Saudi Arabia
Accelerating the Green Hydrogen Revolution: A Comprehensive Analysis of Technological Advancements and Policy Interventions
Apr 2024
Publication
Promoting green hydrogen has emerged as a pivotal discourse in the contemporary energy landscape driven by pressing environmental concerns and the quest for sustainable energy solutions. This paper delves into the multifaceted domain of C-Suite issues about green hydrogen encompassing both technological advancements and policy considerations. The question of whether green hydrogen is poised to become the focal point of the upcoming energy race is explored through an extensive analysis of its potential as a clean and versatile energy carrier. The transition from conventional fossil fuels to green hydrogen is considered a fundamental shift in energy paradigms with far-reaching implications for global energy markets. The paper provides a comprehensive overview of state-of-the-art green hydrogen technologies including fuel cells photocatalysts photo electrocatalysts and hydrogen panels. In tandem with technological advancements the role of policy and strategy in fostering the development of green hydrogen energy assumes paramount significance. The paper elucidates the critical interplay between government policies market dynamics and corporate strategies in shaping the green hydrogen landscape. It delves into policy mechanisms such as subsidies carbon pricing and renewable energy mandates shedding light on their potential to incentivize the production and adoption of green hydrogen. This paper offers a nuanced exploration of C-Suite issues surrounding green hydrogen painting a comprehensive picture of the technological and policy considerations that underpin its emergence as a transformative energy source. As the global community grapples with the imperatives of climate change mitigation and the pursuit of sustainable energy solutions understanding these issues becomes imperative for executives policymakers and stakeholders alike.
Energy Futures and Green Hydrogen Production: Is Saudi Arabia Trend?
May 2023
Publication
This paper explores the potential for hydrogen energy to become a future trend in Saudi Arabia energy industry. With the emergence of hydrogen as a promising clean energy source there has been growing interest and investment in this area globally. This study investigated whether the country is likely to pursue this trend given its current energy mix and policies. A study was conducted to provide an overview of the global trends and best practices in hydrogen energy adoption and investment. The outcomes of the analysis show that the country current energy mix has the potential to produce green hydrogen energy. The evaluation of its readiness and potential obstacles for hydrogen energy adoption has been drowned and there are several challenges that need to be addressed. The study outcomes also conclude with policy implications and recommendations for the country energy industry.
An Overview on the Technologies Used to Storage Hydrogen
Aug 2023
Publication
Hydrogen energy has a significant potential in mitigating the intermittency of renewable energy generation by converting the excess of renewable energy into hydrogen through many technologies. Also hydrogen is expected to be used as an energy carrier that contribute to the global decarbonization in transportation industrial and building sectors. Many technologies have been developed to store hydrogen energy. Hydrogen can be stored to be used when needed and thus synchronize generation and consumption. The current paper presents a review on the different technologies used to store hydrogen. The storage capacity advantages drawbacks and development stages of various hydrogen storage technologies were presented and compared.
Advances in Hydrogen Storage Materials: Harnessing Innovative Technology, from Machine Learning to Computational Chemistry, for Energy Storage Solutions
Mar 2024
Publication
The demand for clean and sustainable energy solutions is escalating as the global population grows and economies develop. Fossil fuels which currently dominate the energy sector contribute to greenhouse gas emissions and environmental degradation. In response to these challenges hydrogen storage technologies have emerged as a promising avenue for achieving energy sustainability. This review provides an overview of recent advancements in hydrogen storage materials and technologies emphasizing the importance of efficient storage for maximizing hydrogen’s potential. The review highlights physical storage methods such as compressed hydrogen (reaching pressures of up to 70 MPa) and material-based approaches utilizing metal hydrides and carboncontaining substances. It also explores design considerations computational chemistry high-throughput screening and machine-learning techniques employed in developing efficient hydrogen storage materials. This comprehensive analysis showcases the potential of hydrogen storage in addressing energy demands reducing greenhouse gas emissions and driving clean energy innovation.
Hydrogen Production by Solar Thermochemical Water-Splitting Cycle via a Beam Down Concentrator
May 2021
Publication
About 95% of the hydrogen presently produced is from natural gas and coal and the remaining 5% is generated as a by-product from the production of chlorine through electrolysis1 . In the hydrogen economy (Crabtree et al. 2004; Penner 2006; Marbán and Valdés-Solís 2007) hydrogen is produced entirely from renewable energy. The easiest approach to advance renewable energy production is through solar photovoltaic and electrolysis a pathway of high technology readiness level (TRL) suffering however from two downfalls. First of all electricity is already an energy carrier and transformation with a penalty into another energy carrier hydrogen is in principle flawed. The second problem is that the efficiency of commercial solar panels is relatively low. The cadmium telluride (CdTe) thin-film solar cells have a solar energy conversion efficiency of 17%. Production of hydrogen using the current best processes for water electrolysis has an efficiency of ∼70%. As here explained the concentrated solar energy may be used to produce hydrogen using thermochemical water-splitting cycles at much global higher efficiency (fuel energy to incident sun energy). This research and development (R&D) effort is therefore undertaken to increase the TRL of this approach as a viable and economical option.
An Insight into Carbon Nanomaterial-Based Photocatalytic Water Splitting for Green Hydrogen Production
Dec 2022
Publication
At present the energy shortage and environmental pollution are the burning global issues. For centuries fossil fuels have been used to meet worldwide energy demand. However thousands of tons of greenhouse gases are released into the atmosphere when fossil fuels are burned contributing to global warming. Therefore green energy must replace fossil fuels and hydrogen is a prime choice. Photocatalytic water splitting (PWS) under solar irradiation could address energy and environmental problems. In the past decade solar photocatalysts have been used to manufacture sustainable fuels. Scientists are working to synthesize a reliable affordable and light-efficient photocatalyst. Developing efficient photocatalysts for water redox reactions in suspension is a key to solar energy conversion. Semiconductor nanoparticles can be used as photocatalysts to accelerate redox reactions to generate chemical fuel or electricity. Carbon materials are substantial photocatalysts for total WS under solar irradiation due to their high activity high stability low cost easy production and structural diversity. Carbon-based materials such as graphene graphene oxide graphitic carbon nitride fullerenes carbon nanotubes and carbon quantum dots can be used as semiconductors photosensitizers cocatalysts and support materials. This review comprehensively explains how carbon-based composite materials function as photocatalytic semiconductors for hydrogen production the water-splitting mechanism and the chemistry of redox reactions. Also how heteroatom doping defects and surface functionalities etc. can influence the efficiency of carbon photocatalysts in H2 production. The challenges faced in the PWS process and future prospects are briefly discussed.
Technical, Economic, Carbon Footprint Assessment, and Prioritizing Stations for Hydrogen Production Using Wind Energy: A Case Study
Jul 2021
Publication
While Afghanistan’s power sector is almost completely dependent on fossil fuels it still cannot meet the rising power demand of this country. Deploying a combination of renewable energy systems with hydrogen production as the excess energy storage mechanism could be a sustainable long-term approach for addressing some of the energy problems of Afghanistan. Since Badakhshan is known to have a higher average wind speed than any other Afghan province in this study a technical economic and carbon footprint assessment was performed to investigate the potential for wind power and hydrogen production in this province. Wind data of four stations in Badakhshan were used for technical assessment for three heights of 10 30 and 40 m using the Weibull probability distribution function. This technical assessment was expanded by estimating the energy pattern factor probability of wind speeds greater than 5 m/s wind power density annual power output and annual hydrogen output. This was followed by an economic assessment which involved computing the Leveled Cost Of Energy (LCOE) the Leveled Cost Of Hydrogen (LCOH) and the payback period and finally an carbon footprint assessment which involved estimating the consequent CO2 reduction in two scenarios. The assessments were performed for 22 turbines manufactured by reputable companies with capacities ranging from 600 kW to 2.3 MW. The results showed that the entire Badakhshan province and especially Qal’eh-ye Panjeh and Fayazabad have excellent potentials in terms of wind energy that can be harvested for wind power and hydrogen production. Also wind power generation in this province will be highly cost-effective as the produced electricity will cost about one-third of the price of electricity supplied by the government. For better evaluation the GIS maps of wind power and hydrogen outputs were prepared using the IDW method. These maps showed that the eastern and northeastern parts of Badakhshan province have higher wind power-hydrogen production potentials. The results of ranking the stations with SWARA-EDAS hybrid MCDM methods showed that Qal’eh-ye Panjeh station was the best location to produce hydrogen from wind energy.
