United States
Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry
Apr 2023
Publication
The European steel industry is experiencing new challenges related to the market situation and climate policy. Experience from the period of pandemic restrictions and the effects of Russia’s armed invasion of Ukraine has given many countries a basis for including steel along with raw materials (coke iron ore electricity) in economic security products (CRMA). Steel is needed for economic infrastructure and construction development as well as a material for other industries (without steel factories will not produce cars machinery ships washing machines etc.). In 2022 steelmakers faced a deepening energy crisis and economic slowdown. The market situation prompted steelmakers to impose restrictions on production volumes (worldwide production fell by 4% compared to the previous year). Despite the difficult economic situation of the steel industry (production in EU countries fell by 11% in 2022 compared to the previous year) the EU is strengthening its industrial decarbonisation policy (“Fit for 55”). The decarbonisation of steel production is set to accelerate by 2050. To sharply reduce carbon emissions steel mills need new steelmaking technologies. The largest global steelmakers are already investing in new technologies that will use green hydrogen (produced from renewable energy sources). Reducing iron ore with hydrogen plasma will drastically reduce CO2 emissions (steel production using hydrogen could emit up to 95% less CO2 than the current BF + BOF blast furnace + basic oxygen furnace integrated method). Investments in new technologies must be tailored to the steel industry. A net zero strategy (deep decarbonisation goal) may have different scenarios in different EU countries. The purpose of this paper was to introduce the conditions for investing in low-carbon steelmaking technologies in the Polish steel market and to develop (based on expert opinion) scenarios for the decarbonisation of the Polish steel industry.
Solar Hydrogen for High Capacity, Dispatchable, Long-distance Energy transmission – A Case Study for Injection in the Greenstream Natural Gas Pipeline
Nov 2022
Publication
This paper presents the results of techno-economic modelling for hydrogen production from a photovoltaic battery electrolyser system (PBES) for injection into a natural gas transmission line. Mellitah in Libya connected to Gela in Italy by the Greenstream subsea gas transmission line is selected as the location for a case study. The PBES includes photovoltaic (PV) arrays battery electrolyser hydrogen compressor and large-scale hydrogen storage to maintain constant hydrogen volume fraction in the pipeline. Two PBES configurations with different large-scale storage methods are evaluated: PBESC with compressed hydrogen stored in buried pipes and PBESL with liquefied hydrogen stored in spherical tanks. Simulated hourly PV electricity generation is used to calculate the specific hourly capacity factor of a hypothetical PV array in Mellitah. This capacity factor is then used with different PV sizes for sizing the PBES. The levelised cost of delivered hydrogen (LCOHD) is used as the key techno-economic parameter to optimise the size of the PBES by equipment sizing. The costs of all equipment except the PV array and batteries are made to be a function of electrolyser size. The equipment sizes are deemed optimal if PBES meets hydrogen demand at the minimum LCOHD. The techno-economic performance of the PBES is evaluated for four scenarios of fixed and constant hydrogen volume fraction targets in the pipeline: 5% 10% 15% and 20%. The PBES can produce up to 106 kilotonnes of hydrogen per year to meet the 20% target at an LCOHD of 3.69 €/kg for compressed hydrogen storage (PBESC) and 2.81 €/kg for liquid hydrogen storage (PBESL). Storing liquid hydrogen at large-scale is significantly cheaper than gaseous hydrogen even with the inclusion of a significantly larger PV array that is required to supply additional electrcitiy for liquefaction.
Comparative Levelized Cost Analysis of Transmitting Renewable Solar Energy
Feb 2023
Publication
A bottom-up cost analysis for delivering utility-scale PV-generated electricity as hydrogen through pipelines and as electricity through power is undertaken. Techno-economic generation and demand data for California are used to calculate the levelized cost of transmitting (LCOT) energy and the levelized cost of electricity (LCOE) prior to distribution. High-voltage levels of 230 kV and 500 kV and 24-inch and 36-inch pipelines for 100 to 700 miles of transmission are considered. At 100 miles of transmission the cost of transmission between each medium is comparable. At longer distances the pipeline scenarios become increasingly cheaper at low utilization levels. The all-electric pathways utilizing battery energy storage systems can meet 95% of the load for as low as 356 USD/MWh whereas when meeting 100% of load with the hydrogen gas turbine and fuel cell pathways the costs are 278 and 322 USD/MWh respectively.
The Socio-technical Dynamics of Net-zero Industrial Megaprojects: Outside-in and Inside-out Analyses of the Humber Industrial Cluster
Feb 2023
Publication
Although energy-intensive industries are often seen as ‘hard-to-decarbonise’ net-zero megaprojects for industrial clusters promise to improve the technical and economic feasibility of hydrogen fuel switching and carbon capture and storage (CCS). Mobilising insights from the megaproject literature this paper analyses the dynamics of an ambitious first-of-kind net-zero megaproject in the Humber industrial cluster in the United Kingdom which includes CCS and hydrogen infrastructure systems industrial fuel switching CO2 capture green and blue hydrogen production and hydrogen storage. To analyse the dynamics of this emerging megaproject the article uses a socio-technical system lens to focus on developments in technology actors and institutions. Synthesising multiple megaproject literature insights the paper develops a comprehensive framework that addresses both aggregate (‘outside-in’) developments and the endogenous (‘inside-out’) experiences and activities regarding three specific challenges: technical system integration actor coordination and institutional alignment. Drawing on an original dataset involving expert interviews (N = 46) site visits (N = 7) and document analysis the ‘outside-in’ analysis finds that the Humber megaproject has progressed rapidly from outline visions to specific technical designs enacted by new coalitions and driven by strengthening policy targets and financial support schemes. The complementary ‘inside-out’ analysis however also finds 12 alignment challenges that can delay or derail materialisation of the plans. While policies are essential aggregate drivers institutional misalignments presently also prevent project-actors from finalising design and investment decisions. Our analysis also finds important tensions between the project's high-pace delivery focus (to meet government targets) and allowing sufficient time for pilot projects learning-by-doing and design iterations.
