g at 16 MPa and 303 K. The greatest volumetric capacity over the entire range of temperature and pressure was demonstrated by the densest carbon adsorbent prepared from silicon carbide. The calculations of hydrogen density in the slit-like model pores revealed that the optimal hydrogen storage depended on the pore size temperature and pressure. The hydrogen adsorption capacity of the model structures exceeded the US Department of Energy (DOE) target value of 6.5 wt.% starting from 200 K and 20 MPa whereas the most efficient carbon adsorbent ACS could achieve 7.5 wt.% only at extremely low temperatures. The initial differential molar isosteric heats of hydrogen adsorption in the studied activated carbons were in the range of 2.8–14 kJ/mol and varied during adsorption in a manner specific for each adsorbent.
Prospects and Obstacles for Green Hydrogen Production in Russia
Jan 2021
Publication
Renewable energy is considered the one of the most promising solutions to meet sustainable development goals in terms of climate change mitigation. Today we face the problem of further scaling up renewable energy infrastructure which requires the creation of reliable energy storages environmentally friendly carriers like hydrogen and competitive international markets. These issues provoke the involvement of resource-based countries in the energy transition which is questionable in terms of economic efficiency compared to conventional hydrocarbon resources. To shed a light on the possible efficiency of green hydrogen production in such countries this study is aimed at: (1) comparing key Russian trends of green hydrogen development with global trends (2) presenting strategic scenarios for the Russian energy sector development (3) presenting a case study of Russian hydrogen energy project «Dyakov Ust-Srednekanskaya HPP» in Magadan region. We argue that without significant changes in strategic planning and without focus on sustainable solutions support the further development of Russian power industry will be halted in a conservative scenario with the limited presence of innovative solutions in renewable energy industries. Our case study showed that despite the closeness to Japan hydrogen market economic efficiency is on the edge of zero with payback period around 17 years. The decrease in project capacity below 543.6 MW will immediately lead to a negative NPV. The key reason for that is the low average market price of hydrogen ($14/kg) which is only a bit higher than its production cost ($12.5/kg) while transportation requires about $0.96/kg more. Despite the discouraging results it should be taken into account that such strategic projects are at the edge of energy development. We see them as an opportunity to lead transnational energy trade of green hydrogen which could be competitive in the medium term especially with state support.
Fundamentals and Principles of Solid-State Electrochemical Sensors for High Temperature Gas Detection
Dec 2021
Publication
The rapid development of science technology and engineering in the 21st century has offered a remarkable rise in our living standards. However at the same time serious environmental issues have emerged such as acid rain and the greenhouse effect which are associated with the ever-increasing need for energy consumption 85% of which comes from fossil fuels combustion. From this combustion process except for energy the main greenhouse gases-carbon dioxide and steam-are produced. Moreover during industrial processes many hazardous gases are emitted. For this reason gas-detecting devices such as electrochemical gas sensors able to analyze the composition of a target atmosphere in real time are important for further improving our living quality. Such devices can help address environmental issues and inform us about the presence of dangerous gases. Furthermore as non-renewable energy sources run out there is a need for energy saving. By analyzing the composition of combustion emissions of automobiles or industries combustion processes can be optimized. This review deals with electrochemical gas sensors based on solid oxide electrolytes which are employed for the detection of hazardous gasses at high temperatures and aggressive environments. The fundamentals the principle of operation and the configuration of potentiometric amperometric combined (amperometric-potentiometric) and mixed-potential gas sensors are presented. Moreover the results of previous studies on carbon oxides (COx) nitrogen oxides (NOx) hydrogen (H2 ) oxygen (O2 ) ammonia (NH3 ) and humidity (steam) electrochemical sensors are reported and discussed. Emphasis is given to sensors based on oxygen ion and proton-conducting electrolytes.
A Critical Review of Renewable Hydrogen Production Methods: Factors Affecting Their Scale-Up and Its Role in Future Energy Generation
Feb 2022
Publication
An increase in human activities and population growth have significantly increased the world’s energy demands. The major source of energy for the world today is from fossil fuels which are polluting and degrading the environment due to the emission of greenhouse gases. Hydrogen is an identified efficient energy carrier and can be obtained through renewable and non-renewable sources. An overview of renewable sources of hydrogen production which focuses on water splitting (electrolysis thermolysis and photolysis) and biomass (biological and thermochemical) mechanisms is presented in this study. The limitations associated with these mechanisms are discussed. The study also looks at some critical factors that hinders the scaling up of the hydrogen economy globally. Key among these factors are issues relating to the absence of a value chain for clean hydrogen storage and transportation of hydrogen high cost of production lack of international standards and risks in investment. The study ends with some future research recommendations for researchers to help enhance the technical efficiencies of some production mechanisms and policy direction to governments to reduce investment risks in the sector to scale the hydrogen economy up.
