Publications
Modeling and Technical-Economic Analysis of a Hydrogen Transport Network for France
Feb 2025
Publication
This work aims to study the technical and economical feasibility of a new hydrogen transport network by 2035 in France. The goal is to furnish charging stations for fuel cell electrical vehicles with hydrogen produced by electrolysis of water using low-carbon energy. Contrary to previous research works on hydrogen transport for road transport we assume a more realistic assumption of the demand side: we assume that only drivers driving more than 20000 km per year will switch to fuel cell electrical vehicles. This corresponds to a total demand of 100 TWh of electricity for the production of hydrogen by electrolysis. To meet this demand we primarily use surplus electricity production from wind power. This surplus will satisfy approximately 10% of the demand. We assume that the rest of the demand will be produced using surplus from nuclear power plants disseminated in regions. We also assume a decentralized production namely that 100 MW electrolyzers will be placed near electricity production plants. Using an optimization model we define the hydrogen transport network by considering decentralized production. Then we compare it with more centralized production. Our main conclusion is that decentralized production makes it possible to significantly reduce distribution costs particularly due to significantly shorter transport distances.
Advancing Nickel-based Catalysts for Enhanced Hydrogen Production: Innovations in Electrolysis and Catalyst Design
Feb 2025
Publication
Nickel-based catalysts recognized for their cost-efficiency and availability play a critical role in advancing hydrogen production technologies. This study evaluates their optimization in water electrolysis to improve efficiency and system stability. Key findings highlight the enhancement of these catalysts with nickel-iron oxyhydroxide and nickel-molybdenum co-catalysts. Technological innovations such as Perovskite Solar Cells integration for solar-to-hydrogen conversion are explored. The use of nickel foam enhances electrode durability offering valuable insights into designing sustainable and efficient hydrogen production systems.
Electric-thermal Collaborative System and Control for Hydrogen-fuel Cell Passenger Trains in the UK's Winter
Feb 2025
Publication
This paper presents a quantitative study on electric-thermal collaborative system for hydrogen-powered train reutilising the waste heat from fuel cell system for Heating Ventilation and Air Conditioning (HVAC). Firstly a hybrid train simulator is developed to simulate the train’s motion state. Heat generation from fuel cell is estimated using a fuel cell model while a detailed thermodynamic model for railway passenger coach is established to predict the heat demand. Furthermore an electric-thermal collaborative energy management strategy (ETCEMS) is proposed for the system to comprehensively optimise the on-train power distribution considering traction and auxiliary power. Finally comparative analysis is performed among the train with electric heater (EH) heat pump (HP) and heat pump-heat reuse (HP-HR). The results demonstrate that over a round trip the proposed HP-HR with ETC-EMS recovers over 22.88% residual heat and saves 16.17% of hydrogen consumption. For the daily operation it reduces hydrogen and energy consumption by 12.06% and 12.82 % respectively. The findings indicate that collaborative optimisation brings significant improvements on the global energy utilisation. The proposed design with ETC-EMS is potential to further enhance the economic viability of hydrail and contributes to the rail decarbonisation.
Optimizing Hydrogen Production for Sustainable Fuel Cell Electric Vehicles: Grid Impacts in the WECC Region
Jan 2025
Publication
The fuel cell electric vehicle (FCEV) is a promising transportation technology for resolving the air pollution and climate change issues in the United States. However a large-scale penetration of FCEVs would require a sustained supply of hydrogen which does not exist now. Water electrolysis can produce hydrogen reliably and sustainably if the electricity grid is clean but the impacts of FCEVs on the electricity grid are unknown. In this paper we develop a comprehensive framework to model FCEV-driving and -refueling behaviors the water electrolysis process and electricity grid operation. We chose the Western Electricity Coordinating Council (WECC) region for this case study. We modeled the existing WECC electricity grids and accounted for the additional electricity loads from FCEVs using a Production Cost Model (PCM). Additionally the hydrogen need for five million FCEVs leads to a 3% increase in electricity load for WECC. Our results show that an inflexible hydrogen-producing process leads to a 1.55% increase to the average cost of electricity while a flexible scenario leads to only a 0.9% increase. On the other hand oversized electrolyzers could take advantage of cheaper electricity generation opportunities thus lowering total system costs.
