Institution of Gas Engineers & Managers
Research Progress of Hydrogen Production Technology and Related Catalysts by Electrolysis of Water
Jun 2023
Publication
As a clean and renewable energy source for sustainable development hydrogen energy has gained a lot of attention from the general public and researchers. Hydrogen production by electrolysis of water is the most important approach to producing hydrogen and it is also the main way to realize carbon neutrality. In this paper the main technologies of hydrogen production by electrolysis of water are discussed in detail; their characteristics advantages and disadvantages are analyzed; and the selection criteria and design criteria of catalysts are presented. The catalysts used in various hydrogen production technologies and their characteristics are emphatically expounded aiming at optimizing the existing catalyst system and developing new high-performance high-stability and low-cost catalysts. Finally the problems and solutions in the practical design of catalysts are discussed and explored.
Optimal Pathways for the Decarbonisation of the Transport Sector: Trade-offs Between Battery and Hydrogen Technologies Using a Whole Energy System Perspective
Jun 2023
Publication
Several countries have revised their targets in recent years to reach net-zero CO2 emissions across all sectors by 2050 and the transport sector is responsible for a significant share of these emissions. This study compares possible pathways to decarbonise the transport sector through electrification including passenger cars light commercial vehicles and heavy commercial vehicles. To do so we explore 125 scenarios by varying the share of battery and hydrogen-based fuel cell electric vehicles in each of the three categories above independently. We further model the decarbonisation of the industrial hydrogen demand using electrolysers with hydrogen storage. To explore the potential role of electric and hydrogen transport as well as their trade-offs we use GRIMSEL an open-source sector coupling energy system model of Switzerland which includes the residential commercial industrial and transport sectors with four energy carriers namely electricity heat hot water and hydrogen. The total costs are minimised from a social planner perspective. We find that the full electrification of the transport sector could lead on average to a 12% increase in costs by 2050 and 1.3 MtCO2/year which represents a 90% CO2 emissions reduction for the whole sector. Second the transport energy self-sufficiency (i.e. the share of domestic electricity generation in final transport demand) may reach up to 50% for the scenarios with the largest share of battery electric vehicles mainly due to a smaller energy demand than with hydrogen vehicles. Third more than three quarters of the industrial hydrogen production is met by local photovoltaic electricity coupled with battery at minimum costs i.e. green hydrogen. Finally the use of hydrogen as an energy carrier to store electricity over a long period is not cost-optimal.
Hydrogen Storage by Liquid Hydrogen Carriers: Catalyst, Renewable Carrier, and Technology - A Review
Mar 2023
Publication
Hydrogen has attracted widespread attention as a carbon-neutral energy source but developing efficient and safe hydrogen storage technologies remains a huge challenge. Recently liquid organic hydrogen carriers (LOHCs) technology has shown great potential for efficient and stable hydrogen storage and transport. This technology allows for safe and economical large-scale transoceanic transportation and long-cycle hydrogen storage. In particular traditional organic hydrogen storage liquids are derived from nonrenewable fossil fuels through costly refining procedures resulting in unavoidable environmental contamination. Biomass holds great promise for the preparation of LOHCs due to its unique carbon-balance properties and feasibility to manufacture aromatic and nitrogen-doped compounds. According to recent studies almost 100% conversion and 92% yield of benzene could be obtained through advanced biomass conversion technologies showing great potential in preparing biomass-based LOHCs. Overall the present LOHCs systems and their unique applications are introduced in this review and the technical paths are summarized. Furthermore this paper provides an outlook on the future development of LOHCs technology focusing on biomass-derived aromatic and N-doped compounds and their applications in hydrogen storage.