Complex Methods of Estimation Technological Strength of Welded Joints in Welding at Low Temperatures
Feb 2021
Publication
A comprehensive methodology for estimating the technological strength of welded joints are developed based on parameters reflecting the welding technology weldability hydrogen force and deformation conditions for welding and other informative parameters that correlate with the characteristics of the welded joint as well as improving existing methods for estimating the technological strength of welded joints connections through the introduction of modern equipment and non-destructive testing systems. It has been established that the proposed comprehensive estimation methodology will allow reaching a new qualitative level in assessing the technological strength of a welded joint using modern equipment and measuring instruments. According to the results of the experimental work it was found that when welding at low temperatures the increase in the probability of the formation and development of cold cracks is mainly determined by the critical content of diffusible hydrogen in the weld metal depending on the structural and force parameters of the welded joints.
Investigation of Structure of AlN Thin Films Using Fourier-transform Infrared Spectroscopy
Feb 2020
Publication
This study focuses on structural imperfections caused by hydrogen impurities in AlN thin films obtained using atomic layer deposition method (ALD). Currently there is a severe lack of studies regarding the presence of hydrogen in the bulk of AlN films. Fourier-transform infrared spectroscopy (FTIR) is one of the few methods that allow detection bonds of light elements in particular - hydrogen. Hydrogen is known to be a frequent contaminant in AlN films grown by ALD method it may form different bonds with nitrogen e.g. amino (–NH2) or imide (–NH) groups which impair the quality of the resulting film. Which is why it is important to investigate the phenomenon of hydrogen as well as to search for the suitable methods to eliminate or at least reduce its quantity. In this work several samples have been prepared using different precursors substrates and deposition parameters and characterized using FTIR and additional techniques such as AFM XPS and EDS to provide a comparative and comprehensive analysis of topography morphology and chemical composition of AlN thin films.
Scenario Modeling of Sustainable Development of Energy Supply in the Arctic
Dec 2021
Publication
The 21st century is characterized not only by large-scale transformations but also by the speed with which they occur. Transformations—political economic social technological environmental and legal-in synergy have always been a catalyst for reactions in society. The field of energy supply like many others is extremely susceptible to the external influence of such factors. To a large extent this applies to remote (especially from the position of energy supply) regions. The authors outline an approach to justifying the development of the Arctic energy infrastructure through an analysis of the demand for the amount of energy consumed and energy sources taking into account global trends. The methodology is based on scenario modeling of technological demand. It is based on a study of the specific needs of consumers available technologies and identified risks. The paper proposes development scenarios and presents a model that takes them into account. Modeling results show that in all scenarios up to 50% of the energy balance in 2035 will take gas but the role of carbon-free energy sources will increase. The mathematical model allowed forecasting the demand for energy types by certain types of consumers which makes it possible to determine the vector of development and stimulation of certain types of resources for energy production in the Arctic. The model enables considering not only the growth but also the decline in demand for certain types of consumers under different scenarios. In addition authors’ forecasts through further modernization of the energy sector in the Arctic region can contribute to the creation of prerequisites that will be stimulating and profitable for the growth of investment in sustainable energy sources to supply consumers. The scientific significance of the work lies in the application of a consistent hybrid modeling approach to forecasting demand for energy resources in the Arctic region. The results of the study are useful in drafting a scenario of regional development taking into account the Sustainable Development Goals as well as identifying areas of technology and energy infrastructure stimulation.
