Sweden
Fuelling the Transition Podcast: How Will Hydrogen Heat and Safety in the Home?
Jan 2022
Publication
In this episode Angela Needle Director of Strategy at Cadent and John Williams Head of Hydrogen Expertise Cluster at AFRY Management Consulting join us to discuss a range of topics concerning hydrogen and the energy transition. This includes Cadent’s involvement in hydrogen through HyNet the role of hydrogen in heat safety and plans for the first hydrogen village. They also explore Angela’s role as co-founder of the Women’s Utilities Network a group focussed on helping women develop their skills within the energy space.
The podcast can be found on their website.
The podcast can be found on their website.
Fuelling the Transition Podcast: The Future of Electrolysers and Hydrogen in the UK
Nov 2021
Publication
ITM Power is a leading electrolyser manufacturer and is a globally recognised expert in hydrogen technologies. In this episode Graham Cooley Chief Executive Officer at ITM Power and John Williams Head of Hydrogen Expertise Cluster at AFRY Management Consulting join us to discuss ITM’s recent announcements. This includes raising £250 million to scale up its electrolyser manufacturing capacity to 5GW per annum by 2024 and forming a partnership with Linde to halve electrolyser manufacturing costs within five years. The episode also explores the UK hydrogen strategy how blue hydrogen compares with green hydrogen the role of electrolysers in hydrogen production and providing flexibility to power grids.
The podcast can be found on their website.
The podcast can be found on their website.
Fuelling the Transition Podcast: Building the UK Hydrogen Backbone
Feb 2022
Publication
In this episode Tony Green Hydrogen Director at National Grid and John Williams Head of Hydrogen Expertise Cluster at AFRYManagement Consulting join us to discuss the challenges in implementing hydrogen. Tony is involved in two exciting hydrogen projects: FutureGrid andProject Union. FutureGrid involves building a facility to create a representative whole-network to trial hydrogen. Project Union will develop a UK hydrogen ‘backbone’ joining together clusters around the country potentially creating a 2000km hydrogen network.
In addition to discussing these projects this episode will explore the following issues:
♦ Managing the transition and challenges in repurposing natural gas pipelines to hydrogen
♦ The potential for blending and de-blending hydrogen
♦ The impact of hydrogen on National Grid’s regulatory approach
♦ How to take the first steps towards a hydrogen wholesale market"
The podcast can be found on their website.
In addition to discussing these projects this episode will explore the following issues:
♦ Managing the transition and challenges in repurposing natural gas pipelines to hydrogen
♦ The potential for blending and de-blending hydrogen
♦ The impact of hydrogen on National Grid’s regulatory approach
♦ How to take the first steps towards a hydrogen wholesale market"
The podcast can be found on their website.
Looking Beyond Compressed Hydrogen Storage for Sweden: Opportunities and Barriers for Chemical Hydrides
Jun 2024
Publication
As Sweden takes its first steps towards a hydrogen-based economy a strategic approach to infrastructure development for both storage and delivery becomes necessary. Although compressed hydrogen is currently the state-of-the-art its low volumetric density and associated high capital costs pose challenges to widespread societal deployment of hydrogen. In order to avoid technological lock-in alternatives storage technologies including chemical hydrides e.g. methanol ammonia methane and LOHC must also be explored. These alternatives offer higher hydrogen densities safer handling and compatibility with existing infrastructure. However each hydride has unique chemical and physical properties requires distinct feedstock and conversion processes and interacts with the energy system in different ways all of which influences their suitability for various applications. Therefore a comprehensive evaluation of these alternative hydrogen storage technologies as carried out in this article is vital to allow for informed investment decisions and pave the way towards a successful and sustainable hydrogen economy.