Pore-scale Study of Microbial Hydrogen Consumption and Wettability Alteration During Underground Hydrogen Storage
Feb 2023
Publication
Hydrogen can be a renewable energy carrier and is suggested to store renewable energy and mitigate carbon dioxide emissions. Subsurface storage of hydrogen in salt caverns deep saline formations and depleted oil/gas reservoirs would help to overcome imbalances between supply and demand of renewable energy. Hydrogen however is one of the most important electron donors for many subsurface microbial processes including methanogenesis sulfate reduction and acetogenesis. These processes cause hydrogen loss and changes of reservoir properties during geological hydrogen storage operations. Here we report the results of a typical halophilic sulfate-reducing bacterium growing in a microfluidic pore network saturated with hydrogen gas at 35 bar and 37°C. Test duration is 9 days. We observed a significant loss of H2 from microbial consumption after 2 days following injection into a microfluidic device. The consumption rate decreased over time as the microbial activity declined in the pore network. The consumption rate is influenced profoundly by the surface area of H2 bubbles and microbial activity. Microbial growth in the silicon pore network was observed to change the surface wettability from a water-wet to a neutral-wet state. Due to the coupling effect of H2 consumption by microbes and wettability alteration the number of disconnected H2 bubbles in the pore network increased sharply over time. These results may have significant implications for hydrogen recovery and gas injectivity. First pore-scale experimental results reveal the impacts of subsurface microbial growth on H2 in storage which are useful to estimate rapidly the risk of microbial growth during subsurface H2 storage. Second microvisual experiments provide critical observations of bubble-liquid interfacial area and reaction rate that are essential to the modeling that is needed to make long-term predictions. Third results help us to improve the selection criteria for future storage sites.
Water Consumption from Electrolytic Hydrogen in a Carbon-neutral US Energy System
Feb 2023
Publication
Hydrogen is an energy carrier with potential applications in decarbonizing difficult-to-electrify energy and industrial systems. The environmental profile of hydrogen varies substantially with its inputs. Water consumption is a particular issue of interest as decisions are made about capital and other investments that will affect the scale and scope of hydrogen use. This study focuses on electrolytic hydrogen due to its path to greenhouse gas neutrality and irreducible water demand (though other pathways might be more water intensive). Specifically it evaluates life cycle consumptive freshwater intensity of electrolytic hydrogen in the United States at volumes associated with 12 scenarios for a deeply decarbonized 2050 US energy system from two modeling efforts for which both electricity fuel mix and electrolytic hydrogen production were projected (America’s Zero Carbon Action Plan and Net Zero America) in addition to volumes for a stylized energy storage project (500 MW hydrogen-fired turbine). Freshwater requirements for hydrogen could be large. Under a central estimate for 2050 US electrolytic hydrogen production electrolytic freshwater demand for process and feedstock inputs alone (i.e. excluding water for electricity) would be about 7.5% of total 2014 US freshwater consumption for energy (1 billion cubic meters/year 109 m3 /y; [0.2% 15%] across scenarios for 2050 electrolytic hydrogen production of [0.3 18] exajoules EJ). Including water associated with production of input electricity doubles this central estimate to 15% (2 × 109 m3 /y; [1% 23%] across scenarios). Turbines using electrolytic hydrogen are estimated to be about as freshwater intensive as a coal or nuclear plant assuming decarbonized low-water electricity inputs. Although a decarbonized energy system is projected to require less water for resource capture and electricity conversion than the current fossil-dominated energy system additional conversion processes supporting decarbonization like electrolysis could offset water savings.
The Potential of Zero-carbon Bunker Fuels in Developing Countries
Apr 2015
Publication
To meet the climate targets set forth in the International Maritime Organization’s Initial GHG Strategy the maritime transport sector needs to abandon the use of fossil-based bunker fuels and turn toward zero-carbon alternatives which emit zero or at most very low greenhouse gas (GHG) emissions throughout their lifecycles. This report “The Potential of Zero-Carbon Bunker Fuels in Developing Countries” examines a range of zero-carbon bunker fuel options that are considered to be major contributors to shipping’s decarbonized future: biofuels hydrogen and ammonia and synthetic carbon-based fuels. The comparison shows that green ammonia and green hydrogen strike the most advantageous balance of favorable features due to their lifecycle GHG emissions broader environmental factors scalability economics and technical and safety implications. Furthermore the report finds that many countries including developing countries are very well positioned to become future suppliers of zero-carbon bunker fuels—namely ammonia and hydrogen. By embracing their potential these countries would be able to tap into an estimated $1+ trillion future fuel market while modernizing their own domestic energy and industrial infrastructure. However strategic policy interventions are needed to unlock these potentials.
A Comprehensive Resilience Assessment Framework for Hydrogen Energy Infrastructure Development
Jun 2023
Publication
In recent years sustainable development has become a challenge for many societies due to natural or other disruptive events which have disrupted economic environmental and energy infrastructure growth. Developing hydrogen energy infrastructure is crucial for sustainable development because of its numerous benefits over conventional energy sources. However the complexity of hydrogen energy infrastructure including production utilization and storage stages requires accounting for potential vulnerabilities. Therefore resilience needs to be considered along with sustainable development. This paper proposes a decision-making framework to evaluate the resilience of hydrogen energy infrastructure by integrating resilience indicators and sustainability contributing factors. A holistic taxonomy of resilience performance is first developed followed by a qualitative resilience assessment framework using a novel Intuitionistic fuzzy Weighted Influence Nonlinear Gauge System (IFWINGS). The results highlighted that Regulation and legislation Government preparation and Crisis response budget are the most critical resilience indicators in the understudy hydrogen energy infrastructure. A comparative case study demonstrates the practicality capability and effectiveness of the proposed approach. The results suggest that the proposed model can be used for resilience assessment in other areas.
Thermodynamic and Emission Analysis of a Hydrogen/Methane Fueled Gas Turbine
May 2023
Publication
The importance of hydrogen in the effort to decarbonize the power sector has grown immensely in recent years. Previous studies have investigated the effects of mixing hydrogen into natural gas for gas turbine combustors but limited studies have examined the resulting effects hydrogen addition has on the entire system. In this work a thermodynamic model of a gas turbine with combustion chemical kinetics integrated is created and the effects hydrogen addition (0-100 volume percent addition) has on the system performance emissions and combustion kinetics are analyzed. The maximum system performance is achieved when the maximum turbine inlet temperature is reached and the resulting optimal fuel/air equivalence ratio is determined. As hydrogen is added to the fuel mixture the optimal equivalence ratio shifts leaner causing non-linearity in emissions and system performance at optimal conditions. An analysis of variance is conducted and it is shown that isentropic efficiencies of the turbine and compressor influences the system performance the most out of any system parameter. While isentropic efficiencies of the turbine and compressor increase towards 100% an operating regime where the optimal system efficiency cannot be achieved is discovered due to the lower flammability limit of the fuel being reached. This can be overcome by mixing hydrogen into the fuel.