One-dimensional Numerical Investigation on Multi-cylinder Gasoline Engine Fueled by Micro-emulsions, CNG, and Hydrogen in Dual Fuel Mode
Aug 2022
Publication
This research work is the novel state-of-the-art technology performed on multi-cylinder SI engine fueled compressed natural gas emulsified fuel and hydrogen as dual fuel. This work predicts the overall features of performance combustion and exhaust emissions of individual fuels based on AVL Boost simulation technology. Three types of alternative fuels have been compared and analyzed. The results show that hydrogen produces 20% more brake power than CNG and 25% more power than micro-emulsion fuel at 1500 r/min which further increases the brake power of hydrogen CNG and micro-emulsions in the range of 25% 20% and 15% at higher engine speeds of 2500–4000 r/min respectively. In addition the brake-specific fuel consumption is the lowest for 100% hydrogen followed by CNG 100% and then micro-emulsions at 1500 r/min. At 2500– 5000 r/min there is a significant drop in brake-specific fuel consumption due to a lean mixture at higher engine speeds. The CO HC and NOx emissions significantly improve for hydrogen CNG and micro-emulsion fuel. Hydrogen fuel shows zero CO and HC emissions and is the main objective of this research to produce 0% carbon-based emissions with a slight increase in NOx emissions and CNG shows 30% lower CO emissions than micro-emulsions and 21.5% less hydrocarbon emissions than micro-emulsion fuel at stoichiometric air/fuel ratio.
Biohydrogen Production from Biomass Sources: Metabolic Pathways and Economic Analysis
Sep 2021
Publication
The commercialization of hydrogen as a fuel faces severe technological economic and environmental challenges. As a method to overcome these challenges microalgal biohydrogen production has become the subject of growing research interest. Microalgal biohydrogen can be produced through different metabolic routes the economic considerations of which are largely missing from recent reviews. Thus this review briefly explains the techniques and economics associated with enhancing microalgae-based biohydrogen production. The cost of producing biohydrogen has been estimated to be between $10 GJ-1 and $20 GJ−1 which is not competitive with gasoline ($0.33 GJ−1 ). Even though direct biophotolysis has a sunlight conversion efficiency of over 80% its productivity is sensitive to oxygen and sunlight availability. While the electrochemical processes produce the highest biohydrogen (>90%) fermentation and photobiological processes are more environmentally sustainable. Studies have revealed that the cost of producing biohydrogen is quite high ranging between $2.13 kg−1 and 7.24 kg−1 via direct biophotolysis $1.42kg−1 through indirect biophotolysis and between $7.54 kg−1 and 7.61 kg−1 via fermentation. Therefore low-cost hydrogen production technologies need to be developed to ensure long-term sustainability which requires the optimization of critical experimental parameters microalgal metabolic engineering and genetic modification.
Modeling Green Hydrogen Production Using Power-to-x: Saudi and German Contexts
Apr 2024
Publication
This study assesses the competitiveness of producing green hydrogen (H2) in Saudi Arabia and Germany using a power-to-carrier (P2X) model in PLEXOS for 2030 and beyond. The target amount of H2 to be produced serves as the only exogenous input allowing the model which runs on an hourly temporal resolution to endogenously optimize the electrolyzer technology (alkaline proton exchange membrane or solid oxide electrolyzer cell) the capacity of the electrolyzer to be built and the optimal carbon-free energy mix. Results suggest the overall investment needs in Saudi Arabia are approximately 25% lower than those for wind-based hydrogen production in Germany with the best-case scenario to produce 0.213 Mt of green H2 costing a net present value of $6.20 billion in Saudi Arabia compared to $8.11 billion in Germany. The findings indicate that alkaline electrolyzers dominate the production process favored for their low cost despite the higher efficiencies of other electrolyzer types. Moreover the model opts to dump excess energy rather than construct battery storage. Based on 16 scenarios the study determines a levelized cost of hydrogen of 2.34–3.08 $/kg for Saudi Arabia compared with 3.06–3.69 $/kg in Germany. Subsequently a detailed sensitivity analysis considers various discount rates for both countries. It is concluded that even when considering shipment costs from Saudi Arabia to Germany (~1 $/kg) green H2 can still be competitively delivered from Saudi Arabia to Germany.
Greenhouse Gas Emission Dynamics of Saudi Arabia: Potential of Hydrogen Fuel for Emission Footprint Reduction
Mar 2023
Publication
The growth of population gross domestic product (GDP) and urbanization have led to an increase in greenhouse gas (GHG) emissions in the Kingdom of Saudi Arabia (KSA). The leading GHG-emitting sectors are electricity generation road transportation cement chemicals refinery iron and steel. However the KSA is working to lead the global energy sustainability campaign to reach net zero GHG emissions by 2060. In addition the country is working to establish a framework for the circular carbon economy (CCE) in which hydrogen acts as a transversal facilitator. To cut down on greenhouse gas emissions the Kingdom is also building several facilities such as the NEOM green hydrogen project. The main objective of the article is to critically review the current GHG emission dynamics of the KSA including major GHG emission driving forces and prominent emission sectors. Then the role of hydrogen in GHG emission reduction will be explored. Finally the researchers and decision makers will find the helpful discussions and recommendations in deciding on appropriate mitigation measures and technologies.
Hybrid Electric Vehicle: Design and Control of a Hybrid System (Fuel Cell/Battery/Ultra-Capacitor) Supplied by Hydrogen
Apr 2019
Publication
Due to its high efficiency and reduced emissions new zero-emission hybrid electric vehicles have been selected as an attractive challenge for future transport applications. New zero -emission hybrid electric on the other hand has some major drawbacks from the complicated charging process. The hybrid electrical fuel cell system is introduced as the main source to intelligently control multi-source activities. An ultra-capacitor system is selected as the energy recovery assistance to monitor the fuel cell’s fast transient and peak power during critical periods. To regulate energy demand and supply an intelligent energy management system is proposed and tested through several constraints. The proposed approach system aims to act quickly against sudden circumstances related to hydrogen depletion in the prediction of the required fuel consumption basis. The proposed strategy tends to define the proper operating system according to energy demand and supply. The obtained results show that the designed system meets the targets set for the energy management unit by referring to an experimental velocity database.
Comparative Study of Spark-Ignited and Pre-Chamber Hydrogen-Fueled Engine: A Computational Approach
Nov 2022
Publication
Hydrogen is a promising future fuel to enable the transition of transportation sector toward carbon neutrality. The direct utilization of H2 in internal combustion engines (ICEs) faces three major challenges: high NOx emissions severe pressure rise rates and pre-ignition at mid to high loads. In this study the potential of H2 combustion in a truck-size engine operated in spark ignition (SI) and pre-chamber (PC) mode was investigated. To mitigate the high pressure rise rate with the SI configuration the effects of three primary parameters on the engine combustion performance and NOx emissions were evaluated including the compression ratio (CR) the air–fuel ratio and the spark timing. In the simulations the severity of the pressure rise was evaluated based on the maximum pressure rise rate (MPRR). Lower compression ratios were assessed as a means to mitigate the auto-ignition while enabling a wider range of engine operation. The study showed that by lowering CR from 16.5:1 to 12.5:1 an indicated thermal efficiency of 47.5% can be achieved at 9.4 bar indicated mean effective pressure (IMEP) conditions. Aiming to restrain the auto-ignition while maintaining good efficiency growth in λ was examined under different CRs. The simulated data suggested that higher CRs require a higher λ and due to practical limitations of the boosting system λ at 4.0 was set as the limit. At a fixed spark timing using a CR of 13.5 combined with λ at 3.33 resulted in an indicated thermal efficiency of 48.6%. It was found that under such lean conditions the exhaust losses were high. Thus advancing the spark time was assessed as a possible solution. The results demonstrated the advantages of advancing the spark time where an indicated thermal efficiency exceeding 50% was achieved while maintaining a very low NOx level. Finally the optimized case in the SI mode was used to investigate the effect of using the PC. For the current design of the PC the results indicated that even though the mixture is lean the flame speed of H2 is sufficiently high to burn the lean charge without using a PC. In addition the PC design used in the current work induced a high MPRR inside the PC and MC leading to an increased tendency to engine knock. The operation with PC also increased the heat transfer losses in the MC leading to lower thermal efficiency compared to the SI mode. Consequently the PC combustion mode needs further optimizations to be employed in hydrogen engine applications.