Ammonia Marine Engine Design for Enhanced Efficiency and Reduced Greenhouse Gas Emissions
Mar 2024
Publication
Pilot-diesel-ignition ammonia combustion engines have attracted widespread attentions from the maritime sector but there are still bottleneck problems such as high unburned NH3 and N2O emissions as well as low thermal efficiency that need to be solved before further applications. In this study a concept termed as in-cylinder reforming gas recirculation is initiated to simultaneously improve the thermal efficiency and reduce the unburned NH3 NOx N2O and greenhouse gas emissions of pilot-diesel-ignition ammonia combustion engine. For this concept one cylinder of the multi-cylinder engine operates rich of stoichiometric and the excess ammonia in the cylinder is partially decomposed into hydrogen then the exhaust of this dedicated reforming cylinder is recirculated into the other cylinders and therefore the advantages of hydrogen-enriched combustion and exhaust gas recirculation can be combined. The results show that at 3% diesel energetic ratio and 1000 rpm the engine can increase the indicated thermal efficiency by 15.8% and reduce the unburned NH3 by 89.3% N2O by 91.2% compared to the base/traditional ammonia engine without the proposed method. At the same time it is able to reduce carbon footprint by 97.0% and greenhouse gases by 94.0% compared to the traditional pure diesel mode.
Techno-economic Analysis and Dynamic Operation of Green Hydrogen-integrated Microgrid: An Application Study
Aug 2025
Publication
The shift to renewable energy sources requires systems that are not only environmentally sustainable but also cost-effective and reliable. Mitigating the inherent intermittency of renewable energy optimally managing the hybrid energy storage efficiently integrating the microgrid with the power grid and maximizing the lifespan of system components are the significant challenges that need to be addressed. With this aim the paper proposes an economic viability assessment framework with an optimized dynamic operation approach to determine the most stable cost-effective and environmentally sound system for a specific location and demand. The green integrated hybrid microgrid combines photovoltaic (PV) generation battery storage an electrolyzer a hydrogen tank and a fuel cell tailored for deployment in remote areas with limited access to conventional infrastructure. The study’s control strategy focuses on managing energy flows between the renewable energy resources battery and hydrogen storage systems to maximize autonomy considering real-time changes in weather conditions load variations and the state of charge of both the battery and hydrogen storage units. The core system’s components include the interlinking converter which transfers power between AC and DC grids and the decentralized droop control approach which adjusts the converter’s output to ensure balanced and efficient power sharing particularly during overload conditions. A cloud-based Internet of Things (IoT) platform has been employed allowing continuous monitoring and data analysis of the green integrated microgrid to provide insights into the system's health and performance during the dynamic operation. The results presented in this paper confirmed that the proposed framework enabled the strategic use of energy storage particularly hydrogen systems. The optimal operational control of green hydrogen-integrated microgrid can indeed mitigate voltage and frequency fluctuations caused by variable solar input ensuring stable power delivery without reliance on the main grid or fossil fuel backups.
Optimization of the Design of Underground Hydrogen Storage in Salt Caverns in Southern Ontario, Canada
Jan 2025
Publication
With the issue of energy shortages becoming increasingly serious the need to shift to sustainable and clean energy sources has become urgent. However due to the intermittent nature of most renewable energy sources developing underground hydrogen storage (UHS) systems as backup energy solutions offers a promising solution. The thick and regionally extensive salt deposits in Unit B of Southern Ontario Canada have demonstrated significant potential for supporting such storage systems. Based on the stratigraphy statistics of unit B this study investigates the feasibility and stability of underground hydrogen storage (UHS) in salt caverns focusing on the effects of cavern shape geometric parameters and operating pressures. Three cavern shapes—cylindrical cone-shaped and ellipsoid-shaped—were analyzed using numerical simulations. Results indicate that cylindrical caverns with a diameter-to-height ratio of 1.5 provide the best balance between storage capacity and structural stability while ellipsoid-shaped caverns offer reduced stress concentration but have less storage space posing practical challenges during leaching. The results also indicate that the optimal pressure range for maintaining stability and minimizing leakage lies between 0.4 and 0.7 times the vertical in situ stress. Higher pressures increase storage capacity but lead to greater stress displacements and potential leakage risks while lower pressure leads to internal extrusion tendency for cavern walls. Additionally hydrogen leakage rate drops with the maximum working pressure yet total leakage mass keeps a growing trend.
Performance Assessment and Economic Perspectives of Integrated PEM Fuel Cell and PEM Electrolyzer for Electric Power Generation
Mar 2021
Publication
The study presents a complete one-dimensional model to evaluate the parameters that describe the operation of a Proton Exchange Membrane (PEM) electrolyzer and PEM fuel cell. The mathematical modeling is implemented in Matlab/Simulink® software to evaluate the influence of parameters such as temperature pressure and overpotentials on the overall performance. The models are further merged into an integrated electrolyzer-fuel cell system for electrical power generation. The operational description of the integrated system focuses on estimating the overall efficiency as a novel indicator. Additionally the study presents an economic assessment to evaluate the cost-effectiveness based on different economic metrics such as capital cost electricity cost and payback period. The parametric analysis showed that as the temperature rises from 30 to 70 C in both devices the efficiency is improved between 5-20%. In contrast pressure differences feature less relevance on the overall performance. Ohmic and activation overpotentials are highlighted for the highest impact on the generated and required voltage. Overall the current density exhibited an inverse relation with the efficiency of both devices. The economic evaluation revealed that the integrated system can operate at variable load conditions while maintaining an electricity cost between 0.3-0.45 $/kWh. Also the capital cost can be reduced up to 25% while operating at a low current density and maximum temperature. The payback period varies between 6-10 years for an operational temperature of 70 C which reinforces the viability of the system. Overall hydrogen-powered systems stand as a promising technology to overcome energy transition as they provide robust operation from both energetic and economic viewpoints.