Numerical Simulation of Hydrogen Diffusion in Cement Sheath of Wells Used for Underground Hydrogen Storage
Jul 2023
Publication
The negative environmental impact of carbon emissions from fossil fuels has promoted hydrogen utilization and storage in underground structures. Hydrogen leakage from storage structures through wells is a major concern due to the small hydrogen molecules that diffuse fast in the porous well cement sheath. The second-order parabolic partial differential equation describing the hydrogen diffusion in well cement was solved numerically using the finite difference method (FDM). The numerical model was verified with an analytical solution for an ideal case where the matrix and fluid have invariant properties. Sensitivity analyses with the model revealed several possibilities. Based on simulation studies and underlying assumptions such as non-dissolvable hydrogen gas in water present in the cement pore spaces constant hydrogen diffusion coefficient cement properties such as porosity and saturation etc. hydrogen should take about 7.5 days to fully penetrate a 35 cm cement sheath under expected well conditions. The relatively short duration for hydrogen breakthrough in the cement sheath is mainly due to the small molecule size and high hydrogen diffusivity. If the hydrogen reaches a vertical channel behind the casing a hydrogen leak from the well is soon expected. Also the simulation result reveals that hydrogen migration along the axial direction of the cement column from a storage reservoir to the top of a 50 m caprock is likely to occur in 500 years. Hydrogen diffusion into cement sheaths increases with increased cement porosity and diffusion coefficient and decreases with water saturation (and increases with hydrogen saturation). Hence cement with a low water-to-cement ratio to reduce water content and low cement porosity is desirable for completing hydrogen storage wells.
The Prospects of Hydrogen in Achieving Net Zero Emissions by 2050: A Critical Review
May 2023
Publication
Hydrogen (H2) usage was 90 metric tonnes (Mt) in 2020 almost entirely for industrial and refining uses and generated almost completely from fossil fuels leading to nearly 900 Mt of carbon dioxide emissions. However there has been significant growth of H2 in recent years. Electrolysers' total capacity which are required to generate H2 from electricity has multiplied in the past years reaching more than 300 MW through 2021. Approximately 350 projects reportedly under construction could push total capacity to 54 GW by the year 2030. Some other 40 projects totalling output of more than 35 GW are in the planning phase. If each of these projects is completed global H2 production from electrolysers could exceed 8 Mt by 2030. It's an opportunity to take advantage of H2S prospects to be a crucial component of a clean safe and cost-effective sustainable future. This paper assesses the situation regarding H2 at the moment and provides recommendations for its potential future advancement. The study reveals that clean H2 is experiencing significant unparalleled commercial and political force with the amount of laws and projects all over the globe growing quickly. The paper concludes that in order to make H2 more widely employed it is crucial to significantly increase innovations and reduce costs. The practical and implementable suggestions provided to industries and governments will allow them to fully capitalise on this growing momentum.
Design for Reliability and Safety: Challenges and Opportunities in Hydrogen Mobility Assets
Sep 2023
Publication
Safety and reliability are important performance attributes of any engineered system where humanmachine interactions are present. However they are usually approached as afterthoughts or in some cases unintended consequences of the system design and development process that must be addressed and verified in subsequent design stages. In plain words safety and reliability are often seen as constraints that add layers of complexity and extra costs to the minimum functional system of interest. No longer. Shell Hydrogen is embedding the Design for Reliability and Safety approach to engineer our products and assets in such a way that safety and reliability are at the core of a concurrent engineering process throughout the system lifecycle. This has been achieved in practice by leveraging systems reliability and safety engineering methods along with the experience and expertise of Shell Hydrogen original equipment manufacturers and system integrators in designing building and operating hydrogen assets for mobility applications.<br/>The challenges in implementing this approach are many ranging from access to historical data on equipment and component safety and reliability performance to lack of standardization in the industry when dealing with hydrogen related hazards. In this paper we will describe the approach in more detail some of our early successes and failures during deployment and the continual improvement journey that lies ahead.
Everything About Hydrogen Podcast: Scaling Clean Hydrogen Production
Dec 2021
Publication
Today we are joined by our good friends from Enapter. The company is a leader in the clean hydrogen sector focused on AEM electrolyzer technology and innovative software solutions that make it possible to rapidly deploy and scale hydrogen production assets. For those who follow the hydrogen sector regularly it’s been hard not to hear Enapter-related news in 2021 and its impressive trajectory as they have gone public announced the plans for a brand new production facility in Germany (on which they have now begun construction) and most recently the announcement that Enapter was selected as the winner of the prestigious Earthshot prize. To do that we are absolutely delighted to have with us all the way from his home base in Thailand Thomas Chrometzka Chief Strategy Officer at Enapter and one of the people that we enjoy having on the show so much that we have brought him back again to fill us in on what he and Enapter are up to and what they have planned for the future of hydrogen.
The podcast can be found on their website
The podcast can be found on their website
A Review of the Status of Fossil and Renewable Energies in Southeast Asia and Its Implications on the Decarbonization of ASEAN
Mar 2022
Publication
The ten nations of Southeast Asia collectively known as ASEAN emitted 1.65 Gtpa CO2 in 2020 and are among the most vulnerable nations to climate change which is partially caused by anthropogenic CO2 emission. This paper analyzes the history of ASEAN energy consumption and CO2 emission from both fossil and renewable energies in the last two decades. The results show that ASEAN’s renewable energies resources range from low to moderate are unevenly distributed geographically and contributed to only 20% of total primary energy consumption (TPEC) in 2015. The dominant forms of renewable energies are hydropower solar photovoltaic and bioenergy. However both hydropower and bioenergy have substantial sustainability issues. Fossil energies depend heavily on coal and oil and contribute to 80% of TPEC. More importantly renewable energies’ contribution to TPEC has been decreasing in the last two decades despite the increasing installation capacity. This suggests that the current rate of the addition of renewable energy capacity is inadequate to allow ASEAN to reach net-zero by 2050. Therefore fossil energies will continue to be an important part of ASEAN’s energy mix. More tools such as carbon capture and storage (CCS) and hydrogen will be needed for decarbonization. CCS will be needed to decarbonize ASEAN’s fossil power and industrial plants while blue hydrogen will be needed to decarbonize hard-to-decarbonize industrial plants. Based on recent research into regional CO2 source-sink mapping this paper proposes six large-scale CCS projects in four countries which can mitigate up to 300 Mtpa CO2 . Furthermore this paper identifies common pathways for ASEAN decarbonization and their policy implications.
Everything About Hydrogen Podcast: Back to a Hydrogen Future?