A Multi-period Sustainable Hydrogen Supply Chain Model Considering Pipeline Routing and Carbon Emissions: The Case Study of Oman
Nov 2022
Publication
This paper presents a mathematical model for a multi-period hydrogen supply chain design problem considering several design features not addressed in other studies. The model is formulated as a mixed-integer program allowing the production and storage facilities to be extended over time. Pipeline and tube trailer transport modes are considered for carrying hydrogen. The model also allows finding the optimal pipeline routes and the number of transport units. The objective is to obtain an efficient supply chain design within a given time frame in a way that the demand and carbon dioxide emissions constraints are satisfied and the total cost is minimized. A computer program is developed to ease the problem-solving process. The computer program extracts the geographical information from Google Maps and solves the problem using an optimization solver. Finally the applicability of the proposed model is demonstrated in a case study from Oman.
Future Green Energy: A Global Analysis
Jun 2024
Publication
The main problem confronting the world is human-caused climate change which is intrinsically linked to the need for energy both now and in the future. Renewable (green) energy has been proposed as a future solution and many renewable energy technologies have been developed for different purposes. However progress toward net zero carbon emissions by 2050 and the role of renewable energy in 2050 are not well known. This paper reviews different renewable energy technologies developed by different researchers and their potential and challenges to date and it derives lessons for world and especially African policymakers. According to recent research results the mean global capabilities for solar wind biogas geothermal hydrogen and ocean power are 325 W 900 W 300 W 434 W 150 W and 2.75 MWh respectively and their capacities for generating electricity are 1.5 KWh 1182.5 KWh 1.7 KWh 1.5 KWh 1.55 KWh and 3.6 MWh respectively. Securing global energy leads to strong hope for meeting the Sustainable Development Goals (SDGs) such as those for hunger health education gender equality climate change and sustainable development. Therefore renewable energy can be a considerable contributor to future fuels.
A Multicriteria Modeling Approach for Evaluating Power Generation Scenarios Under Uncertainty: The Case of Green Hydrogen in Greece
Oct 2023
Publication
Clean energy technological innovations are widely acknowledged as a prerequisite to achieving ambitious longterm energy and climate targets. However the optimal speed of their adoption has been parsimoniously studied in the literature. This study seeks to identify the optimal intensity of moving to a green hydrogen electricity sector in Greece using the OSeMOSYS energy modeling framework. Green hydrogen policies are evaluated first on the basis of their robustness against uncertainty and afterwards against conflicting performance criteria and for different decision-making profiles towards risk by applying the VIKOR and TOPSIS multi-criteria decision aid methods. Although our analysis focuses exclusively on the power sector and compares different rates of hydrogen penetration compared to a business-as-usual case without considering other game-changing innovations (such as other types of storage or carbon capture and storage) we find that a national transition to a green hydrogen economy can support Greece in potentially cutting at least 16 MtCO2 while stimulating investments of EUR 10–13 bn. over 2030–2050.
Decarbonising the Refinery Sector: A Socio-technical Analysis of Advanced Biofuels, Green Hydrogen and Carbon Capture and Storage Developments in Sweden
Nov 2021
Publication
The oil refinery industry is one of the major energy users and responsible for a large proportion of greenhouse gas (GHG) emissions. This sector is facing multiple sustainability-related transformation pressures forcing the industry to adapt to changing market conditions. The transition to a low-carbon economy will require oil refineries to adopt decarbonisation technologies like advanced biofuels green hydrogen and carbon capture and storage (CCS). However the development and implementation of these technologies is not a straightforward process and may be inhibited by lock-in and path dependency. This paper draws on expert interviews and combines the Technological Innovation Systems (TIS) and Multi-level Perspective (MLP) frameworks to examining the niche level development of three emerging technologies in the context of deep decarbonisation of refinery. This research finds that the development of the three decarbonisation technologies shares some of the challenges and opportunities and exhibits technology interdependency to some extent. Among the three TISs advanced biofuel is the most mature in terms of knowledge base actor-network legislation framework and market function. Green hydrogen and CCS encounter stronger momentum than before and can benefit from possible synergies across various sectors. However the analysis also reveals the lack of market formation mainly due to the lack of policy instruments for niche markets. Here policy recommendations for accelerating deep decarbonisation of the oil refinery industry are discussed. Finally we contribute to the sustainability transitions literature by exploring the dynamics of emerging TISs for industrial decarbonisation.