Green Hydrogen Futures: Tensions of Energy and Justice Within Sociotechnical Imaginaries
May 2024
Publication
As a reformist approach to low-carbon transitions green hydrogen is often promoted as an easy replacement for fossil fuels. This substitution narrative makes this technology compelling as it offers to reduce emissions while continuing the contemporary energy system. Using ‘sociotechnical imaginaries’ this paper explores the underlying political processes on what appears to be a mostly technical vision of green hydrogen. Analysis through expert interviews in Aotearoa New Zealand revealed two contrasting energy visions one emphasizing the technical role of green hydrogen in New Zealand's transition—the green hydrogen imaginary and the other which advocated for a future motivated by social change—the alternative energy imaginary. Comparing the tensions through a lens of hydrogen justice exposed the assumptions and exclusions present in the emerging green hydrogen imaginary. This paper argues that the technocratic business as usual approach of green hydrogen depoliticizes the social nature of energy and thus risks perpetuating inequalities and harms present in the current energy system. However these critiques also suggest that there is hope for green hydrogen to be reimagined in more ethical and just ways.
Energy and Environmental Costs in Transitioning to Zero and Low Emission Trucks for the Australian Truck Fleet: An Industry Perspective
May 2024
Publication
Modernising Australia’s old truck fleet and adopting a more stringent standard to reduce emissions and air pollutants is a primary objective for the Australian truck sector. Various strategies worldwide have been introduced to cut emissions and pollutants in the truck sector such as a low-emission strategy supported by strict diesel standards and a zero-emission strategy to shift to battery-electric or hydrogen trucks. The paper focuses on emissions and local air pollutants of trucks under various transition scenarios at both the tailpipe and the wider supply chain including domestic power generation and hydrogen production. In contrast for diesel we focus on tailpipe outputs following fuel standards in Australia given diesel is imported other than in some limited refineries. We compare and recommend actions that government and truck operators may take in the near to longer term in transitioning to cleaner energy. We tested a number of scenarios using a decision support system incorporating all the latest information on costs and emissions for all truck classes using diesel electric or hydrogen. A key finding from our scenario tests is that the current electricity mix has high carbon emissions and air pollutants due to fossil fuel-fired sources for power generation. Without improvement in using renewable energy sources in the future transitioning to electric trucks implies more carbon emissions and air pollutants in the atmosphere from power plants even though electric trucks generate zero tailpipe emissions. The main motivation for switching to zero-emission trucks is energy cost savings. We urge the government to decide on a clear roadmap for the truck sector before the sector is in a position to take action to shift to low or zero-emission trucks without totally relying on the likely reduction of emission intensity in electricity and renewable energy production.
Wind Farm Control for Improved Battery Lifetime in Green Hydrogen Systems without a Grid Connection
Jul 2023
Publication
Green hydrogen is likely to play an important role in meeting the net-zero targets of countries around the globe. One potential option for green hydrogen production is to run electrolysers directly from offshore wind turbines with no grid connection and hence no expensive cabling to shore. In this work an innovative proof of concept of a wind farm control methodology designed to reduce variability in wind farm active power output is presented. Smoothing the power supplied by the wind farm to the battery reduces the size and number of battery charge cycles and helps to increase battery lifetime. This work quantifies the impact of the wind farm control method on battery lifetime for wind farms of 1 4 9 and 16 wind turbines using suitable wind farm battery and electrolyser models. The work presented shows that wind farm control for smoothing wind farm power output could play a critical role in reducing the levelised cost of green hydrogen produced from wind farms with no grid connection by reducing the damaging load cycles on batteries in the system. Hence this work paves the way for the design and testing of a full implementation of the wind farm controller.