Mar 2020
Publication
On this weeks episode the team are talking all things hydrogen with Mark Neller Director at Arup. On the show we discuss the UK’s Hydrogen4Heat program where Arup has been leading the UK government’s work on the safety and practical considerations that are necessary to examine whether hydrogen could be a serious solutions for decarbonising UK residential commercial and industry heat. We also discuss the Nikola Badger the need for system wide planning when considering decarbonisation pathways for heat. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Effect of Au Plasmonic Material on Poly M-Toluidine for Photoelectrochemical Hydrogen Generation from Sewage Water
Feb 2022
Publication
This study provides H2 gas as a renewable energy source from sewage water splitting reaction using a PMT/Au photocathode. So this study has a dual benefit for hydrogen generation; at the same time it removes the contaminations of sewage water. The preparation of the PMT is carried out through the polymerization process from an acid medium. Then the Au sputter was carried out using the sputter device under different times (1 and 2 min) for PMT/Au-1 min and PMT/Au-2min respectively. The complete analyses confirm the chemical structure such as XRD FTIR HNMR SEM and Vis-UV optical analyses. The prepared electrode PMT/Au is used for the hydrogen generation reaction using Na2S2O3 or sewage water as an electrolyte. The PMT crystalline size is 15 nm. The incident photon to current efficiency (IPCE) efficiency increases from 2.3 to 3.6% (at 390 nm) and the number of H2 moles increases from 8.4 to 33.1 mmol h−1 cm−2 for using Na2S2O3 and sewage water as electrolyte respectively. Moreover all the thermodynamic parameters such as activation energy (Ea) enthalpy (∆H*) and entropy (∆S*) were calculated; additionally a simple mechanism is mentioned for the water-splitting reaction.
Hydrogen is Essential for Sustainability
Nov 2018
Publication
Sustainable energy conversion requires zero emissions of greenhouse gases and criteria pollutants using primary energy sources that the earth naturally replenishes quickly like renewable resources. Solar and wind power conversion technologies have become cost effective recently but challenges remain to manage electrical grid dynamics and to meet end-use requirements for energy dense fuels and chemicals. Renewable hydrogen provides the best opportunity for a zero emissions fuel and is the best feedstock for production of zero emission liquid fuels and some chemical and heat end-uses. Renewable hydrogen can be made at very high efficiency using electrolysis systems that are dynamically operated to complement renewable wind and solar power dynamics. Hydrogen can be stored within the existing natural gas system to provide low cost massive storage capacity that (1) could be sufficient to enable a 100% zero emissions grid; (2) has sufficient energy density for end-uses including heavy duty transport; (3) is a building block for zero emissions fertilizer and chemicals; and (4) enables sustainable primary energy in all sectors of the economy.
Hydrogen Blending in Gas Pipeline Networks—A Review
May 2022
Publication
Replacing fossil fuels with non-carbon fuels is an important step towards reaching the ultimate goal of carbon neutrality. Instead of moving directly from the current natural gas energy systems to pure hydrogen an incremental blending of hydrogen with natural gas could provide a seamless transition and minimize disruptions in power and heating source distribution to the public. Academic institutions industry and governments globally are supporting research development and deployment of hydrogen blending projects such as HyDeploy GRHYD THyGA HyBlend and others which are all seeking to develop efficient pathways to meet the carbon reduction goal in coming decades. There is an understanding that successful commercialization of hydrogen blending requires both scientific advances and favorable techno-economic analysis. Ongoing studies are focused on understanding how the properties of methane-hydrogen mixtures such as density viscosity phase interactions and energy densities impact large-scale transportation via pipeline networks and enduse applications such as in modified engines oven burners boilers stoves and fuel cells. The advantages of hydrogen as a non-carbon energy carrier need to be balanced with safety concerns of blended gas during transport such as overpressure and leakage in pipelines. While studies on the short-term hydrogen embrittlement effect have shown essentially no degradation in the metal tensile strength of pipelines the long-term hydrogen embrittlement effect on pipelines is still the focus of research in other studies. Furthermore pressure reduction is one of the drawbacks that hydrogen blending brings to the cost dynamics of blended gas transport. Hence techno-economic models are also being developed to understand the energy transportation efficiency and to estimate the true cost of delivery of hydrogen blended natural gas as we move to decarbonize our energy systems. This review captures key large-scale efforts around the world that are designed to increase the confidence for a global transition to methane-hydrogen gas blends as a precursor to the adoption of a hydrogen economy by 2050.
Hydrogen Production in the Swedish Power Sector: Considering Operational Volatilities and Long-term Uncertainties
Nov 2020
Publication
With more renewables on the Swedish electricity market while decommissioning nuclear power plants electricity supply increasingly fluctuates and electricity prices are more volatile. There is hence a need for securing the electricity supply before energy storage solutions become widespread. Electricity price fluctuations moreover affect operating income of nuclear power plants due to their inherent operational inflexibility. Since the anticipated new applications of hydrogen in fuel cell vehicles and steel production producing hydrogen has become a potential source of income particularly when there is a surplus supply of electricity at low prices. The feasibility of investing in hydrogen production was investigated in a nuclear power plant applying Swedish energy policy as background. The analysis applies a system dynamics approach incorporating the stochastic feature of electricity supply and prices. The study revealed that hydrogen production brings alternative opportunities for large-scale electricity production facilities in Sweden. Factors such as hydrogen price will be influential and require in-depth investigation. This study provides guidelines for power sector policymakers and managers who plan to engage in hydrogen production for industrial applications. Although this study was focused upon nuclear power sources it can be extended to hydrogen production from renewable energy sources such as wind and solar.
Low Carbon Scenario Analysis of a Hydrogen-Based Energy Transition for On-Road Transportation in California
Nov 2021
Publication
Fuel cell electric vehicles (FCEV) are emerging as one of the prominent zero emission vehicle technologies. This study follows a deterministic modeling approach to project two scenarios of FCEV adoption and the resulting hydrogen demand (low and high) up to 2050 in California using a transportation transition model. The study then estimates the number of hydrogen production and refueling facilities required to meet demand. The impact of system scale-up and learning rates on hydrogen price is evaluated using standalone supply chain models: H2A HDSAM HRSAM and HDRSAM. A sensitivity analysis explores key factors that affect hydrogen prices. In the high scenario light and heavy-duty fuel cell vehicle stocks reach 12.5 million and 1 million by 2050 respectively. The resulting annual hydrogen demand is 3.9 billion kg making hydrogen the dominant transportation fuel. Satisfying such high future demands will require rapid increases in infrastructure investments starting now but especially after 2030 when there is an exponential increase in the number of production plants and refueling stations. In the long term electrolytic hydrogen delivered using dedicated hydrogen pipelines to larger stations offers substantial cost savings. Feedstock prices size of the hydrogen market and station utilization are the prominent parameters that affect hydrogen price.
Everything About Hydrogen Podcast: Storage for the Future!
Jan 2022
Publication
For our first episode of 2022 we invited Jørn Helge Dahl Global Director of Sales&Marketing at Hexagon Purus to talk about hydrogen storage with the EAH podcast and to explain the types of solutions available today Hexagon's history and plans for the future alongside some commentary on US hydrogen strategy from the gang.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Changing the Game in Hydrogen Compression
Oct 2021
Publication
In the second episode of EAH's Season 3 Patrick Andrew and Chris sit down with Maria Fennis CEO of HyET. HyET Hydrogen is a leading SME in the field of electrochemical hydrogen compression founded in 2008. HyET has introduced the first commercially viable Electrochemical Hydrogen Compressor (EHPC) the HCS 100 in 2017. HyET enters partnerships with key stakeholders to develop products with a focus on application. Maria is a leading voice in the compression arena and it is a pleasure to have her on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: A New Hope for Hydrogen?