Numerical Study on Hydrogen–Gasoline Dual-Fuel Spark Ignition Engine
Nov 2022
Publication
Hydrogen as a suitable and clean energy carrier has been long considered a primary fuel or in combination with other conventional fuels such as gasoline and diesel. Since the density of hydrogen is very low in port fuel-injection configuration the engine’s volumetric efficiency reduces due to the replacement of hydrogen by intake air. Therefore hydrogen direct in-cylinder injection (injection after the intake valve closes) can be a suitable solution for hydrogen utilization in spark ignition (SI) engines. In this study the effects of hydrogen direct injection with different hydrogen energy shares (HES) on the performance and emissions characteristics of a gasoline port-injection SI engine are investigated based on reactive computational fluid dynamics. Three different injection timings of hydrogen together with five different HES are applied at low and full load on a hydrogen– gasoline dual-fuel SI engine. The results show that retarded hydrogen injection timing increases the concentration of hydrogen near the spark plug resulting in areas with higher average temperatures which led to NOX emission deterioration at −120 Crank angle degree After Top Dead Center (CAD aTDC) start of injection (SOI) compared to the other modes. At −120 CAD aTDC SOI for 50% HES the amount of NOX was 26% higher than −140 CAD aTDC SOI. In the meanwhile an advanced hydrogen injection timing formed a homogeneous mixture of hydrogen which decreased the HC and soot concentration so that −140 CAD aTDC SOI implied the lowest amount of HC and soot. Moreover with the increase in the amount of HES the concentrations of CO CO2 and soot were reduced. Having the HES by 50% at −140 CAD aTDC SOI the concentrations of particulate matter (PM) CO and CO2 were reduced by 96.3% 90% and 46% respectively. However due to more complete combustion and an elevated combustion average temperature the amount of NOX emission increased drastically.
Effect of Au Plasmonic Material on Poly M-Toluidine for Photoelectrochemical Hydrogen Generation from Sewage Water
Feb 2022
Publication
This study provides H2 gas as a renewable energy source from sewage water splitting reaction using a PMT/Au photocathode. So this study has a dual benefit for hydrogen generation; at the same time it removes the contaminations of sewage water. The preparation of the PMT is carried out through the polymerization process from an acid medium. Then the Au sputter was carried out using the sputter device under different times (1 and 2 min) for PMT/Au-1 min and PMT/Au-2min respectively. The complete analyses confirm the chemical structure such as XRD FTIR HNMR SEM and Vis-UV optical analyses. The prepared electrode PMT/Au is used for the hydrogen generation reaction using Na2S2O3 or sewage water as an electrolyte. The PMT crystalline size is 15 nm. The incident photon to current efficiency (IPCE) efficiency increases from 2.3 to 3.6% (at 390 nm) and the number of H2 moles increases from 8.4 to 33.1 mmol h−1 cm−2 for using Na2S2O3 and sewage water as electrolyte respectively. Moreover all the thermodynamic parameters such as activation energy (Ea) enthalpy (∆H*) and entropy (∆S*) were calculated; additionally a simple mechanism is mentioned for the water-splitting reaction.
Cost, Footprint, and Reliability Implications of Deploying Hydrogen in Off-grid Electric Vehicle Charging Stations: A GIS-assisted Study for Riyadh, Saudi Arabia
Jul 2022
Publication
For the first time we quantify cost footprint and reliability implications of deploying hydrogen-based generation in off-grid electric vehicle charging stations (CS) using an optimization model coupled with a geographic information system (GIS) analysis for the city of Riyadh Saudi Arabia. We also account for the challenges associated with wind energy deployment as a candidate generation technology within city centers. The analysis was restricted to carbon-free technologies: photovoltaics (PV) wind battery and hydrogen fuel-cells. At current prevailing technology costs hydrogen can reduce the required footprint of off-grid CSs by 25% at a small incremental cost increase without impacting the charging reliability. By 2030 however hydrogen will simultaneously provide the footprint and cost advantages. If we allow as little as 5% of the annual load to be unmet the required footprint of the CS decreases by 60%. The levelized cost of energy values for the CS by 2030 can range between 0.13 and 0.20 $/kWh depending on learning-curve assumptions. The footprints calculated are then mapped to five land parcel categories in Riyadh: gas station hospital mall school and university. Incorporating hydrogen in CS design increases the number of parcels that could accommodate CSs by 15e45% via reducing the required PV array (i.e. footprint).
Solid Air Hydrogen Liquefaction, the Missing Link of the Hydrogen Economy
Mar 2023
Publication
The most challenging aspect of developing a green hydrogen economy is long-distance oceanic transportation. Hydrogen liquefaction is a transportation alternative. However the cost and energy consumption for liquefaction is currently prohibitively high creating a major barrier to hydrogen supply chains. This paper proposes using solid nitrogen or oxygen as a medium for recycling cold energy across the hydrogen liquefaction supply chain. When a liquid hydrogen (LH2) carrier reaches its destination the regasification process of the hydrogen produces solid nitrogen or oxygen. The solid nitrogen or oxygen is then transported in the LH2 carrier back to the hydrogen liquefaction facility and used to reduce the energy consumption cooling gaseous hydrogen. As a result the energy required to liquefy hydrogen can be reduced by 25.4% using N2 and 27.3% using O2. Solid air hydrogen liquefaction (SAHL) can be the missing link for implementing a global hydrogen economy.
Environmental Assessment of Hydrogen Utilization in Various Applications and Alternative Renewable Sources for Hydrogen Production: A Review
May 2023
Publication
Rapid industrialization is consuming too much energy and non-renewable energy resources are currently supplying the world’s majority of energy requirements. As a result the global energy mix is being pushed towards renewable and sustainable energy sources by the world’s future energy plan and climate change. Thus hydrogen has been suggested as a potential energy source for sustainable development. Currently the production of hydrogen from fossil fuels is dominant in the world and its utilization is increasing daily. As discussed in the paper a large amount of hydrogen is used in rocket engines oil refining ammonia production and many other processes. This paper also analyzes the environmental impacts of hydrogen utilization in various applications such as iron and steel production rocket engines ammonia production and hydrogenation. It is predicted that all of our fossil fuels will run out soon if we continue to consume them at our current pace of consumption. Hydrogen is only ecologically friendly when it is produced from renewable energy. Therefore a transition towards hydrogen production from renewable energy resources such as solar geothermal and wind is necessary. However many things need to be achieved before we can transition from a fossil-fuel-driven economy to one based on renewable energy
An Analysis of Hybrid Renewable Energy-Based Hydrogen Production and Power Supply for Off-Grid Systems
Jun 2024
Publication
Utilizing renewable energy sources to produce hydrogen is essential for promoting cleaner production and improving power utilization especially considering the growing use of fossil fuels and their impact on the environment. Selecting the most efficient method for distributing power and capacity is a critical issue when developing hybrid systems from scratch. The main objective of this study is to determine how a backup system affects the performance of a microgrid system. The study focuses on power and hydrogen production using renewable energy resources particularly solar and wind. Based on photovoltaics (PVs) wind turbines (WTs) and their combinations including battery storage systems (BSSs) and hydrogen technologies two renewable energy systems were examined. The proposed location for this study is the northwestern coast of Saudi Arabia (KSA). To simulate the optimal size of system components and determine their cost-effective configuration the study utilized the Hybrid Optimization Model for Multiple Energy Resources (HOMER) software (Version 3.16.2). The results showed that when considering the minimum cost of energy (COE) the integration of WTs PVs a battery bank an electrolyzer and a hydrogen tank brought the cost of energy to almost 0.60 USD/kWh in the system A. However without a battery bank the COE increased to 0.72 USD/kWh in the same location because of the capital cost of system components. In addition the results showed that the operational life of the fuel cell decreased significantly in system B due to the high hours of operation which will add additional costs. These results imply that long-term energy storage in off-grid energy systems can be economically benefited by using hydrogen with a backup system.
Investigating the Impact of Economic Uncertainty on Optimal Sizing of Grid-Independent Hybrid Renewable Energy Systems
Aug 2021
Publication
One of the many barriers to decarbonization and decentralization of the energy sector in developing countries is the economic uncertainty. As such this study scrutinizes economics of three grid-independent hybrid renewable-based systems proposed to co-generate electricity and heat for a small-scale load. Accordingly the under-study systems are simulated and optimized with the aid of HOMER Pro software. Here a 20-year average value of discount and inflation rates is deemed a benchmark case. The techno-economic-environmental and reliability results suggest a standalone solar/wind/electrolyzer/hydrogen-based fuel cell integrated with a hydrogen-based boiler system is the best alternative. Moreover to ascertain the impact of economic uncertainty on optimal unit sizing of the nominated model the fluctuations of the nominal discount rate and inflation respectively constitute within the range of 15–20% and 10–26%. The findings of economic uncertainty analysis imply that total net present cost (TNPC) fluctuates around the benchmark value symmetrically between $478704 and $814905. Levelized energy cost varies from an amount 69% less than the benchmark value up to two-fold of that. Furthermore photovoltaic (PV) optimal size starts from a value 23% less than the benchmark case and rises up to 55% more. The corresponding figures for wind turbine (WT) are respectively 21% and 29%. Eventually several practical policies are introduced to cope with economic uncertainty.