Hydrogen Embrittlement as a Conspicuous Material Challenge - Comprehensive Review and Future Directions
May 2024
Publication
Hydrogen is considered a clean and efficient energy carrier crucial for shapingthe net-zero future. Large-scale production transportation storage and use of greenhydrogen are expected to be undertaken in the coming decades. As the smallest element inthe universe however hydrogen can adsorb on diffuse into and interact with many metallicmaterials degrading their mechanical properties. This multifaceted phenomenon isgenerically categorized as hydrogen embrittlement (HE). HE is one of the most complexmaterial problems that arises as an outcome of the intricate interplay across specific spatialand temporal scales between the mechanical driving force and the material resistancefingerprinted by the microstructures and subsequently weakened by the presence of hydrogen. Based on recent developments in thefield as well as our collective understanding this Review is devoted to treating HE as a whole and providing a constructive andsystematic discussion on hydrogen entry diffusion trapping hydrogen−microstructure interaction mechanisms and consequencesof HE in steels nickel alloys and aluminum alloys used for energy transport and storage. HE in emerging material systems such ashigh entropy alloys and additively manufactured materials is also discussed. Priority has been particularly given to these lessunderstood aspects. Combining perspectives of materials chemistry materials science mechanics and artificial intelligence thisReview aspires to present a comprehensive and impartial viewpoint on the existing knowledge and conclude with our forecasts ofvarious paths forward meant to fuel the exploration of future research regarding hydrogen-induced material challenges.
Unlocking Sweden's Hydrogen Export Potential: A Techno-Economic Analysis of Compressed Hydrogen and Chemical Carriers
Jun 2025
Publication
Sweden with its abundant access to low-cost fossil-free electricity is well-positioned to become a significant hydrogen exporter. This study presents a techno-economic analysis of different hydrogen carriers—compressed hydrogen methanol ammonia and liquid organic hydrogen carriers (LOHC)—for export applications. Using the Northern Green Crane Project as a reference for scale the analysis focuses on cost optimization for hydrogen production storage and transportation. A linear programming model is developed to optimize capacities and operational strategies for each carrier ensuring a fair basis for comparison. Results indicate that LOHC and ammonia are competitive with compressed hydrogen showing particular promise for larger-scale long-distance deliveries. These findings offer valuable insights for policymakers and industry stakeholders developing Sweden’s hydrogen export strategies.
Strategies for Decarbonizing the Aviation Sector: Evaluating Economic Competitiveness of Green Hydrogen Value Chains - A Case Study in France
Dec 2024
Publication
Even if the aviation sector only accounts for 2% of global energy-related CO2 emissions and is the most challenging sector to decarbonize. As aviation demand grows and the need for sustainable jet fuels becomes urgent green hydrogen could substitute conventional fossil fuels thereby enabling carbon-free flights. This study investigates a techno-economic analysis of onsite versus off-site green hydrogen supply chains. A case study at the Toulouse-Blagnac airport (Europe’s first station for the production and distribution of renewable hydrogen) in France is developed to meet commercial aviation's hydrogen fuel demand between 2025 and 2050. Demand of hydrogen is projected based on the trend of jet fuel consumption. First the cost of solar-based renewable electricity is estimated at the two green hydrogen production sites using levelized cost of electricity production. Second levelized cost of hydrogen (LCOH) is evaluated for three value chain scenarios: one on-site (Toulouse airport) and two off-site (Marseille) for gaseous and cryogenic transportation of liquid hydrogen (LH2). A relative cost advantage is shown for the off-site case with cryogenic truck transportation at LCOH of €9.43/kg.LH2. This study also reveals the importance of electricity price investment costs operation costs economies of scale and transportation distance in different scenarios.