Linking Geological and Infrastructural Requirements for Large-scale Underground Hydrogen Storage in Germany
Jun 2023
Publication
Hydrogen storage might be key to the success of the hydrogen economy and hence the energy transition in Germany. One option for cost-effective storage of large quantities of hydrogen is the geological subsurface. However previous experience with underground hydrogen storage is restricted to salt caverns which are limited in size and space. In contrast pore storage facilities in aquifers -and/or depleted hydrocarbon reservoirs- could play a vital role in meeting base load needs due to their wide availability and large storage capacity but experiences are limited to past operations with hydrogen-bearing town gas. To overcome this barrier here we investigate hydrogen storage in porous storage systems in a two-step process: 1) First we investigate positive and cautionary indicators for safe operations of hydrogen storage in pore storage systems. 2) Second we estimate hydrogen storage capacities of pore storage systems in (current and decommissioned) underground natural gas storage systems and saline aquifers. Our systematic review highlights that optimal storage conditions in terms of energy content and hydrogen quality are found in sandstone reservoirs in absence of carbonate and iron bearing accessory minerals at a depth of approx. 1100 m and a temperature of at least 40°C. Porosity and permeability of the reservoir formation should be at least 20% and 5 × 10−13 m2 (~500 mD) respectively. In addition the pH of the brine should fall below 6 and the salinity should exceed 100 mg/L. Based on these estimates the total hydrogen storage capacity in underground natural gas storages is estimated to be up to 8 billion cubic meters or (0.72 Mt at STP) corresponding to 29 TWh of energy equivalent of hydrogen. Saline aquifers may offer additional storage capacities of 81.6–691.8 Mt of hydrogen which amounts to 3.2 to 27.3 PWh of energy equivalent of hydrogen the majority of which is located in the North German basin. Pore storage systems could therefore become a crucial element of the future German hydrogen infrastructure especially in regions with large industrial hydrogen (storage) demand and likely hydrogen imports via pipelines and ships.
OIES Podcast - Hydrogen Storage for a Net-zero Carbon Future
May 2023
Publication
In this podcast David Ledesma engages in a conversation with Alex Patonia and Rahmat Poudineh on their recent paper focusing on hydrogen storage for a net-zero carbon future. The podcast delves into the various types of hydrogen storage options highlighting their relative strengths and drawbacks.
In order for a hydrogen economy to be established several key factors must be addressed including efficient and decarbonized production adequate transportation infrastructure and the deployment of suitable hydrogen storage facilities. However hydrogen presents unique challenges when it comes to storage and handling. Due to its extremely low volumetric energy density under ambient conditions hydrogen cannot be efficiently or economically stored without undergoing compression liquefaction or conversion into other more manageable substances.
At present there exist several hydrogen storage solutions at different levels of technology market and commercial readiness each with varying applications depending on specific circumstances.
Additionally the podcast explores the primary barriers that hinder investment in hydrogen storage and the essential components of a viable business model that can address the primary risks to which potential hydrogen storage investors are exposed.
The podcast can be found on their website.
In order for a hydrogen economy to be established several key factors must be addressed including efficient and decarbonized production adequate transportation infrastructure and the deployment of suitable hydrogen storage facilities. However hydrogen presents unique challenges when it comes to storage and handling. Due to its extremely low volumetric energy density under ambient conditions hydrogen cannot be efficiently or economically stored without undergoing compression liquefaction or conversion into other more manageable substances.
At present there exist several hydrogen storage solutions at different levels of technology market and commercial readiness each with varying applications depending on specific circumstances.
Additionally the podcast explores the primary barriers that hinder investment in hydrogen storage and the essential components of a viable business model that can address the primary risks to which potential hydrogen storage investors are exposed.
The podcast can be found on their website.
The Potential Role of a Hydrogen Network in Europe
Jul 2023
Publication
Europe’s electricity transmission expansion suffers many delays despite its significance for integrating renewable electricity. A hydrogen network reusing the existing gas network could not only help to supply the demand for low-emission fuels but could also balance variations in wind and solar energies across the continent and thus avoid power grid expansion. Our investigation varies the allowed expansion of electricity and hydrogen grids in net-zero CO2 scenarios for a sector-coupled European energy system capturing transmission bottlenecks renewable supply and demand variability and pipeline retrofitting and geological storage potentials. We find that a hydrogen network connecting regions with low-cost and abundant renewable potentials to demand centers electrofuel production and cavern storage sites reduces system costs by up to 26 bnV/a (3.4%). Although expanding both networks together can achieve the largest cost reductions by 9.9% the expansion of neither is essential for a net-zero system as long as higher costs can be accepted and flexibility options allow managing transmission bottlenecks.
Renewable Hydrogen: Modular Concepts from Production over Storage to the Consumer
Jan 2021
Publication
A simulation tool called HYDRA to optimize individual hydrogen infrastructure layouts is presented. The different electrolyzer technologies namely proton exchange membrane electrolysis anion exchange membrane electrolysis alkaline electrolysis and solid oxide electrolysis as well as hydrogen storage possibilities are described in more detail and evaluated. To illustrate the application opportunities of HYDRA three project examples are discussed. The examples include central and decentral applications while taking the usage of hydrogen into account.