An Experimental Study of the Possibility of In Situ Hydrogen Generation within Gas Reservoirs
Aug 2021
Publication
Hydrogen can be generated in situ within reservoirs containing hydrocarbons through chemical reactions. This technology could be a possible solution for low-emission hydrogen production due to of simultaneous CO2 storage. In gas fields it is possible to carry out the catalytic methane conversion (CMC) if sufficient amounts of steam catalyst and heat are ensured in the reservoir. There is no confirmation of the CMC’s feasibility at relatively low temperatures in the presence of core (reservoir rock) material. This study introduces the experimental results of the first part of the research on in situ hydrogen generation in the Promyslovskoye gas field. A set of static experiments in the autoclave reactor were performed to study the possibility of hydrogen generation under reservoir conditions. It was shown that CMC can be realized in the presence of core and ex situ prepared Ni-based catalyst under high pressure up to 207 atm but at temperatures not lower than 450 ◦C. It can be concluded that the crushed core model improves the catalytic effect but releases carbon dioxide and light hydrocarbons which interfere with the hydrogen generation. The maximum methane conversion rate to hydrogen achieved at 450 ◦C is 5.8%
Research Progress, Trends, and Current State of Development on PEMFC-New Insights from a Bibliometric Analysis and Characteristics of Two Decades of Research Output
Nov 2022
Publication
The consumption of hydrogen could increase by sixfold in 2050 compared to 2020 levels reaching about 530 Mt. Against this backdrop the proton exchange membrane fuel cell (PEMFC) has been a major research area in the field of energy engineering. Several reviews have been provided in the existing corpus of literature on PEMFC but questions related to their evolutionary nuances and research hotspots remain largely unanswered. To fill this gap the current review uses bibliometric analysis to analyze PEMFC articles indexed in the Scopus database that were published between 2000–2021. It has been revealed that the research field is growing at an annual average growth rate of 19.35% with publications from 2016 to 2012 alone making up 46% of the total articles available since 2000. As the two most energy-consuming economies in the world the contributions made towards the progress of PEMFC research have largely been from China and the US. From the research trend found in this investigation it is clear that the focus of the researchers in the field has largely been to improve the performance and efficiency of PEMFC and its components which is evident from dominating keywords or phrases such as ‘oxygen reduction reaction’ ‘electrocatalysis’ ‘proton exchange membrane’ ‘gas diffusion layer’ ‘water management’ ‘polybenzimidazole’ ‘durability’ and ‘bipolar plate’. We anticipate that the provision of the research themes that have emerged in the PEMFC field in the last two decades from the scientific mapping technique will guide existing and prospective researchers in the field going forward.
Uncertainty of Acceleration of a Premixed Laminar Unstable Hydrogen Flame
Sep 2021
Publication
Unstable hydrogen-air flame behavior randomities are important for industrial safety hydrogen infrastructure safety and nuclear power plant hydrogen safety problems. The paper is devoted to an experimental and theoretical study of the uncertainty in the acceleration of a premixed laminar unstable hydrogen flame. The results of experiments on spherical flame propagation in hydrogen-air mixtures with a hydrogen content of 10 to 60% are presented. The experiments were repeated up to 30 times in the same mixtures. A statistical analysis of the experimental results has been carried out. The scatter of the experimental data depending on the hydrogen content in the mixture was estimated. It was found to be between 8 to 17% for different mixtures with the same flame radius and mixture composition. Similar results were obtained using the numerical integration of the Sivashinsky equation of flame propagation.
Actual Quality Changes in Natural Resource and Gas Grid Use in Prospective Hydrogen Technology Roll-Out in the World and Russia
Oct 2023
Publication
About 95% of current hydrogen production uses technologies involving primary fossil resources. A minor part is synthesized by low-carbon and close-to-zero-carbon-footprint methods using RESs. The significant expansion of low-carbon hydrogen energy is considered to be a part of the “green transition” policies taking over in technologically leading countries. Projects of hydrogen synthesis from natural gas with carbon capture for subsequent export to European and Asian regions poor in natural resources are considered promising by fossil-rich countries. Quality changes in natural resource use and gas grids will include (1) previously developed scientific groundwork and production facilities for hydrogen energy to stimulate the use of existing natural gas grids for hydrogen energy transport projects; (2) existing infrastructure for gas filling stations in China and Russia to allow the expansion of hydrogen-fuel-cell vehicles (HFCVs) using typical “mini-plant” projects of hydrogen synthesis using methane conversion technology; (3) feasibility testing for different hydrogen synthesis plants at medium and large scales using fossil resources (primarily natural gas) water and atomic energy. The results of this study will help focus on the primary tasks for quality changes in natural resource and gas grid use. Investments made and planned in hydrogen energy are assessed.
No more items...