Performance and Emissions Characteristics of Hydrogen-diesel Dual-fuel Combustion for Heavy-duty Engines
Jan 2025
Publication
This study investigates hydrogen-diesel dual-fuelling specifically for a modern 4.4L 4-cylinder heavy-duty diesel engine using extensive one-dimensional combustion modelling in Ricardo WAVE. Parametric analyses from 900 to 2200 rpm speeds and 0 to 17.5% hydrogen fractions introduced via port injection are undertaken to assess the effect of exhaust gas recirculation (EGR) for controlling NOx. Moreover impacts on key indicators like brake power torque thermal efficiency and emissions are also evaluated. Results revealed that the benefits of hydrogen enrichment are highly dependent on operating conditions. At speeds above 1700 rpm and hydrogen mass fraction of 17.5% remarkable gains were attained increasing brake power and torque by up to 17% and 16.5% respectively. Brake-specific diesel consumption (BSDC) improves by 29% at higher speeds due to hy drogen’s larger energy content. NOx emissions display a trade-off decreasing substantially by 96% at lower speeds but increasing by 43% at 2200 rpm with 17.5% hydrogen.
Minimizing the Environmental Impact of Aircraft Engines with the Use of Sustainable Aviation Fuel (SAF) and Hydrogen
Jan 2025
Publication
Adverse climate change has forced a deeper reflection on the scale of pollution related to human activity including in the aviation industry. As a result fundamental questions have arisen about the characteristics of these pollutants the mechanisms of their formation and potential strategies for reducing them. This paper provides a comprehensive overview of key technical solutions to minimize the environmental impact of aircraft engines. The solutions presented range from fuel innovations to advanced design changes and drive concepts. Particular attention was paid to sustainable aviation fuels (SAFs) which are currently an important element of the environmental strategy regulated by the European Union. It also discusses the potential use of hydrogen as a potential alternative fuel to replace traditional aviation fuels in the long term. The analysis in the article made it possible to characterize in detail possible modifications in the functioning of aircraft engines based both on the current state of technical knowledge and on the anticipated directions of its development which has not been a frequent issue in comprehensive research so far. The analysis shows that the type of raw material used to create SAF has a strong impact on its physical and chemical parameters and the degree of greenhouse gas emissions. This necessitates a broader analysis of the legitimacy of using a given type of fuel from the SAF group in the direction of selected air operations and areas with a higher risk of severe atmospheric pollution. These results provide the basis for further research into sustainable solutions in the aviation sector that can contribute to significantly reducing its impact on climate change.
A Model-Based Systems Engineering Approach for Effective Decision Support of Modern Energy Systems Depicted with Clean Hydrogen Production
Aug 2024
Publication
A holistic approach to decision-making in modern energy systems is vital due to their increase in complexity and interconnectedness. However decision makers often rely on narrowlyfocused strategies such as economic assessments for energy system strategy selection. The approach in this paper helps considers various factors such as economic viability technological feasibility environmental impact and social acceptance. By integrating these diverse elements decision makers can identify more economically feasible sustainable and resilient energy strategies. While existing focused approaches are valuable since they provide clear metrics of a potential solution (e.g. an economic measure of profitability) they do not offer the much needed system-as-a-whole understanding. This lack of understanding often leads to selecting suboptimal or unfeasible solutions which is often discovered much later in the process when a change may not be possible. This paper presents a novel evaluation framework to support holistic decision-making in energy systems. The framework is based on a systems thinking approach applied through systems engineering principles and model-based systems engineering tools coupled with a multicriteria decision analysis approach. The systems engineering approach guides the development of feasible solutions for novel energy systems and the multicriteria decision analysis is used for a systematic evaluation of available strategies and objective selection of the best solution. The proposed framework enables holistic multidisciplinary and objective evaluations of solutions and strategies for energy systems clearly demonstrates the pros and cons of available options and supports knowledge collection and retention to be used for a different scenario or context. The framework is demonstrated in case study evaluation solutions for a novel energy system of clean hydrogen generation.