Optimal Design and Sizing of Hybrid Photovoltaic/Fuel Cell Electrical Power System
Aug 2023
Publication
Renewable energy solutions play a crucial role in addressing the growing energy demands while mitigating environmental concerns. This study examines the techno-economic viability and sensitivity of utilizing solar photovoltaic/polymer electrolyte membrane (PEM) fuel cells (FCs) to meet specific power demands in NEOM Saudi Arabia. The novelty of this study lies in its innovative approach to analyzing and optimizing PV/PEMFC systems aiming to highlight their economic feasibility and promote sustainable development in the region. The analysis focuses on determining the optimal size of the PV/PEMFC system based on two critical criteria: minimum cost of energy (COE) and minimum net present cost (NPC). The study considers PEMFCs with power ratings of 30 kW 40 kW and 50 kW along with four PV panel options: Jinko Solar Powerwave Tindo Karra and Trina Solar. The outcomes show that the 30 kW PEMFC and the 201 kW Trina Solar TSM-430NEG9R.28 are the most favorable choices for the case study. Under these optimal conditions the study reveals the lowest values for NPC at USD 703194 and COE at USD 0.498 per kilowatt-hour. The levelized cost of hydrogen falls within the range of USD 15.9 to 23.4 per kilogram. Furthermore replacing the 30 kW Trina solar panel with a 50 kW Tindo PV module results in a cost reduction of 32%. The findings emphasize the criticality of choosing optimal system configurations to attain favorable economic outcomes thereby facilitating the adoption and utilization of renewable energy sources in the region. In conclusion this study stands out for its pioneering and thorough analysis and optimization of PV/PEMFC systems providing valuable insights for sustainable energy planning in NEOM Saudi Arabia.
Optimal Parameter Determination of Membrane Bioreactor to Boost Biohydrogen Production-Based Integration of ANFIS Modeling and Honey Badger Algorithm
Jan 2023
Publication
Hydrogen is a new promising energy source. Three operating parameters including inlet gas flow rate pH and impeller speed mainly determine the biohydrogen production from membrane bioreactor. The work aims to boost biohydrogen production by determining the optimal values of the control parameters. The proposed methodology contains two parts: modeling and parameter estimation. A robust ANIFS model to simulate a membrane bioreactor has been constructed for the modeling stage. Compared with RMS thanks to ANFIS the RMSE decreased from 2.89 using ANOVA to 0.0183 using ANFIS. Capturing the proper correlation between the inputs and output of the membrane bioreactor process system encourages the constructed ANFIS model to predict the output performance exactly. Then the optimal operating parameters were identified using the honey badger algorithm. During the optimization process inlet gas flow rate pH and impeller speed are used as decision variables whereas the biohydrogen production is the objective function required to be maximum. The integration between ANFIS and HBA boosted the hydrogen production yield from 23.8 L to 25.52 L increasing by 7.22%.
Performance, Emissions, and Combustion Characteristics of a Hydrogen-Fueled Spark-Ignited Engine at Different Compression Ratios: Experimental and Numerical Investigation
Jul 2023
Publication
This paper investigates the performance of hydrogen-fueled spark-ignited single-cylinder Cooperative Fuel Research using experimental and numerical approaches. This study examines the effect of the air–fuel ratio on engine performance emissions and knock behaviour across different compression ratios. The results indicate that λ significantly affects both engine performance and emissions with a λ value of 2 yielding the highest efficiency and lowest emissions for all the tested compression ratios. Combustion analysis reveals normal combustion at λ ≥ 2 while knocking combustion occurs at λ < 2 irrespective of the tested compression ratios. The Livenwood–Wu integral approach was evaluated to assess the likelihood of end-gas autoignition based on fuel reactivity demonstrating that both normal and knocking combustion possibilities are consistent with experimental investigations. Combustion analysis at the ignition timing for maximum brake torque conditions demonstrates knock-free stable combustion up to λ = 3 with increased end-gas autoignition at lower λ values. To achieve knock-free combustion at those low λs the spark timings are significantly retarded to after top dead center crank angle position. Engine-out NOx emissions consistently increase in trend with a decrease in the air–fuel ratio of up to λ = 3 after which a distinct variation in NOx is observed with an increase in the compression ratio.
Hydrogen Combustion, Production, and Applications: A Review
May 2024
Publication
The demand for fossil fuels is rising rapidly leading to increased greenhouse gas emissions. Hydrogen has emerged as a promising clean energy alternative that could help meet future demands way sustainably especially if produced using renewable methods. For hydrogen to meaningfully contribute to energy transitions it needs more integration into sectors like transportation buildings and power that currently have minimal hydrogen usage. This requires developing extensive cross-sector hydrogen infrastructure. This review examines hydrogen combustion as a fuel by exploring and comparing production techniques enriching ammonia with hydrogen as a CO2-free option and hydrogen applications in engines. Additionally a techno-economic environmental risk analysis is discussed. Results showed steam methane reforming is the most established and cost-effective production method at $1.3–1.5/kg H2 and 70–85% efficiency but generates CO2. Biomass gasification costs $1.25–2.20/kg H2 and pyrolysis $1.77–2.05/kg H2 offering renewable options. However bio-photolysis currently has high costs of $1.42–2.13/kg H2 due to low conversion rates requiring large reactors. Blending H2/NH3 could enable carbon-free combustion aiding carbon neutrality pursuits but minimizing resultant NOx is crucial. Hydrogen’s wide uses from transportation to power underline its potential as a transformational energy carrier.
Optimal Design for a Hybrid Microgrid-hydrogen Storage Facility in Saudi Arabia
May 2022
Publication
Background: Sustainable development requires access to afordable reliable and efcient energy to lift billions of people out of poverty and improve their standard of living. The development of new and renewable forms of energy that emit less CO2 may not materialize quickly enough or at a price point that allows people to attain the standard of living they desire and deserve. As a result a parallel path to sustainability must be developed that uses both renewable and clean carbon-based methods. Hybrid microgrids are promoted to solve various electrical and energy-related issues that incorporate renewable energy sources such as photovoltaics wind diesel generation or a combination of these sources. Utilizing microgrids in electric power generation has several benefts including clean energy increased grid stability and reduced congestion. Despite these advantages microgrids are not frequently deployed because of economic concerns. To address these fnancial concerns it is necessary to explore the ideal confguration of micro-grids based on the quantity quality and availability of sustainable energy sources used to install the microgrid and the optimal design of microgrid components. These considerations are refected in net present value and levelized energy cost. Methods: HOMER was used to simulate numerous system confgurations and select the most feasible solution according to the net present value levelizied cost of energy and hydrogen operating cost and renewable fraction. HOMER performed a repeated algorithm process to determine the most feasible system configuration and parameters with the least economic costs and highest benefits to achieve a practically feasible system configuration. Results: This article aimed to construct a cost-effective microgrid system for Saudi Arabia’s Yanbu city using five configurations using excess energy to generate hydrogen. The obtained results indicate that the optimal configuration for the specified area is a hybrid photovoltaic/wind/battery/generator/fuel cell/hydrogen electrolyzer microgrid with a net present value and levelized energy cost of $10.6 billion and $0.15/kWh. Conclusion: With solar photovoltaic and wind generation costs declining building electrolyzers in locations with excellent renewable resource conditions such as Saudi Arabia could become a low-cost hydrogen supply option even when accounting for the transmission and distribution costs of transporting hydrogen from renewable resource locations to end-users. The optimum confguration can generate up to 32132 tons of hydrogen per year (tH2/year) and 380824 tons per year of CO2 emissions can be avoided.
Hydrogen Refueling Stations Powered by Hybrid PV/Wind Renewable Energy Systems: Techno-socio-economic Assessment
Mar 2024
Publication
Hydrogen is considered as an attractive alternative to fossil fuels in the transportation sector. However the penetration of Fuel Cell Electric Vehicles (FCEV) is hindered by the lack of hydrogen refueling station infrastructures. In this study the feasibility of a hybrid PV/wind system for hydrogen refueling station is investigated. Refueling events data is collected in different locations including industrial residential highway and tourist areas. Station Occupancy Fractions (SOF) and Social-to-Solar Fraction (STSF) indicators are developed to assess the level of synchronization between the hydrogen demand and solar potential. Then a validated computer code is used to optimize the renewable system components for off/on-grid cases based on minimizing the Net Present Cost (NPC) and the Loss of Hydrogen Supply Probability (LHSP). For off grid cases the results show that STSF attains maximum value in the industrial area where 0.62 fraction of refueling events occur during the sunshine hours and minimum NPC is achieved. It is observed that when STSF attains lower values of 0.52 0.41 and 0.38 for residential highway and tourist areas NPC increases by 8 16 and 31% respectively. This is associated with lower level of coordination between the hydrogen demand and solar potential. The same conclusion can be stated for the on-grid cases. Therefore for green hydrogen production via solar energy utilization it is recommended that a tariff should be applied to encourage refueling hydrogen vehicles during the availability of solar radiation while reducing the environmental impact storage requirements and eventually the cost of hydrogen production.