Apr 2020
Publication
On this weeks episode the team discuss the Hydrogen Council the global stakeholder forum that has been at the forefront of efforts to advance the role of hydrogen and fuel cell technologies globally. We are excited to have as our guests Pierre-Etienne Franc Vice President for the Hydrogen Energy World Business Unit at Air Liquide and Stephan Herbst General Manager at Toyota Motor Europe. On the show we discuss why Air Liquide and Toyota decided to engage with the Council its strategy vision and perspective on the role that hydrogen can play in the energy transition and how companies can work with policymakers to enable this process. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Could Electrolysers Replicate Moore's Law?
Apr 2020
Publication
On this weeks episode the team are talking all things hydrogen with Sebastian-Justus Schmidt Chairman of Enapter and Thomas Chrometzka Head of Strategy at Enapter. On the show we discuss Enapter’s Anion Exchange Membrane (AEM) electrolyser and why Enapter believe that their modular electrolyser approach will revolutionise the cost of green hydrogen. We also discuss the wide array of use cases and sectors that Enapter are already working with to provide their solution as well as their view on where the current barriers exist for the hydrogen market. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Moving at the Speed of Hydrogen
Nov 2020
Publication
We spend a lot of time on the show talking about the interesting use cases and potential applications of hydrogen technologies as a means to decarbonize high-emissions sectors and that is the point! However moving hydrogen around the world (e.g. to remote areas without the capacity to produce it locally) presents a number of complexities and challenges that are unique to hydrogen itself or for which there are no traditionally established technologies to do so. On this episode the EAH team has a fascinating chat with Dr. Daniel Teichmann CEO and founder of Hydrogenious to learn more about liquid organic hydrogen carriers (LOHCs) and how they can help companies overcome some of the major hurdles that moving hydrogen around the globe presents.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Masters of Scale: Mobilizing the Mobility Sector (Around Hydrogen Fuel Cells)
Nov 2020
Publication
We talk a lot on the EAH podcast series about where hydrogen fuel cell electric vehicles (FCEVs) fit into the overall zero emission vehicle (ZEV) ecosystem. From personal passenger vehicles and the family car to commercial trucking and public transportation fleets and everything in between. Different vehicles and different use cases call for different capabilities and that is what makes the future of decarbonized transportation co interesting.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Commercial Trucking at the Speed of Hydrogen
Jun 2021
Publication
The transportation and mobility sector is vast complex unwieldy and most excitingly an obvious area of focus for hydrogen fuel cell technology applications. Hydrogen FCEVs allow vehicles to run in a wide range of environments with zero tailpipe emissions and can do so without the need for extremely heavy battery cells and can be refueled in the same amount of time as a modern ICE vehicle. This makes hydrogen FCEVs an ideal fit for the heavy commercial transportation industry and is why Hyzon Motors has jumped at the opportunity to revolutionize the industry. The company has grabbed headlines all over the world with its ambitious plans for rolling out its trucks in the United States and other major markets. It has also made news with its recent announcement that the company is going public and has attracted significant investor interest. The EAH team is joined on this episode by Hyzon's CEO Craig Knight to talk about how the company is tackling some of the most significant challenges in decarbonizing transport and how it can make trucking a zero-emission operation.
The podcast can be found on their website
The podcast can be found on their website
Alternative-energy-vehicles Deployment Delivers Climate, Air Quality, and Health Co-benefits when Coupled with Decarbonizing Power Generation in China
Aug 2021
Publication
China is the world’s largest carbon emitter and suffers from severe air pollution which results in approximately one million premature deaths/year. Alternative energy vehicles (AEVs) (electric hydrogen fuel cell and natural gas vehicles) can reduce carbon emissions and improve air quality. However climate air quality and health benefits of AEVs powered with deeply decarbonized power generation are poorly quantified. Here we quantitatively estimate the air quality health carbon emission and economic benefits of replacing internal combustion engine vehicles with various AEVs. We find co-benefits increase dramatically as the electricity grid decarbonizes and hydrogen is produced from non-fossil fuels. Relative to 2015 a conversion to AEVs using largely non-fossil power can reduce air pollution and associated premature mortalities and years of life lost by 329000 persons/year and 1611000 life years/year. Thus maximizing climate air quality and health benefits of AEV deployment in China requires rapid decarbonization of the power system.
The Role of Natural Gas and its Infrastructure in Mitigating Greenhouse Gas Emissions, Improving Regional Air Quality, and Renewable Resource Integration
Nov 2017
Publication
The pursuit of future energy systems that can meet electricity demands while supporting the attainment of societal environment goals including mitigating climate change and reducing pollution in the air has led to questions regarding the viability of continued use of natural gas. Natural gas use particularly for electricity generation has increased in recent years due to enhanced resource availability from non-traditional reserves and pressure to reduce greenhouse gasses (GHG) from higher-emitting sources including coal generation. While lower than coal emissions current natural gas power generation strategies primarily utilize combustion with higher emissions of GHG and criteria pollutants than other low-carbon generation options including renewable resources. Furthermore emissions from life cycle stages of natural gas production and distribution can have additional detrimental GHG and air quality (AQ) impacts. On the other hand natural gas power generation can play an important role in supporting renewable resource integration by (1) providing essential load balancing services and (2) supporting the use of gaseous renewable fuels through the existing infrastructure of the natural gas system. Additionally advanced technologies and strategies including fuel cells and combined cooling heating and power (CCHP) systems can facilitate natural gas generation with low emissions and high efficiencies. Thus the role of natural gas generation in the context of GHG mitigation and AQ improvement is complex and multi-faceted requiring consideration of more than simple quantification of total or net emissions. If appropriately constructed and managed natural gas generation could support and advance sustainable and renewable energy. In this paper a review of the literature regarding emissions from natural gas with a focus on power generation is conducted and discussed in the context of GHG and AQ impacts. In addition a pathway forward is proposed for natural gas generation and infrastructure to maximize environmental benefits and support renewable resources in the attainment of emission reductions.
Advances in Hydrogen, Carbon Dioxide, and Hydrocarbon Gas Sensor Technology Using GaN and ZnO-Based Devices
Jun 2009
Publication
In this paper we review our recent results in developing gas sensors for hydrogen using various device structures including ZnO nanowires and GaN High Electron Mobility Transistors (HEMTs). ZnO nanowires are particularly interesting because they have a large surface area to volume ratio which will improve sensitivity and because they operate at low current levels will have low power requirements in a sensor module. GaN-based devices offer the advantage of the HEMT structure high temperature operation and simple integration with existing fabrication technology and sensing systems. Improvements in sensitivity recoverability and reliability are presented. Also reported are demonstrations of detection of other gases including CO2 and C2H4 using functionalized GaN HEMTs. This is critical for the development of lab-on-a-chip type systems and can provide a significant advance towards a market-ready sensor application.