Simulation and Control Strategy Study of the Hydrogen Supply System of a Fuel Cell Engine
Jun 2023
Publication
The hydrogen supply system is one of the important components of a hydrogen fuel cell engine and its performance has an important impact on the economy and power of the engine system. In this paper a hydrogen supply system based on cyclic mode is designed for a hydrogen fuel cell stack with a full load power of 150 kW and the corresponding hydrogen fuel cell engine simulation model is built and validated. The control strategy of the fuel cell hydrogen supply system is developed and its effect is verified through bench tests. The results show that the developed control strategy can keep the volume fraction of nitrogen below 6% the hydrogen excess ratio does not exceed 1.5 under medium and high operating conditions the anode pressure is relatively stable and the stack can operate efficiently and reliably.
Comparative Exergy and Environmental Assessment of the Residual Biomass Gasification Routes for Hydrogen and Ammonia Production
Jul 2023
Publication
The need to reduce the dependency of chemicals on fossil fuels has recently motivated the adoption of renewable energies in those sectors. In addition due to a growing population the treatment and disposition of residual biomass from agricultural processes such as sugar cane and orange bagasse or even from human waste such as sewage sludge will be a challenge for the next generation. These residual biomasses can be an attractive alternative for the production of environmentally friendly fuels and make the economy more circular and efficient. However these raw materials have been hitherto widely used as fuel for boilers or disposed of in sanitary landfills losing their capacity to generate other by-products in addition to contributing to the emissions of gases that promote global warming. For this reason this work analyzes and optimizes the biomass-based routes of biochemical production (namely hydrogen and ammonia) using the gasification of residual biomasses. Moreover the capture of biogenic CO2 aims to reduce the environmental burden leading to negative emissions in the overall energy system. In this context the chemical plants were designed modeled and simulated using Aspen plus™ software. The energy integration and optimization were performed using the OSMOSE Lua Platform. The exergy destruction exergy efficiency and general balance of the CO2 emissions were evaluated. As a result the irreversibility generated by the gasification unit has a relevant influence on the exergy efficiency of the entire plant. On the other hand an overall negative emission balance of −5.95 kgCO2/kgH2 in the hydrogen production route and −1.615 kgCO2/kgNH3 in the ammonia production route can be achieved thus removing from the atmosphere 0.901 tCO2/tbiomass and 1.096 tCO2/tbiomass respectively.
Techno-Economic Assessment of a Full-Chain Hydrogen Production by Offshore Wind Power
May 2024
Publication
Offshore wind power stands out as a promising renewable energy source offering substantial potential for achieving low carbon emissions and enhancing energy security. Despite its potential the expansion of offshore wind power faces considerable constraints in offshore power transmission. Hydrogen production derived from offshore wind power emerges as an efficient solution to overcome these limitations and effectively transport energy. This study systematically devises diverse hydrogen energy supply chains tailored to the demands of the transportation and chemical industries meticulously assessing the levelized cost of hydrogen (LCOH). Our findings reveal that the most cost-efficient means of transporting hydrogen to the mainland is through pipelines particularly when the baseline distance is 50 km and the baseline electricity price is 0.05 USD/kWh. Notably delivering hydrogen directly to the port via pipelines for chemical industries proves considerably more economical than distributing it to hydrogen refueling stations with a minimal cost of 3.6 USD/kg. Additionally we assessed the levelized cost of hydrogen (LCOH) for supply chains that transmit electricity to ports via submarine cables before hydrogen production and subsequent distribution to chemical plants. In comparison to offshore hydrogen production routes these routes exhibit higher costs and reduced competitiveness. Finally a sensitivity analysis was undertaken to scrutinize the impact of delivery distance and electricity prices on LCOH. The outcomes underscore the acute sensitivity of LCOH to power prices highlighting the potential for substantial reductions in hydrogen prices through concerted efforts to lower electricity costs.