Palladium-alloy Membrane Reactors for Fuel Reforming and Hydrogen Production: Hydrogen Production Modelling
Jul 2023
Publication
Endeavors have recently been concentrated on minimizing the dependency on fossil fuels in order to mitigate the ever-increasing problem of greenhouse gas (GHG) emissions. Hydrogen energy is regarded as an alternative to fossil fuels due to its cleaner emission attributes. Reforming of hydrocarbon fuels is amongst the most popular and widely used methods for hydrogen production. Hydrogen produced from reforming processes requires additional processes to separate from the reformed gases. In some cases further purification of hydrogen has to be carried out to use the hydrogen in power generation applications. Metallic membranes especially palladium (Pd)-based ones have demonstrated sustainable hydrogen separation potential with around 99.99% hydrogen purity. Comprehensive and critical research investigations must be performed to optimize membrane-assisted reforming as well as to maximize the production of hydrogen. The computational fluid dynamic (CFD) can be an excellent tool to analyze and visualize the flow/reaction/permeation mechanisms at a lower cost in contrast with the experiments. In order to provide the necessary background knowledge on membrane reactor modeling this study reviews summarizes and analyses the kinetics of different fuel reforming processes equations to determine hydrogen permeation and lastly various geometry and operating condition adopted in the literature associated with membrane-reactor modeling works. It is indicated that hydrogen permeation through Pd-membranes depends highly on the difference in hydrogen pressure. It is found that hydrogen permeation can be improved by employing different pressure configuration introducing sweep flow on the permeate side of the membrane reducing retentate side flow rate and increasing the temperature.
Techno-Economic Analysis of Combined Production of Wind Energy and Green Hydrogen on the Northern Coast of Mauritania
Sep 2024
Publication
Green hydrogen is becoming increasingly popular with academics institutions and governments concentrating on its development efficiency improvement and cost reduction. The objective of the Ministry of Petroleum Mines and Energy is to achieve a 35% proportion of renewable energy in the overall energy composition by the year 2030 followed by a 50% commitment by 2050. This goal will be achieved through the implementation of feed-in tariffs and the integration of independent power generators. The present study focused on the economic feasibility of green hydrogen and its production process utilizing renewable energy resources on the northern coast of Mauritania. The current investigation also explored the wind potential along the northern coast of Mauritania spanning over 600 km between Nouakchott and Nouadhibou. Wind data from masts Lidar stations and satellites at 10 and 80 m heights from 2022 to 2023 were used to assess wind characteristics and evaluate five turbine types for local conditions. A comprehensive techno-economic analysis was carried out at five specific sites encompassing the measures of levelized cost of electricity (LCOE) and levelized cost of green hydrogen (LCOGH) as well as sensitivity analysis and economic performance indicators. The results showed an annual average wind speed of 7.6 m/s in Nouakchott to 9.8 m/s in Nouadhibou at 80 m. The GOLDWIND 3.0 MW model showed the highest capacity factor of 50.81% due to its low cut-in speed of 2.5 m/s and its rated wind speed of 10.5 to 11 m/s. The NORDEX 4 MW model forecasted an annual production of 21.97 GWh in Nouadhibou and 19.23 GWh in Boulanoir with the LCOE ranging from USD 5.69 to 6.51 cents/kWh below the local electricity tariff and an LCOGH of USD 1.85 to 2.11 US/kg H2 . Multiple economic indicators confirmed the feasibility of wind energy and green hydrogen projects in assessed sites. These results boosted the confidence of the techno-economic model highlighting the resilience of future investments in these sustainable energy infrastructures. Mauritania’s north coast has potential for wind energy aiding green hydrogen production for energy goals.
Evaluation of Green and Blue Hydrogen Production Potential in Saudi Arabia
Sep 2024
Publication
The Kingdom of Saudi Arabia has rich renewable energy resources specifically wind and solar in addition to geothermal beside massive natural gas reserves. This paper investigates the potential of both green and blue hydrogen production for five selected cities in Saudi Arabia. To accomplish the said objective a techno-economic model is formulated. Four renewable energy scenarios are evaluated for a total of 1.9 GW installed capacity to reveal the best scenario of Green Hydrogen Production (GHP) in each city. Also Blue Hydrogen Production (BHP) is investigated for three cases of Steam Methane Reforming (SMR) with different percentages of carbon capture. The economic analysis for both GHP and BHP is performed by calculating the Levelized Cost of Hydrogen (LCOH) and cash flow. The LCOH for GHP range for all cities ($3.27/kg -$12.17/kg)) with the lowest LCOH is found for NEOM city (50% PV and 50% wind) ($3.27/kg). LCOH for BHP are $0.534/kg $0.647/kg and $0.897/kg for SMR wo CCS/U SMR 55% CCS/U and SMR 90% CCS/U respectively.
Sustainable Green Energy Transition in Saudia Arabia: Characterizing Policy Framework, Interrelations and Future Research Directions
Jun 2024
Publication
By 2060 the Kingdom of Saudi Arabia (KSA) aims to achieve net zero greenhouse gas (GHG) emissions targeting 50% renewable energy and reducing 278 million tonnes of CO2 equivalent annually by 2030 under Vision 2030. This ambitious roadmap focuses on economic diversification global engagement and enhanced quality of life. The electricity sector with a 90 GW installed capacity as of 2020 is central to decarbonization aiming for a 55% reduction in emissions by 2030. Saudi Energy Efficiency Centre’s Energy Efficiency Action Plan aims to reduce power intensity by 30% by 2030 while the NEOM project showcases a 4 GW green hydrogen facility reflecting the country’s commitments to sustainability and technological innovation. Despite being the largest oil producer and user Saudi Arabia must align with international CO2 emission reduction targets. Currently there is no state-of-the-art energy policy framework to guide a sustainable energy transition. In the academic literature there is also lack of effort in developing comprehensive energy policy framework. This study provides a thorough and comprehensive analysis of the entire energy industry spanning from the stage of production to consumption incorporating sustainability factors into the wider discussion on energy policy. It establishes a conceptual framework for the energy policy of Saudi Arabia that corresponds with Vision 2030. A total of hundred documents (e.g. 25 original articles and 75 industry reports) were retrieved from Google Scholar Web of Science Core Collection Database and Google Search and then analyzed. Results showed that for advancing the green energy transition areas such as strategies for regional and cross-sectoral collaboration adoption of international models human capital development and public engagement technological innovation and research; and resource conservation environmental protection and climate change should move forward exclusively from an energy policy perspective. This article's main contribution is developing a comprehensive and conceptual policy framework for Saudi Arabia's sustainable green energy transition aligned with Vision 2030. The framework integrates social economic and environmental criteria and provides critical policy implications and research directions for advancing energy policy and sustainable practices in the country.
Towards a Sustainable Future: Bio-hydrogen Production from Food Waste for Clean Energy Generation
Jan 2024
Publication
To address climate change energy security and waste management new sustainable energy sources must be developed. This study uses Aspen Plus software to extract bio-H2 from food waste with the goal of efficiency and environmental sustainability. Anaerobic digestion optimised to operate at 20-25°C and keep ammonia at 3% greatly boosted biogas production. The solvent [Emim][FAP] which is based on imidazolium had excellent performance in purifying biogas. It achieved a high level of methane purity while consuming a minimal amount of energy with a solvent flow rate of 13.415 m³/h. Moreover the utilization of higher temperatures (600-700°C) during the bio-H2 generation phase significantly enhanced both the amount and quality of hydrogen produced. Parametric and sensitivity assessments were methodically performed at every stage. This integrated method was practicable and environmentally friendly according to the economic assessment. H2 generation using steam reforming results in a TCC of 1.92×106 USD. The CO2 separation step has higher costs (TCC of 2.15×107 USD) due to ionic liquid washing and CO2 liquefaction. Compressor electricity consumption significantly impacts total operating cost (TOC) totaling 4.73×108 USD. showing its ability to reduce greenhouse gas emissions optimize resource utilization and promote energy sustainability. This study presents a sustainable energy solution that addresses climate and waste challenges.