Strength, Hardness, and Ductility Evidence of Solid Solution Strengthening and Limited Hydrogen Embrittlement in the Alloy System Palladium-Copper (Cu wt. % 5–25)
Jul 2021
Publication
Strength hardness and ductility characteristics were determined for a series of palladium-copper alloys that compositionally vary from 5 to 25 weight percent copper. Alloy specimens subjected to vacuum annealing showed clear evidence of solid solution strengthening. These specimens showed as a function of increasing copper content increased yield strength ultimate strength and Vickers microhardness while their ductility was little affected by compositional differences. Annealed alloy specimens subsequently subjected to exposure to hydrogen at 323 K and PH2 = 1 atm showed evidence of hydrogen embrittlement up to a composition of ~15 wt. % Cu. The magnitude of the hydrogen embrittlement decreased with increasing copper content in the alloy.
Impact of Hydrogen/Natural Gas Blends on Partially Premixed Combustion Equipment: NOx Emission and Operational Performance
Feb 2022
Publication
Several North American utilities are planning to blend hydrogen into gas grids as a short‐ term way of addressing the scalable demand for hydrogen and as a long‐term decarbonization strat‐ egy for ‘difficult‐to‐electrify’ end uses. This study documents the impact of 0–30% hydrogen blends by volume on the performance emissions and safety of unadjusted equipment in a simulated use environment focusing on prevalent partially premixed combustion designs. Following a thorough literature review the authors describe three sets of results: operating standard and “ultra‐low NOx” burners from common heating equipment in “simulators” with hydrogen/methane blends up to 30% by volume in situ testing of the same heating equipment and field sampling of a wider range of equipment with 0–10% hydrogen/natural gas blends at a utility‐owned training facility. The equipment was successfully operated with up to 30% hydrogen‐blended fuels with limited visual changes to flames and key trends emerged: (a) a decrease in the input rate from 0 to 30% H2 up to 11% often in excess of the Wobbe Index‐based predictions; (b) NOx and CO emissions are flat or decline (air‐free or energy‐adjusted basis) with increasing hydrogen blending; and (c) a minor de‐ crease (1.2%) or increase (0.9%) in efficiency from 0 to 30% hydrogen blends for standard versus ultra‐low NOx‐type water heaters respectively.
Everything About Hydrogen Podcast: M&A in the Modern Hydrogen Economy
Sep 2021
Publication
This week we have Christopher Jackson in the hot seat as he catches up with BayoTech CEO Mo Vargas and BayoTech’s new President Michael Koonce to discuss the acquisition of IGX Group. Mergers & Acquisition activity has been growing in the hydrogen space with commentators suggesting the market is maturing faster than expected and customers seeking more integrated solutions. In this episode we look at the IGX acquisition by BayoTech and ask why the deal made sense what it means for the market and other participants and what listeners can learn from the deal to foreshadow future activity.
The podcast can be found on their website
The podcast can be found on their website
Hydrogen Storage in Pure and Boron-Substituted Nanoporous Carbons—Numerical and Experimental Perspective
Aug 2021
Publication
Nanoporous carbons remain the most promising candidates for effective hydrogen storage by physisorption in currently foreseen hydrogen-based scenarios of the world’s energy future. An optimal sorbent meeting the current technological requirement has not been developed yet. Here we first review the storage limitations of currently available nanoporous carbons then we discuss possible ways to improve their storage performance. We focus on two fundamental parameters determining the storage (the surface accessible for adsorption and hydrogen adsorption energy). We define numerically the values nanoporous carbons have to show to satisfy mobile application requirements at pressures lower than 120 bar. Possible necessary modifications of the topology and chemical compositions of carbon nanostructures are proposed and discussed. We indicate that pore wall fragmentation (nano-size graphene scaffolds) is a partial solution only and chemical modifications of the carbon pore walls are required. The positive effects (and their limits) of the carbon substitutions by B and Be atoms are described. The experimental ‘proof of concept’ of the proposed strategies is also presented. We show that boron substituted nanoporous carbons prepared by a simple arc-discharge technique show a hydrogen adsorption energy twice as high as their pure carbon analogs. These preliminary results justify the continuation of the joint experimental and numerical research effort in this field.
Non-precious Electrocatalysts for Oxygen Evolution Reaction in Anion Exchange Membrane Water Electrolysis: A Mini Review
Sep 2021
Publication
Anion exchange membrane water electrolysis (AEMWE) is considered the next generation of green hydrogen production method because it uses low-cost non-noble metal oxide electrocatalyst electrodes and can store highpurity hydrogen under high pressure. However the commercialization of AEMWE with non-precious metal oxide electrocatalysts is challenging due to low electrocatalytic activity and durability. Overcoming the low kinetics caused by four-electron transfer is vital in addressing the low activity of non-noble metal oxide electrocatalysts for oxygen evolution reaction. This article overviews the synthesis methods and related techniques for various anode electrodes applied to AEMWE systems. We highlight effective strategies that have been developed to improve the performance and durability of the non-precious electrocatalysts and ensure the stable operation of AEMWE followed by a critical perspective to encourage the development of this technology.
A New Model for Constant Fuel Utilization and Constant Fuel Flow in Fuel Cells
Mar 2019
Publication
This paper presents a new model of fuel cells for two different modes of operation: constant fuel utilization control (constant stoichiometry condition) and constant fuel flow control (constant flow rate condition). The model solves the long-standing problem of mixing reversible and irreversible potentials (equilibrium and non-equilibrium states) in the Nernst voltage expression. Specifically a Nernstian gain term is introduced for the constant fuel utilization condition and it is shown that the Nernstian gain is an irreversibility in the computation of the output voltage of the fuel cell. A Nernstian loss term accounts for an irreversibility for the constant fuel flow operation. Simulation results are presented. The model has been validated against experimental data from the literature.
1921–2021: A Century of Renewable Ammonia Synthesis
Apr 2022
Publication
Synthetic ammonia manufactured by the Haber–Bosch process and its variants is the key to securing global food security. Hydrogen is the most important feedstock for all synthetic ammonia processes. Renewable ammonia production relies on hydrogen generated by water electrolysis using electricity generated from hydropower. This was used commercially as early as 1921. In the present work we discuss how renewable ammonia production subsequently emerged in those countries endowed with abundant hydropower and in particular in regions with limited or no oil gas and coal deposits. Thus renewable ammonia played an important role in national food security for countries without fossil fuel resources until after the mid-20th century. For economic reasons renewable ammonia production declined from the 1960s onward in favor of fossil-based ammonia production. However renewable ammonia has recently gained traction again as an energy vector. It is an important component of the rapidly emerging hydrogen economy. Renewable ammonia will probably play a significant role in maintaining national and global energy and food security during the 21st century.