A Comprehensive Resilience Assessment Framework for Hydrogen Energy Infrastructure Development
Jun 2023
Publication
In recent years sustainable development has become a challenge for many societies due to natural or other disruptive events which have disrupted economic environmental and energy infrastructure growth. Developing hydrogen energy infrastructure is crucial for sustainable development because of its numerous benefits over conventional energy sources. However the complexity of hydrogen energy infrastructure including production utilization and storage stages requires accounting for potential vulnerabilities. Therefore resilience needs to be considered along with sustainable development. This paper proposes a decision-making framework to evaluate the resilience of hydrogen energy infrastructure by integrating resilience indicators and sustainability contributing factors. A holistic taxonomy of resilience performance is first developed followed by a qualitative resilience assessment framework using a novel Intuitionistic fuzzy Weighted Influence Nonlinear Gauge System (IFWINGS). The results highlighted that Regulation and legislation Government preparation and Crisis response budget are the most critical resilience indicators in the understudy hydrogen energy infrastructure. A comparative case study demonstrates the practicality capability and effectiveness of the proposed approach. The results suggest that the proposed model can be used for resilience assessment in other areas.
Options for Methane Fuel Processing in PEMFC System with Potential Maritime Applications
Nov 2022
Publication
Proton-exchange membrane fuel cells (PEMFCs) are low-temperature fuel cells that have excellent starting performance due to their low operating temperature can respond quickly to frequent load fluctuations and can be manufactured in small packages. Unlike existing studies that mainly used hydrogen as fuel for PEMFCs in this study methane is used as fuel for PEMFCs to investigate its performance and economy. Methane is a major component of natural gas which is more economically competitive than hydrogen. In this study methane gas is reformed by the steam reforming method and is applied to the following five gas post-treatment systems: (a) Case 1—water– gas shift only (WGS) (b) Case 2—partial oxidation reforming only (PROX) (c) Case 3—methanation only (d) Case 4—WGS + methanation (e) Case 5—WGS + PROX. In the evaluation the carbon monoxide concentration in the gas did not exceed 10 ppm and the methane component which has a very large greenhouse effect was not regenerated in the post-treated exhaust gas. As a result Case 5 (WGS and PROX) is the only case that satisfied both criteria. Therefore we propose Case 5 as an optimized post-treatment system for methane reforming gas in ship PEMFCs.
Thermodynamic and Emission Analysis of a Hydrogen/Methane Fueled Gas Turbine
May 2023
Publication
The importance of hydrogen in the effort to decarbonize the power sector has grown immensely in recent years. Previous studies have investigated the effects of mixing hydrogen into natural gas for gas turbine combustors but limited studies have examined the resulting effects hydrogen addition has on the entire system. In this work a thermodynamic model of a gas turbine with combustion chemical kinetics integrated is created and the effects hydrogen addition (0-100 volume percent addition) has on the system performance emissions and combustion kinetics are analyzed. The maximum system performance is achieved when the maximum turbine inlet temperature is reached and the resulting optimal fuel/air equivalence ratio is determined. As hydrogen is added to the fuel mixture the optimal equivalence ratio shifts leaner causing non-linearity in emissions and system performance at optimal conditions. An analysis of variance is conducted and it is shown that isentropic efficiencies of the turbine and compressor influences the system performance the most out of any system parameter. While isentropic efficiencies of the turbine and compressor increase towards 100% an operating regime where the optimal system efficiency cannot be achieved is discovered due to the lower flammability limit of the fuel being reached. This can be overcome by mixing hydrogen into the fuel.