Innovative Hybrid Energy Storage Systems with Sustainable Integration of Green Hydrogen and Energy Management Solutions for Standalone PV Microgrids Based on Reduced Fractional Gradient Descent Algorithm
Oct 2024
Publication
This paper investigates innovative solutions to enhance the performance and lifespan of standalone photovoltaic (PV)-based microgrids with a particular emphasis on off-grid communities. A major challenge in these systems is the limited lifespan of batteries. To overcome this issue researchers have created hybrid energy storage systems (HESS) along with advanced power management strategies. This study introduces innovative multi-level HESS approaches and a related energy management strategy designed to alleviate the charge/discharge stress on batteries. Comprehensive Matlab Simulink models of various HESS topologies within standalone PV microgrids are utilized to evaluate system performance under diverse weather conditions and load profiles for rural site. The findings reveal that the proposed HESS significantly extends battery life expectancy compared to existing solutions. Furthermore the paper presents a novel energy management strategy based on the Reduced Fractional Gradient Descent (RFGD) algorithm optimization tailored for hybrid systems that include photovoltaic fuel cell battery and supercapacitor components. This strategy aims to minimize hydrogen consumption of Fuel Cells (FCs) thereby supporting the production of green ammonia for local industrial use. The RFGD algorithm is selected for its minimal user-defined parameters and high convergence efficiency. The proposed method is compared with other algorithms such as the Lyrebird Optimization Algorithm (LOA) and Osprey Optimization Algorithm (OOA). The RFGD algorithm exhibits superior accuracy in optimizing energy management achieving a 15% reduction in hydrogen consumption. Its efficiency is evident from the reduced computational time compared to conventional algorithms. Although minor losses in computational resources were observed they were substantially lower than those associated with traditional optimization techniques. Overall the RFGD algorithm offers a robust and efficient solution for enhancing the performance of hybrid energy systems.
Optimizing Maritime Energy Efficiency: A Machine Learning Approach Using Deep Reinforcement Learning for EEXI and CII Compliance
Nov 2024
Publication
The International Maritime Organization (IMO) has set stringent regulations to reduce the carbon footprint of maritime transport using metrics such as the Energy Efficiency Existing Ship Index (EEXI) and Carbon Intensity Indicator (CII) to track progress. This study introduces a novel approach using deep reinforcement learning (DRL) to optimize energy efficiency across five types of vessels: cruise ships car carriers oil tankers bulk carriers and container ships under six different operational scenarios such as varying cargo loads and weather conditions. Traditional fuels like marine gas oil (MGO) and intermediate fuel oil (IFO) challenge compliance with these standards unless engine power restrictions are applied. This approach combines DRL with alternative fuels—bio-LNG and hydrogen—to address these challenges. The DRL algorithm which dynamically adjusts engine parameters demonstrated substantial improvements in optimizing fuel consumption and performance. Results revealed that while using DRL fuel efficiency increased by up to 10% while EEXI values decreased by 8% to 15% and CII ratings improved by 10% to 30% across different scenarios. Specifically under heavy cargo loads the DRL-optimized system achieved a fuel efficiency of 7.2 nmi/ton compared to 6.5 nmi/ton with traditional methods and reduced the EEXI value from 4.2 to 3.86. Additionally the DRL approach consistently outperformed traditional optimization methods demonstrating superior efficiency and lower emissions across all tested scenarios. This study highlights the potential of DRL in advancing maritime energy efficiency and suggests that further research could explore DRL applications to other vessel types and alternative fuels integrating additional machine learning techniques to enhance optimization.
Sixteen Percent Solar-to-Hydrogen Efficiency Using a Power-Matched Alkaline Electrolyzer and a High Concentrated Solar Cell: Effect of Operating Parameters
Apr 2020
Publication
The effect of electrode area electrolyte concentration temperature andlight intensity (up to 218 sun) on PV electrolysis of water is studied using a highconcentrated triple-junction (3-J) photovoltaic cell (PV) connected directly to analkaline membrane electrolyzer (EC). For a given current the voltage requirement torun an electrolyzer increases with a decrease in electrode sizes (4.5 2.0 0.5 and 0.25cm2) due to high current densities. The high current density operation leads to highOhmic losses most probably due to the concentration gradient and bubble formation.The EC operating parameters including the electrolyte concentration and temperaturereduce the voltage requirement by improving the thermodynamics kinetics andtransport properties of the overall electrolysis process. For a direct PV−EC coupling themaximum power point of PV (Pmax) is matched using EC I−V (current−voltage) curvesmeasured for different electrode sizes. A shift in the EC I−V curves toward open-circuitvoltage (Voc) reduces the Pop (operating power) to hydrogen efficiencies due to theincreased voltage losses above the equilibrium water-splitting potential. The solar-to-hydrogen (STH) efficiencies remainedcomparable (∼16%) for all electrode sizes when the operating current (Iop) was similar to the short-circuit current (Isc ) irrespectiveof the operating voltage (Vop) electrolyzer temperature and electrolyte concentration.
Simulation and Modelling of Hydrogen Production from Waste Plastics: Technoeconomic Analysis
May 2022
Publication
The global energy demand is expected to increase by 30% within the next two decades. Plastic thermochemical recycling is a potential alternative to meet this tremendous demand because of its availability and high heating value. Polypropylene (PP) and polyethylene (PE) are considered in this study because of their substantial worldwide availability in the category of plastic wastes. Two cases were modeled to produce hydrogen from the waste plastics using Aspen Plus®. Case 1 is the base design containing three main processes (plastic gasification syngas conversion and acid gas removal) where the results were validated with the literature. On the other hand case 2 integrates the plastic gasification with steam methane reforming (SMR) to enhance the overall hydrogen production. The two cases were then analyzed in terms of syngas heating values hydrogen production rates energy efficiency greenhouse gas emissions and process economics. The results reveal that case 2 produces 5.6% more hydrogen than case 1. The overall process efficiency was enhanced by 4.13%. Case 2 reduces the CO2 specific emissions by 4.0% and lowers the hydrogen production cost by 29%. This substantial reduction in the H2 production cost confirms the dominance of the integrated model over the standalone plastic gasification model.
Decision Support System for Sustainable Hydrogen Production: Case Study of Saudi Arabia
Nov 2024
Publication
The global energy sector is undergoing a transition towards sustainable sources with hydrogen emerging as a promising alternative due to its high energy content and clean-burning properties. The integration of hydrogen into the energy landscape represents a significant advancement towards a cleaner greener future. This paper introduces an innovative decision support system (DSS) that combines multi-criteria decision-making (MCDM) and decision tree methodologies to optimize hydrogen production decisions in emerging economies using Saudi Arabia as a case study. The proposed DSS developed using MATLAB Web App Designer tools evaluates various scenarios related to demand and supply cost and profit margins policy implications and environmental impacts with the goal of balancing economic viability and ecological responsibility. The study's findings highlight the potential of this DSS to guide policymakers and industry stakeholders in making informed scalable and flexible hydrogen production decisions that align with sustainable development goals. The novel DSS framework integrates two key influencing factors technical and logistical by considering components such as data management modeling analysis and decision-making. The analysis component employs statistical and economic methods to model and assess the costs and benefits of eleven strategic scenarios while the decision-making component uses these results to determine the most effective strategies for implementing hydrogen production to minimize risks and uncertainties.
A Perspective on Emerging Energy Policy and Economic Research Agenda for Enabling Aviation Climate Action
Sep 2024
Publication
Due to the aviation energy sector's increasing contribution to climate change and the impact of climate change on the aviation sector determining key energy policy and economic research priorities for enabling an effective and equitable aviation climate action is becoming an increasingly important topic. In this perspective we address this research need using a four-pronged methodology. It includes (i) identifying topical matters highlighted in the media (news); (ii) formulating novel and feasible policy and economic research challenges that pertain to these contemporary issues; (iii) cross-referencing the proposed research challenges with academic literature to confirm their novelty and refining them as necessary; and (iv) validating the importance novelty and feasibility of these research challenges through consultation with a diverse group of aviation experts in fuel policy technology and infrastructure fields. Our results highlight twelve main themes. Among these the top emerging policy and economic research challenges as prioritized by expert input are – (i) frameworks for equitable responsibility allocation between developed and developing country airlines for future emissions; (ii) cost analysis of airlines' net-zero by 2050 commitments; (iii) effectiveness and opportunity cost of airlines investing in offsetting relative to reduction measures; (iv) EU aviation policies' historical and potential effects on airfares demand emissions EU air carriers' competitiveness passenger traffic through EU hubs regional economies and social climate funds' ability to mitigate distributional effects of EU aviation policies. These identified priorities can steer both industry and academic research toward creating practical recommendations for policymakers and industry participants. When it comes to future research the ever-changing nature of the challenges in achieving aviation climate action means that our findings might need regular updates.