The Lack of Systems Thinking and Interdisciplinarity is Killing the Hydrogen Economy
Sep 2025
Publication
Hydrogen’s promise as a transformative energy solution has been consistently unfulfilled. This perspective article suggests that the primary barrier is not necessarily technological but a systemic failure to apply holistic systems thinking and genuine interdisciplinary collaboration. Through historical analysis and contemporary case studies we argue that only by integrating technical economic policy and social expertise within a holistic systems framework across the entire value chain can hydrogen overcome its boom-and-bust cycles and become a foundational component of the low-carbon energy future.
Optimization of Interfacial Bonding between Graphene-enhanced Polyethylene Liners and CFRP Composites using Plasma Treatment for Hydrogen Storage Applications
Oct 2025
Publication
As the need for sustainable hydrogen storage solutions increases enhancing the bonding interface between polymer liners and carbon fiber-reinforced polymer (CFRP) in Type IV hydrogen tanks is essential to ensure tank integrity and safety. This study investigates the effect of plasma treatment on polyethylene (PE) and PE/graphene nanoplatelets (GNP) composites to optimize bonding with CFRP simulating the liner-CFRP interface in hydrogen tanks. Initially plasma treatment effects on PE surfaces were assessed focusing on plasma energy and exposure time with key surface modifications characterized and bonding performance being evaluated. Plasma treatment on PE/GNP composites with increasing GNP content was then examined comparing the bonding effectiveness of untreated and plasma-treated samples. Wedge peel tests revealed that plasma treatment significantly enhanced PE-CFRP bonding with optimal conditions at 510 W and 180 s resulting in 212 % and 165 % increases in the wedge peel strength and fracture energy respectively. Plasma-treated PE/GNP composites with 0.75 wt.% GNP achieved a notable bonding enhancement with CFRP showing 528 % and 269 % improvements in strength and fracture energy over untreated neat PE-CFRP samples. These findings offer practical implications for improving the mechanical performance of hydrogen storage tanks contributing to safer and more efficient hydrogen storage systems for a sustainable energy future.
Configuring Hydrogen Lancing to Reduce Carbon and Nitrogen Oxides Emissions from Coal-fire Rotary Kilns
Mar 2025
Publication
Coal replacement with hydrogen is a strategy for reducing carbon emissions from high-temperature industrial processes. Hydrogen lancing is a direct way for introducing hydrogen to existing coal-fired kilns. This work investigates the effects of hydrogen lancing on nitrogen oxides (NOx) emissions and ignition behaviour in a pilotscale furnace that employs a 30 % coal replacement with hydrogen lancing. The investigation encompasses the impacts of lancing distance angling and velocity. Advanced measurement techniques including spectrometry and monochromatic digital cameras characterise the flame and assess emissions. The results indicate that the 30 % coal replacement by hydrogen lancing enhances combustion and reduces the emissions of carbon monoxides (CO). The flame characteristics vary with the location of the hydrogen injection generally becoming more-intense than during coal combustion. NOx emissions during lancing are similar or up to double the emissions observed for pure coal combustion depending on the lancing configuration. Increasing the distance between the hydrogen lance and coal burner increases NOx emissions.
Four Methods of Hydrogen Combustion within Combined Heat and Power Plants to Increase Power Output
Sep 2025
Publication
In recent years there has been an increasingly larger fraction of intermittent energy sources. In the northern parts of Europe the main source of intermittent power is wind power. This source of power is low inertia inconsistent and will always fluctuate with different magnitudes leaving a need for balancing. One source of balancing is to have the widespread non-zero inertia combined heat and power stations work as back-up sources. One way to boost the capability of these power sources is by adding an oxyfuel internal hydrogen combustor. To study the effects of this the steam generator was tested in four different positions within the power plant to test different possibilities with different levels of retrofits. The first was in the high- and lowpressure crossover the second was a reheat at a higher pressure the third was a superheat of the admission steam and finally the fourth was a superheat using the overload valves. The final results showed that the configurations of crossover reheat and superheat of admission steam were the best in terms of retrofit while the reheat at higher pressure was deemed the best in terms of backup capacity reaching a gain in power of 9.5 MW at a fuel efficiency of 30.93 %. The highest fuel efficiencies were shown by the latter two amounting to 45.19 % and 51.58 % in district heating mode respectively. There is great potential to be made from these power plants due to the possibility of increased capacity all across Sweden.