Technology Portfolio Assessment for Near-zero Emission Iron and Steel Industry in China
May 2023
Publication
China aims to peak CO2 emissions before 2030 and to achieve carbon neutrality before 2060; hence industrial sectors in China are keen to figure out appropriate pathways to support the national target of carbon neutrality. The objective of this study is to explore near-zero emission pathways for the steel industry of China through a detailed technology assessment. The innovative technology development has been simulated using the AIM-China/steel model developed by including material-based technologies and optimal cost analysis. Six scenarios have been given in terms of different levels of production output emission reduction and carbon tax. Near-zero emission and carbon tax scenarios have shown that China’s steel industry can achieve near-zero emission using electric furnaces and hydrogen-based direct reduction iron technologies with policy support. Based on these technologies minimised production costs have been calculated revealing that the steel produced by these technologies is cost-effective. Moreover the feedstock cost can play a key role in these technology portfolios especially the cost of scrap iron ore and hydrogen. In addition the feedstock supply can have strong regional effects and can subsequently impact the allocation of steelmaking in the future. Therefore China can achieve near-zero emissions in the steel industry and electric furnace and hydrogen-based direct reduction iron technologies are crucial to achieving them.
Techno-economic Assessment on Hybrid Energy Storage Systems Comprising Hydrogen and Batteries: A Case Study in Belgium
Jun 2023
Publication
This paper introduces a Techno-Economic Assessment (TEA) on present and future scenarios of different energy storage technologies comprising hydrogen and batteries: Battery Energy Storage System (BESS) Hydrogen Energy Storage System (H2ESS) and Hybrid Energy Storage System (HESS). These three configurations were assessed for different time horizons: 2019 2022 and 2030 under both on-grid and off-grid conditions. For 2030 a sensitivity analysis under different energy scenarios was performed covering other trends in on-grid electric consumption and prices CO2 taxation and the evolution of hydrogen technology prices from 2019 until 2030. The selected case study is the Research Park Zellik (RPZ) a CO2- neutral sustainable Local Energy Community (LEC) in Zellik Belgium. The software HOMER (Hybrid Optimisation Model for Electric Renewable) has been selected to design model and optimise the defined case study. The results showed that BESS was the most competitive when the electric grid was available among the three possible storage options. Additionally HESS was overall more competitive than H2ESS-only regardless of the grid connection mode. Finally as per HESS hydrogen was proved to play a complementary role when combined with batteries enhancing the flexibility of the microgrid and enabling deeper decarbonisation by reducing the electricity bought from the grid increasing renewable energy production and balancing toward an island operating mode.
Key Considerations for Evaluating Underground Hydrogen Storage (UHS) Potential in Five Contrasting Australian Basins
Apr 2024
Publication
Hydrogen gas can provide baseload energy as society decarbonizes through the energy transition. Underground Hydrogen Storage (UHS) will be secure convenient and scalable to accommodate excess hydrogen production or compensate temporary shortfalls in energy supply. Hydrogen is a gas under all viable subsurface conditions so is invasive mobile and low-density. Methane and CO2 are also stored underground but storage parameters differ for each affecting the balance of geological storage risks. UHS in Australia is most likely to utilise conventional sedimentary reservoir rocks bound by conventional trapping closures. Hydrogen energy density will affect the competitiveness of UHS against purpose-built surface storage or solution-mined salt cavities. This study presents an overview of key considerations when screening for UHS opportunities and evaluates them for five Australian sedimentary basins. A threshold storage depth mapped across them reveals that the most prospective UHS basins will have to function as integrated energy fluid resource systems.
Evaluation of Surplus Hydroelectricity Potential in Nepal until 2040 and its Use for Hydrogen Production Via Electrolysis
May 2023
Publication
The abundant hydro resources in Nepal have resulted in the generation of electricity almost exclusively from hydropower plants. Several hydropower plants are also currently under construction. There is no doubt that the surplus electricity will be significantly high in the coming years. Given the previous trend in electricity consumption it will be a challenge to maximize the use of surplus electricity. In this work the potential solutions to maximize the use of this surplus electricity have been analysed. Three approached are proposed: (i) increasing domestic electricity consumption by shifting the other energy use sectors to electricity (ii) cross-border export of electricity and (iii) conversion of electricity to hydrogen via electrolysis. The current state of energy demand and supply patterns in the country are presented. Future monthly demand forecasts and surplus electricity projections have been made. The hydrogen that can be produced with the surplus electricity via electrolysis is determined and an economic assessment is carried out for the produced hydrogen. The analysis of levelized cost of hydrogen (LCOH) under different scenarios resulted values ranging from 3.8 €/kg to 4.5 €/kg.
No more items...