Finding Synergy Between Renewables and Coal: Flexible Power and Hydrogen Production from Advanced IGCC Plants with Integrated CO2 Capture
Feb 2021
Publication
Variable renewable energy (VRE) has seen rapid growth in recent years. However VRE deployment requires a fleet of dispatchable power plants to supply electricity during periods with limited wind and sunlight. These plants will operate at reduced utilization rates that pose serious economic challenges. To address this challenge this paper presents the techno-economic assessment of flexible power and hydrogen production from integrated gasification combined cycles (IGCC) employing the gas switching combustion (GSC) technology for CO2 capture and membrane assisted water gas shift (MAWGS) reactors for hydrogen production. Three GSC-MAWGS-IGCC plants are evaluated based on different gasification technologies: Shell High Temperature Winkler and GE. These advanced plants are compared to two benchmark IGCC plants one without and one with CO2 capture. All plants utilize state-of-the-art H-class gas turbines and hot gas clean-up for maximum efficiency. Under baseload operation the GSC plants returned CO2 avoidance costs in the range of 24.9–36.9 €/ton compared to 44.3 €/ton for the benchmark. However the major advantage of these plants is evident in the more realistic mid-load scenario. Due to the ability to keep operating and sell hydrogen to the market during times of abundant wind and sun the best GSC plants offer a 6–11%-point higher annual rate of return than the benchmark plant with CO2 capture. This large economic advantage shows that the flexible GSC plants are a promising option for balancing VRE provided a market for the generated clean hydrogen exists.
A Global Review of the Hydrogen Energy Eco-System
Feb 2023
Publication
Climate change primarily caused by the greenhouse gases emitted as a result of the consumption of carbon-based fossil fuels is considered one of the biggest challenges that humanity has ever faced. Moreover the Ukrainian crisis in 2022 has complicated the global energy and food status quo more than ever. The permanency of this multifaceted fragility implies the need for increased efforts to have energy independence and requires long-term solutions without fossil fuels through the use of clean zero-carbon renewables energies. Hydrogen technologies have a strong potential to emerge as an energy eco-system in its production-storage-distribution-utilization stages with its synergistic integration with solar-wind-hydraulic-nuclear and other zero-carbon clean renewable energy resources and with the existing energy infrastructure. In this paper we provide a global review of hydrogen energy need related policies practices and state of the art for hydrogen production transportation storage and utilization.
Spherically Expanding Flame Simulations in Cantera Using a Lagrangian Formulation
Sep 2021
Publication
A Lagrangian-based one-dimensional approach has been developed using Cantera to study the dynamics of spherically expanding flames. The detailed reaction model USC-Mech II has been employed to examine flame propagating in hydrogen-air mixtures. In the first part our approach has been validated against laminar flame speed and Markstein number data from the literature. It was shown that the laminar flame speed was predicted within 5% on average but that discrepancies were observed for the Markstein number especially for rich mixtures. In the second part a detailed analysis of the thermo-chemical dynamics along the path of Lagrangian particles propagating in stretched flames was performed. For mixtures with negative Markstein lengths it was found that at high stretch rates the mixture entering the reaction-dominated period is less lean with respect to the initial mixture than at low stretch rate. This induces a faster rate of chemical heat release and of active radical production which results in a higher flame propagation speed. Opposite effects were observed for mixtures with positive Markstein lengths for which slower flame propagation was observed at high stretch rates compared to low stretch rates."
Everything About Hydrogen Podcast: Hydrogen Review of 2022
Oct 2022
Publication
In order to wrap Season 3 of EAH appropriately we are honored to have our most popular EAH guest back with us Alicia Eastman President and Co-Founder of Intercontinental Energy is here to help us review the big hydrogen happenings of 2022 and preview some of the most important predictions and expectations for the sector coming for 2023.
The podcast can be found on their website.
The podcast can be found on their website.
Opportunities for Low-carbon Generation and Storage Technologies to Decarbonise the Future Power System
Feb 2023
Publication
Alternatives to cope with the challenges of high shares of renewable electricity in power systems have been addressed from different approaches such as energy storage and low-carbon technologies. However no model has previously considered integrating these technologies under stability requirements and different climate conditions. In this study we include this approach to analyse the role of new technologies to decarbonise the power system. The Spanish power system is modelled to provide insights for future applications in other regions. After including storage and low-carbon technologies (currently available and under development) batteries and hydrogen fuel cells have low penetration and the derived emission reduction is negligible in all scenarios. Compressed air storage would have a limited role in the short term but its performance improves in the long term. Flexible generation technologies based on hydrogen turbines and long-duration storage would allow the greatest decarbonisation providing stability and covering up to 11–14 % of demand in the short and long term. The hydrogen storage requirement is equivalent to 18 days of average demand (well below the theoretical storage potential in the region). When these solutions are considered decarbonising the electricity system (achieving Paris targets) is possible without a significant increase in system costs (< € 114/MWh).
Techno-economic Feasibility of Hybrid PV/wind/battery/thermal Storage Trigeneration System: Toward 100% Energy Independency and Green Hydrogen Production
Dec 2022
Publication
With the clear adverse impacts of fossil fuel-based energy systems on the climate and environment ever-growing interest and rapid developments are taking place toward full or nearly full dependence on renewable energies in the next few decades. Estonia is a European country with large demands for electricity and thermal energy for district heating. Considering it as the case study this work explores the feasibility and full potential of optimally sized photovoltaic (PV) wind and PV/wind systems equipped with electric and thermal storage to fulfill those demands. Given the large excess energy from 100% renewable energy systems for an entire country this excess is utilized to first meet the district heating demand and then to produce hydrogen fuel. Using simplified models for PV and wind systems and considering polymer electrolyte membrane (PEM) electrolysis a genetic optimizer is employed for scanning Estonia for optimal installation sites of the three systems that maximize the fulfillment of the demand and the supply–demand matching while minimizing the cost of energy. The results demonstrate the feasibility of all systems fully covering the two demands while making a profit compared to selling the excess produced electricity directly. However the PV-driven system showed enormous required system capacity and amounts of excess energy with the limited solar resources in Estonia. The wind system showed relatively closer characteristics to the hybrid system but required a higher storage capacity by 75.77%. The hybrid PV/wind-driven system required a total capacity of 194 GW most of which belong to the wind system. It was also superior concerning the amount (15.05 × 109 tons) and cost (1.42 USD/kg) of the produced green hydrogen. With such full mapping of the installation capacities and techno-economic parameters of the three systems across the country this study can assist policymakers when planning different country-scale cogeneration systems.