Enhancing the Risk-oriented Participation of Wind Power Plants in Day-ahead Balancing, and Hydrogen Markets with Shared Multi-energy Storage Systems
Dec 2024
Publication
The increasing demand for renewable energy sources (RES) to address environmental concerns and reduce fossil fuel dependency highlights the need for efficient energy storage and balancing mechanisms to manage RES output uncertainty. However providing dedicated storage units to RES owners is often infeasible. Additionally the growing interest in hydrogen utilization complicates optimal decision-making for multi-energy systems. To tackle these challenges this paper presents a novel bidding strategy enabling wind farms to participate in dayahead balancing and hydrogen markets through shared multi-energy storage (SMES) systems. These SMES which include both battery and hydrogen storage offer a cost-effective solution by allowing RES owners to rent storage capacity. By optimizing SMES utilization and wind farm management we propose an integrated strategy for day-ahead electrical and real-time balancing markets and also hydrogen markets. The approach incorporates with uncertainties of wind generation bidding by using conditional value at risk (CVaR) to account for different risk-aversion levels. The Dantzig–Wolfe Decomposition (DWD) method is applied to decentralize the problem reduce the calculation burden and enhance the data privacy. The framework is modeled as a mixed-integer linear program (MILP) and solved using CPLEX solver via GAMS software. The results demonstrate the effectiveness of this strategy offering insights into the risk-oriented market participation of wind power plants with the aid of SMES system supporting a more sustainable and resilient energy system. The numerical results show that by utilizing a SMES with only batteries the revenue can be increased by 17.3% and equipping the SMES with hydrogen storage and participating in both markets leads to 36.9% increment in the revenue of the wind power plant.
The Evolution of Green Hydrogen in Renewable Energy Research: Insights from a Bibliometric Perspective
Dec 2024
Publication
Green hydrogen generated from water through renewable energies like solar and wind is a key player in sus tainable energy. It only produces water when used making it a clean energy source. However the inconsistent nature of solar and wind energy highlights the need for storage solutions where green hydrogen is promising. This study uniquely combines green hydrogen (GH) and renewable energy (RE) domains using a comprehensive bibliometric approach covering 2018–2022. It identifies emerging trends collaboration networks and key contributors that shape the global landscape of GH research. Our findings show a significant yearly growth in this research field averaging 93.56 %. The study also identifies China Germany India and Italy as leaders among 76 countries involved in this area. Research trends have shifted from technical details to social and economic factors. Given the increasing global commitment to achieving carbon neutrality understanding the evolution and integration of GH within RE systems is essential for guiding future research policy-making and technology development. The analysis categorizes the research into seven main themes focusing on green hydrogen’s role in energy transition and storage. Other vital topics include improving hydrogen production methods assessing its climate impact examining its environmental benefits and exploring various production techniques like water electrolysis and photocatalysis. Our analysis reveals a 93.56 % annual growth rate in GH research highlighting key challenges in storage integration and policy development and offering a roadmap for future studies. The study highlights areas needing more exploration such as better storage methods integration with existing energy infrastructures risk management and policy development. The advancement of green hydrogen as a sustainable energy solution depends on innovative research international collaboration and supportive policy frameworks.
Challenges and Opportunities in Green Hydrogen Adoption for Decarbonizing Hard-to-Abate Industries: A Comprehensive Review
Feb 2024
Publication
The decarbonization of hard-to-abate industries is crucial for keeping global warming to below 2◦C. Green or renewable hydrogen synthesized through water electrolysis has emerged as a sustainable alternative for fossil fuels in energy-intensive sectors such as aluminum cement chemicals steel and transportation. However the scalability of green hydrogen production faces challenges including infrastructure gaps energy losses excessive power consumption and high costs throughout the value chain. Therefore this study analyzes the challenges within the green hydrogen value chain focusing on the development of nascent technologies. Presenting a comprehensive synthesis of contemporary knowledge this study assesses the potential impacts of green hydrogen on hard-to-abate sectors emphasizing the expansion of clean energy infrastructure. Through an exploration of emerging renewable hydrogen technologies the study investigates aspects such as economic feasibility sustainability assessments and the achievement of carbon neutrality. Additionally considerations extend to the potential for large-scale renewable electricity storage and the realization of net-zero goals. The findings of this study suggest that emerging technologies have the potential to significantly increase green hydrogen production offering affordable solutions for decarbonization. The study affirms that global-scale green hydrogen production could satisfy up to 24% of global energy needs by 2050 resulting in the abatement of 60 gigatons of greenhouse gas (GHG) emissions - equivalent to 6% of total cumulative CO2 emission reductions. To comprehensively evaluate the impact of the hydrogen economy on ecosystem decarbonization this article analyzes the feasibility of three business models that emphasize choices for green hydrogen production and delivery. Finally the study proposes potential directions for future research on hydrogen valleys aiming to foster interconnected hydrogen ecosystems.
Status and Perspectives of Key Materials for PEM Electrolyzer
Sep 2024
Publication
Proton exchange membrane water electrolyzer (PEMWE) represents a promising technology for the sustainable production of hydrogen which is capable of efficiently coupling to intermittent electricity from renewable energy sources (e.g. solar and wind). The technology with compact stack structure has many notable advantages including large current density high hydrogen purity and great conversion efficiency. However the use of expensive electrocatalysts and construction materials leads to high hydrogen production costs and limited application. In this review recent advances made in key materials of PEMWE are summarized. First we present a brief overview about the basic principles thermodynamics and reaction kinetics of PEMWE. We then describe the cell components of PEMWE and their respective functions as well as discuss the research status of key materials such as membrane electrocatalysts membrane electrode assemblies gas diffusion layer and bipolar plate. We also attempt to clarify the degradation mechanisms of PEMWE under a real operating environment including catalyst degradation membrane degradation bipolar plate degradation and gas diffusion layer degradation. We finally propose several future directions for developing PEMWE through devoting more efforts to the key materials.
Lower-Carbon Hydrogen Production from Wastewater: A Comprehensive Review
Oct 2024
Publication
Hydrogen has the capability of being a potential energy carrier and providing a long-term solution for sustainable lower-carbon and ecologically benign fuel supply. Because lower-carbon hydrogen is widely used in chemical synthesis it is regarded as a fuel with no emissions for transportation. This review paper offers a novel technique for producing hydrogen using wastewater in a sustainable manner. The many techniques for producing hydrogen with reduced carbon emissions from wastewater are recognized and examined in detail taking into account the available prospects significant obstacles and potential future paths. A comparison of the assessment showed that water electrolysis and dark fermentation technologies are the most effective methods for hydrogen generation from wastewater with microbial electrolysis and photofermentation. Thus the incorporation of systems that are simultaneously producing lower-carbon hydrogen and meant for wastewater treatment is important for the minimization of emissions from greenhouse gases and recovering the energy utilized in the treatment of wastewater.
Review on Techno-economics of Hydrogen Production Using Current and Emerging Processes: Status and Perspectives
Feb 2024
Publication
This review presents a broad exploration of the techno economic evaluation of different technologies utilized in the production of hydrogen from both renewable and non-renewable sources. These encompass methods ranging from extracting hydrogen from fossil fuels or biomass to employing microbial processes electrolysis of water and various thermochemical cycles. A rigorous techno-economic evaluation of hydrogen production technologies can provide a critical cost comparison for future resource allocation priorities and trajectory. This evaluation will have a great impact on future hydrogen production projects and the development of new approaches to reduce overall production costs and make it a cheaper fuel. Different methods of hydrogen production exhibit varying efficiencies and costs: fast pyrolysis can yield up to 45% hydrogen at a cost range of $1.25 to $2.20 per kilogram while gasification operating at temperatures exceeding 750°C faces challenges such as limited small-scale coal production and issues with tar formation in biomass. Steam methane reforming which constitutes 48% of hydrogen output experiences cost fluctuations depending on scale whereas auto-thermal reforming offers higher efficiency albeit at increased costs. Chemical looping shows promise in emissions reduction but encounters economic hurdles and sorptionenhanced reforming achieves over 90% hydrogen but requires CO2 storage. Renewable liquid reforming proves effective and economically viable. Additionally electrolysis methods like PEM aim for costs below $2.30 per kilogram while dark fermentation though cost-effective grapples with efficiency challenges. Overcoming technical economic barriers and managing electricity costs remains crucial for optimizing hydrogen production in a low-carbon future necessitating ongoing research and development efforts.
A Review on Application of Hydrogen in Gas Turbines with Intercooler Adjustments
Mar 2024
Publication
In recent years traditional fossil fuels such as coal oil and natural gas have historically dominated various applications but there has been a growing shift towards cleaner alternatives. Among these alternatives hydrogen (H2) stands out as a highly promising substitute for all other conventional fuels. Today hydrogen (H2) is actively taking on a significant role in displacing traditional fuel sources. The utilization of hydrogen in gas turbine (GT) power generation offers a significant advantage in terms of lower greenhouse gas emissions. The performance of hydrogen-based gas turbines is influenced by a range of variables including ambient conditions (temperature and pressure) component efficiency operational parameters and other factors. Additionally incorporating an intercooler into the gas turbine system yields several advantages such as reducing compression work and maintaining power and efficiency. Many scholars and researchers have conducted comprehensive investigations into the components mentioned above within context of gas turbines (GTs). This study provides an extensive examination of the research conducted on hydrogen-powered gas turbine and intercooler with employed different methods and techniques with a specific emphasis on the different case studies of a hydrogen gas turbine and intercooler. Moreover this study not only examined the current state of research on hydrogen-powered gas turbine and intercooler but also covered its influence by offering the effective recommendations and insightful for guiding for future research in this field.