An Experimental Study of Jet-wall and Jet-jet Interactions of Directly Injected Hydrogen and Methane in a Wave-piston Geometry
Oct 2025
Publication
This study investigates the interactive dynamics of directly injected (DI) hydrogen and methane jets with wall and neighboring jets in a non-reactive environment focusing on the influence of wave-shaped piston geometry. Experiments were conducted in a high-pressure optical chamber using a custom 2-hole DI injector with Schlieren imaging employed to capture the temporal evolution of jet structures for varying injection durations and injection pressure ratios. Comparative analyses between conventional flat and wave-shaped wall geometries reveals that the wave geometry significantly alters post-impingement jet behavior particularly enhancing jet guidance toward the center and promoting early detachment from the wall. For both hydrogen and methane jets impinging on the wave wall exhibited accelerated formation of a central flow structure akin to the radial mixing zone (RMZ) observed in reactive diesel combustion. This effect was most pronounced after end of injection where the trailing edge of the impinged jets in the wave geometry detached earlier and exhibited inward momentum forming U-shaped flow patterns indicative of efficient mixing. Quantitative jet area analysis further showed that the wave geometry confined and redirected the jets more effectively than the flat wall especially for hydrogen at shorter injection durations. These results demonstrate that the wave-piston concept originally developed for soot reduction in diesel engines also enhances jet-jet and jet-wall interaction efficiency in gaseous DI systems by promoting structured recirculation. Moreover these results suggest that wave-based piston geometries can substantially influence fuel-air mixing dynamics even in the absence of combustion providing a foundation for optimizing combustion chamber designs for low-carbon and high-diffusive gaseous fuels.
Hydrogen Sampling Systems Adapted to Heavy-duty Refuelling Stations' Current and Future Specifications - A Review
Sep 2024
Publication
To meet the new regulation for the deployment of alternative fuels infrastructure which sets targets for electric recharging and hydrogen refuelling infrastructure by 2025 or 2030 a large infrastructure comprising trucksuitable hydrogen refuelling stations will soon be required. However further standardisation is required to support the uptake of hydrogen for heavy-duty transport for Europe’s green energy future. Hydrogen-powered vehicles require pure hydrogen as some contaminants can reduce the performance of the fuel cell even at very low levels. Even if previous projects have paved the way for the development of the European quality infrastructure for hydrogen conformity assessment sampling systems and methods have yet to be developed for heavy-duty hydrogen refuelling stations (HD-HRS). This study reviews different aspects of the sampling of hydrogen at heavy-duty hydrogen refuelling stations for purity assessment with a focus on the current and future specifications and operations at HD-HRS. This study describes the state-of-the art of sampling systems currently under development for use at HD-HRS and highlights a number of aspects which must be taken into consideration to ensure safe and accurate sampling: risk assessment for the whole sampling exercise selection of cylinders methods to prepare cylinders before the sampling filling pressure and venting of the sampling systems.