Artificial Intelligence/Machine Learning in Energy Management Systems, Control, and Optimization of Hydrogen Fuel Cell Vehicles
Mar 2023
Publication
Environmental emissions global warming and energy-related concerns have accelerated the advancements in conventional vehicles that primarily use internal combustion engines. Among the existing technologies hydrogen fuel cell electric vehicles and fuel cell hybrid electric vehicles may have minimal contributions to greenhouse gas emissions and thus are the prime choices for environmental concerns. However energy management in fuel cell electric vehicles and fuel cell hybrid electric vehicles is a major challenge. Appropriate control strategies should be used for effective energy management in these vehicles. On the other hand there has been significant progress in artificial intelligence machine learning and designing data-driven intelligent controllers. These techniques have found much attention within the community and state-of-the-art energy management technologies have been developed based on them. This manuscript reviews the application of machine learning and intelligent controllers for prediction control energy management and vehicle to everything (V2X) in hydrogen fuel cell vehicles. The effectiveness of data-driven control and optimization systems are investigated to evolve classify and compare and future trends and directions for sustainability are discussed.
Life Cycle Assessment of Hydrogen Transportation Pathways via Pipelines and Truck Trailers: Implications as a Low Carbon Fuel
Sep 2022
Publication
Hydrogen fuel cells have the potential to play a significant role in the decarbonization of the transportation sector globally and especially in California given the strong regulatory and policy focus. Nevertheless numerous questions arise regarding the environmental impact of the hydrogen supply chain. Hydrogen is usually delivered on trucks in gaseous form but can also be transported via pipelines as gas or via trucks in liquid form. This study is a comparative attributional life cycle analysis of three hydrogen production methods alongside truck and pipeline transportation in gaseous form. Impacts assessed include global warming potential (GWP) nitrogen oxide volatile organic compounds and particulate matter 2.5 (PM2.5). In terms of GWP the truck transportation pathway is more energy and ecologically intensive than pipeline transportation despite gaseous truck transport being more economical. A sensitivity analysis of pipeline transportation and life cycle inventories (LCI) attribution is included. Results are compared across multiple scenarios of the production and transportation pathways to discover the strongest candidates for minimizing the environmental footprint of hydrogen production and transportation. The results indicate the less ecologically intensive pathway is solar electrolysis through pipelines. For 1 percent pipeline attribution the total CO2eq produced per consuming 1 MJ of hydrogen in a fuel cell pickup truck along this pathway is 50.29 g.
Everything About Hydrogen Podcast: Where Does Hydrogen Fit in the Global Energy Transition?
Apr 2022
Publication
On this episode the EAH team discusses the role of hydrogen in the energy transition with Michael Liebreich Chairman and CEO of Liebreich Associates. Michael is an acknowledged thought leader on clean energy mobility technology climate sustainability and finance. He is the founder and senior contributor to Bloomberg New Energy Finance a member of numerous industry governmental and multilateral advisory boards an angel investor a former member of the board of Transport for London and an Advisor to the UK Board of Trade.
The podcast can be found on their website
The podcast can be found on their website
Effective Thermal Conductivity of Insulation Materials for Cryogenic LH2 Storage Tanks: A Review
Nov 2022
Publication
An accurate estimation of the effective thermal conductivity of various insulation materials is essential in the evaluation of heat leak and boil-off rate from liquid hydrogen storage tanks. In this work we review the existing experimental data and various proposed correlations for predicting the effective conductivity of insulation systems consisting of powders foams fibrous materials and multilayer systems. We also propose a first principles-based correlation that may be used to estimate the dependence of the effective conductivity as a function of temperature interstitial gas composition pressure and structural properties of the material. We validate the proposed correlation using available experimental data for some common insulation materials. Further improvements and testing of the proposed correlation using laboratory scale data obtained using potential LH2 tank insulation materials are also discussed.
Solar Water Splitting by Photovoltaic-electrolysis with a Solar-to-hydrogen Efficiency over 30%
Oct 2016
Publication
Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.
Thermocatalytic Hydrogen Production Through Decomposition of Methane-A Review
Oct 2021
Publication
Consumption of fossil fuels especially in transport and energy-dependent sectors has led to large greenhouse gas production. Hydrogen is an exciting energy source that can serve our energy purposes and decrease toxic waste production. Decomposition of methane yields hydrogen devoid of COx components thereby aiding as an eco-friendly approach towards large-scale hydrogen production. This review article is focused on hydrogen production through thermocatalytic methane decomposition (TMD) for hydrogen production. The thermodynamics of this approach has been highlighted. Various methods of hydrogen production from fossil fuels and renewable resources were discussed. Methods including steam methane reforming partial oxidation of methane auto thermal reforming direct biomass gasification thermal water splitting methane pyrolysis aqueous reforming and coal gasification have been reported in this article. A detailed overview of the different types of catalysts available the reasons behind their deactivation and their possible regeneration methods were discussed. Finally we presented the challenges and future perspectives for hydrogen production via TMD. This review concluded that among all catalysts nickel ruthenium and platinum-based catalysts show the highest activity and catalytic efficiency and gave carbon-free hydrogen products during the TMD process. However their rapid deactivation at high temperatures still needs the attention of the scientific community.
Hydrogen Compatability of Structural Materials in Natural Gas Networks
Sep 2021
Publication
There is growing interest in utilizing existing infrastructure for storage and distribution of hydrogen. Gaseous hydrogen for example could be added to natural gas in the short-term whereas entire systems can be converted to transmission and distribution networks for hydrogen. Many active programs around the world are exploring the safety and feasibility of adding hydrogen to these networks. Concerns have been raised about the structural integrity of materials in these systems when exposed to hydrogen. In general the effects of hydrogen on these materials are grossly misunderstood. Hydrogen unequivocally degrades fatigue and fracture resistance of structural steels in these systems even for low hydrogen partial pressure (-l bar). In most systems however hydrogen effects will not be apparent because the stresses in these systems remain very low. Another misunderstanding results from the kinetics of the hydrogen effects: hydrogen degrades fatigue and fracture properties immediately upon exposure to gaseous hydrogen and those effects disappear when the hydrogen environment is removed even after prolonged exposure. There is also a misperception that materials selection can mitigate hydrogen effects. While some classes of materials perform better in hydrogen environments than other classes for most practical circumstances the range of response for a given class of material in gaseous hydrogen environments is rather narrow. These observations can be systematically characterized by considering the intersection of materials environmental and mechanical variables associated with the service application. Indeed any safety assessment of a hydrogen pressure system must quantitatively consider these aspects. In this report we quantitatively evaluate the importance of the materials environmental and mechanical variables in the context of hydrogen additions to natural gas piping and pipeline systems with the aim of providing an informed perspective on parameters relevant for assessing structural integrity of natural gas systems in the presence of gaseous hydrogen.
No more items...