Advancing Hydrogen: A Closer Look at Implementation Factors, Current Status and Future Potential
Dec 2023
Publication
This review article provides a comprehensive analysis of the hydrogen landscape outlining the imperative for enhanced hydrogen production implementation and utilisation. It places the question of how to accelerate hydrogen adoption within the broader context of sustainable energy transitions and international commitments to reduce carbon emissions. It discusses influencing factors and policies for best practices in hydrogen energy application. Through an in-depth exploration of key factors affecting hydrogen implementation this study provides insights into the complex interplay of both technical and logistical factors. It also discusses the challenges of planning constructing infrastructure and overcoming geographical constraints in the transition to hydrogen-based energy systems. The drive to achieve net-zero carbon emissions is contingent on accelerating clean hydrogen development with blue and green hydrogen poised to complement traditional fuels. Public–private partnerships are emerging as catalysts for the commercialisation of hydrogen and fuel-cell technologies fostering hydrogen demonstration projects worldwide. The anticipated integration of clean hydrogen into various sectors in the coming years signifies its importance as a complementary energy source although specific applications across industries remain undefined. The paper provides a good reference on the gradual integration of hydrogen into the energy landscape marking a significant step forward toward a cleaner greener future.
Hydrogen Balloon Transportation: A Cheap and Efficiency Mode to Transport Hydrogen
Nov 2023
Publication
The chances of a global hydrogen economy becoming a reality have increased significantly since the COVID pandemic and the war in Ukraine and for net zero carbon emissions. However intercontinental hydrogen transport is still a major issue. This study suggests transporting hydrogen as a gas at atmospheric pressure in balloons using the natural flow of wind to carry the balloon to its destination. We investigate the average wind speeds atmospheric pressure and temperature at different altitudes for this purpose. The ideal altitudes to transport hydrogen with balloons are 10 km or lower and hydrogen pressures in the balloon vary from 0.25 to 1 bar. Transporting hydrogen from North America to Europe at a maximum 4 km altitude would take around 4.8 days on average. Hydrogen balloon transportation cost is estimated at 0.08 USD/kg of hydrogen which is around 12 times smaller than the cost of transporting liquified hydrogen from the USA to Europe. Due to its reduced energy consumption and capital cost in some locations hydrogen balloon transportation might be a viable option for shipping hydrogen compared to liquefied hydrogen and other transport technologies.
An Estimation of Green Hydrogen Generation from Wind Energy: A Case Study from KSA
Sep 2023
Publication
Actually green hydrogen is viewed as a fundamental component in accelerating energy transition and empowering a sustainable future. The current study focuses on the estimation of green hydrogen generation by using wind energy via electrolysis in four sites located in Saudi Arabia. Results showed that the yearly amount of hydrogen that could be generated by using wind turbine ranges between 2542877 kg in Rafha and 3676925 kg in Dhahran. The hydrogen generated could be used to fuel vehicles and decrease the amount of GHG emission from vehicles in KSA. Also hydrogen may be used to store the excess of wind energy and to support the achievement of vision 2030 of the Kingdom. An economic assessment is carried out also in this paper. Results showed that the LCOH by using wind energy in KSA ranges from 2.82 $/kg to 3.81 $/kg.
Renewable Hydrogen Production Steps Up Wastewater Treatment under Low-carbon Electricity Sources - A Call Forth Approach
Sep 2024
Publication
Switching to renewable resources for hydrogen production is essential. Present hydrogen resources such as coal oil and natural gas are depleted and rapidly moving to a dead state and they possess a high carbon footprint. Wastewater is a promising avenue in searching for a renewable hydrogen production resource. Profuse techniques are preferred for hydrogen production. Among them electrolysis is great with wastewater against biological processes by hydrogen purity. Present obstacles behind the process are conversion efficiency intensive energy and cost. This review starts with hydrogen demand wastewater availability and their H2 potential then illustrates the three main types of electrolysis. The main section highlights renewable energy-assisted electrolysis because of its low carbon footprint and zero emission potential for various water electrolysis. High-temperature steam solid oxide electrolysis is a viable option for future scaling due to the versatile adoption of photo electric and thermal energy. A glance at some effective aspirations to large-scale H2 economics such as co-generation biomass utilization Microbial electrolysis waste to low-cost green electrode Carbon dioxide hydrogenation and minerals recovery. This study gives a broader view of facing challenges via versatile future perspectives to eliminate the obstacles above. renewable green H2 along with a low carbon footprint and cost potential to forward the large-scale wastewater electrolysis H2 production in addition to preserving the environment from wastewater and fossil fuel. Geographical and seasonal availability constraints are unavoidable; therefore energy storage and coupling of power sources is essential to attain consistent supply. The lack of regulations and policies supporting the development and adoption of these technologies did not reduce the gap between research and implementation. Life cycle assessment of this electrolysis process is rarely available so we need to focus on the natural effect of this process on the environment.
An Overview of Hydrogen Energy Generation
Feb 2024
Publication
The global issue of climate change caused by humans and its inextricable linkage to our present and future energy demand presents the biggest challenge facing our globe. Hydrogen has been introduced as a new renewable energy resource. It is envisaged to be a crucial vector in the vast low-carbon transition to mitigate climate change minimize oil reliance reinforce energy security solve the intermittency of renewable energy resources and ameliorate energy performance in the transportation sector by using it in energy storage energy generation and transport sectors. Many technologies have been developed to generate hydrogen. The current paper presents a review of the current and developing technologies to produce hydrogen from fossil fuels and alternative resources like water and biomass. The results showed that reformation and gasification are the most mature and used technologies. However the weaknesses of these technologies include high energy consumption and high carbon emissions. Thermochemical water splitting biohydrogen and photo-electrolysis are long-term and clean technologies but they require more technical development and cost reduction to implement reformation technologies efficiently and on a large scale. A combination of water electrolysis with renewable energy resources is an ecofriendly method. Since hydrogen is viewed as a considerable game-changer for future fuels this paper also highlights the challenges facing hydrogen generation. Moreover an economic analysis of the technologies used to generate hydrogen is carried out in this study.
Photoelectrochemical Green Hydrogen Production Utilizing ZnO Nanostructured Photoelectrodes
May 2023
Publication
One of the emerging and environmentally friendly technologies is the photoelectrochemical generation of green hydrogen; however the cheap cost of production and the need for customizing photoelectrode properties are thought to be the main obstacles to the widespread adoption of this technology. The primary players in hydrogen production by photoelectrochemical (PEC) water splitting which is becoming more common on a worldwide basis are solar renewable energy and widely available metal oxide based PEC electrodes. This study attempts to prepare nanoparticulate and nanorod-arrayed films to better understand how nanomorphology can impact structural optical and PEC hydrogen production efficiency as well as electrode stability. Chemical bath deposition (CBD) and spray pyrolysis are used to create ZnO nanostructured photoelectrodes. Various characterization methods are used to investigate morphologies structures elemental analysis and optical characteristics. The crystallite size of the wurtzite hexagonal nanorod arrayed film was 100.8 nm for the (002) orientation while the crystallite size of nanoparticulate ZnO was 42.1 nm for the favored (101) orientation. The lowest dislocation values for (101) nanoparticulate orientation and (002) nanorod orientation are 5.6 × 10−4 and 1.0 × 10−4 dislocation/nm2 respectively. By changing the surface morphology from nanoparticulate to hexagonal nanorod arrangement the band gap is decreased to 2.99 eV. Under white and monochromatic light irradiation the PEC generation of H2 is investigated using the proposed photoelectrodes. The solar-to-hydrogen conversion rate of ZnO nanorod-arrayed electrodes was 3.72% and 3.12% respectively under 390 and 405 nm monochromatic light which is higher than previously reported values for other ZnO nanostructures. The output H2 generation rates for white light and 390 nm monochromatic illuminations were 28.43 and 26.11 mmol.h−1 cm−2 respectively. The nanorod-arrayed photoelectrode retains 96.6% of its original photocurrent after 10 reusability cycles compared to 87.4% for the nanoparticulate ZnO photoelectrode. The computation of conversion efficiencies H2 output rates Tafel slope and corrosion current as well as the application of low-cost design methods for the photoelectrodes show how the nanorod-arrayed morphology offers low-cost high-quality PEC performance and durability.
No more items...