The Heat Transfer Potential of Compressor Vanes on a Hydrogen Fueled Turbofan Engine
Sep 2023
Publication
Hydrogen is a promising fuel for future aviation due to its CO2-free combustion. In addition its excellent cooling properties as it is heated from cryogenic conditions to the appropriate combustion temperatures provides a multitude of opportunities. This paper investigates the heat transfer potential of stator surfaces in a modern high-speed low-pressure compressor by incorporating cooling channels within the stator vane surfaces where hydrogen is allowed to flow and cool the engine core air. Computational Fluid Dynamics simulations were carried out to assess the aerothermal performance of this cooled compressor and were compared to heat transfer correlations. A core air temperature drop of 9.5 K was observed for this cooling channel design while being relatively insensitive to the thermal conductivity of the vane and cooling channel wall thickness. The thermal resistance was dominated by the air-side convective heat transfer and more surface area on the air-side would therefore be required in order to increase overall heat flow. While good agreement with established heat transfer correlations was found for both turbulent and transitional flow the correlation for the transitional case yielded decent accuracy only as long as the flow remains attached and while transition was dominated by the bypass mode. A system level analysis indicated a limited but favorable impact at engine performance level amounting to a specific fuel consumption improvement of up to 0.8% in cruise and an estimated reduction of 3.6% in cruise NOx. The results clearly show that although it is possible to achieve high heat transfer rate per unit area in compressor vanes the impact on cycle performance is constrained by the limited available wetted area in the low-pressure compressor.
How do Variations in Ship Operation Impact the Techno-economic Feasibility and Environmental Performance of Fossil-free Fuels? A Life Cycle Study
Aug 2023
Publication
Identifying an obvious non-fossil fuel solution for all ship types for meeting the greenhouse gas reduction target in shipping is challenging. This paper evaluates the technical viability environmental impacts and economic feasibility of different energy carriers for three case vessels of different ship types: a RoPax ferry a tanker and a service vessel. The energy carriers examined include battery-electric and three electro-fuels (hydrogen methanol and ammonia) which are used in combination with engines and fuel cells. Three methods are used: preliminary ship design feasibility life cycle assessment and life cycle costing. The results showed that battery-electric and compressed hydrogen options are not viable for some ships due to insufficient available onboard space for energy storage needed for the vessel's operational range. The global warming reduction potential is shown to depend on the ship type. This reduction potential of assessed options changes also with changes in the carbon intensity of the electricity mix. Life cycle costing results shows that the use of ammonia and methanol in engines has the lowest life cycle cost for all studied case vessels. However the higher energy conversion losses of these systems make them more vulnerable to fluctuations in the price of electricity. Also these options have higher environmental impacts on categories like human toxicity resource use (minerals and metals) and water use. Fuel cells and batteries are not as cost-competitive for the case vessels because of their higher upfront costs and shorter lifetimes. However these alternatives are less expensive than alternatives with internal combustion engines in the case of higher utilization rates and fuel costs.
Socio-technical Imaginaries of Climate-neutral Aviation
May 2024
Publication
Limiting global warming to 1.5 ◦C is crucial to prevent the worst effects of climate change. This entails also the decarbonization of the aviation sector which is considered to be a “hard-to-abate” sector and thus requires special attention regarding its sustainability transition. However transition pathways to a potentially climateneutral aviation sector are unclear with different stakeholders having diverse imaginations of the sector's future. This paper aims to analyze socio-technical imaginaries of climate-neutral aviation as different perceptions of various stakeholders on this issue have not been sufficiently explored so far. In that sense this work contributes to the current scientific debate on socio-technical imaginaries of energy transitions for the first time studying the case of the aviation sector. Drawing on six decarbonization reports composed by different interest groups (e.g. industry academia and environmental associations) three imaginaries were explored following the process of a thematic analysis: rethinking travel and behavioral change (travel innovation) radical modernization and technological progress (fleet innovation) and transition to alternative fuels and renewable energy sources (fuel innovation). The results reveal how different and partly conflicting socio-technical imaginaries are co-produced and how the emergence and enforceability of these imaginaries is influenced by the situatedness of their creators indicating that the sustainability transition of aviation also raises political issues. Essentially as socio-technical imaginaries act as a driver for change policymakers should acknowledge the existence of alternative and counter-hegemonic visions created by actors from civil society settings to take an inclusive and equitable approach to implementing pathways towards climate-neutral aviation.
No more items...