Developing Hydrogen Energy Hubs: The Role of H2 Prices, Wind Power and Infrastructure Investments in Northern Norway
Aug 2024
Publication
Hydrogen is seen as a key energy carrier to reduce CO2 emissions. Two main production options for hydrogen with low CO2 intensity are water electrolysis and natural gas reforming with Carbon Capture and Storage known as green and blue hydrogen. Northern Norway has a surplus of renewable energy and natural gas availability from the Barents Sea which can be used to produce hydrogen. However exports are challenging due to the large distances to markets and lack of energy infrastructure. This study explores the profitability of hydrogen exports from this Arctic region. It considers necessary investments in hydrogen technology and capacity expansions of wind farms and the power grid. Various scenarios are investigated with different assumptions for investment decisions. The critical question is how exogenous factors shape future regional hydrogen production and export. The results show that production for global export may be profitable above 90 €/MWh excluding costs for storage and transport with blue hydrogen being cheaper than green. Depending on the assumptions a combination of liquid hydrogen and ammonia export might be optimal for seaborne transport. Exports to Sweden can be profitable at prices above 60 €/MWh transported by pipelines. Expanding power generation capacity can be crucial and electricity and hydrogen exports are unlikely to co-exist.
Using Hydro-Pneumatic Energy Storage for Improving Offshore Wind-Driven Green Hydrogen Production—A Preliminary Feasibility Study in the Central Mediterranean Sea
Aug 2025
Publication
This paper presents a preliminary feasibility study for integrating hydro-pneumatic energy storage (HPES) with off-grid offshore wind turbines and green hydrogen production facilities—a concept termed HydroGenEration (HGE). This study compares the performance of this innovative concept system with an off-grid direct wind-to-hydrogen plant concept without energy storage both under central Mediterranean wind conditions. Numerical simulations were conducted at high temporal resolution capturing 10-min fluctuations of open field measured wind speeds at an equivalent offshore wind turbine (WT) hub height over a full 1-year seasonal cycle. Key findings demonstrate that the HPES system of choice namely the Floating Liquid Piston Accumulator with Sea Water under Compression (FLASC) system significantly reduces Proton Exchange Membrane (PEM) electrolyser (PEMEL) On/Off cycling (with a 66% reduction in On/Off events) while maintaining hydrogen production levels despite the integration of the energy storage system which has a projected round-trip efficiency of 75%. The FLASC-integrated HGE solution also marginally reduces renewable energy curtailment by approximately 0.3% during the 12-month timeframe. Economic analysis reveals that while the FLASC HPES system does introduce an additional capital cost into the energy chain it still yields substantial operational savings exceeding EUR 3 million annually through extended PEM electrolyser lifetime and improved operational efficiency. The Levelized Cost of Hydrogen (LCOH) for the FLASC-integrated HGE system which is estimated to be EUR 18.83/kg proves more economical than a direct wind-to-hydrogen approach with a levelized cost of EUR 21.09/kg of H2 produced. This result was achieved through more efficient utilisation of wind energy interfaced with energy storage as it mitigated the natural intermittency of the wind and increased the lifecycle of the equipment especially that of the PEM electrolysers. Three scenario models were created to project future costs. As electrolyser technologies advance cost reductions would be expected and this was one of the scenarios envisaged for the future. These scenarios reinforce the technical and economic viability of the HGE concept for offshore green hydrogen production particularly in the Mediterranean and in regions having similar moderate wind resources and deeper seas for offshore hybrid sustainable energy systems.
Comparative Socio-economic Analysis and Green Transition Perspectives in the Green Hydrogen Economy of Sub-Saharan Africa and South America Countries
Sep 2025
Publication
The global shift toward a green hydrogen economy requires diversifying production beyond the Middle East and North Africa where political logistical and water constraints limit long-term supply. This study provides a comparative socio-economic assessment of Sub-Saharan African and South American countries focusing on their readiness for large-scale green hydrogen development. A Green Economy Index (GEI) was developed integrating political/regulatory efficiency socio-economic status infrastructure and sustainability indicators. In addition public perception was examined through a survey conducted in Nigeria. Results show GEI scores ranging from 0.328 to 0.744 with Germany as the benchmark. Brazil Uruguay and Namibia emerge as the most promising cases due to strong renewable energy potential socio-economic stability and supportive policies though each faces specific challenges such as transport logistics (Brazil and Uruguay) or water scarcity (Namibia). Nigeria demonstrates significant potential but is constrained by weak infrastructure and public safety concerns. Cameroon Angola and Gabon display moderate performance but require policy and investment reforms. By combining macro-level readiness analysis with social acceptance insights the study highlights opportunities and barriers for diversifying global hydrogen supply chains and advancing sustainable energy transitions in emerging regions.
Energy Storage and Management of Offshore Wind-Based Green Hydrogen Production
Feb 2025
Publication
The coupling of offshore wind energy with hydrogen production involves complex energy flow dynamics and management challenges. This study explores the production of hydrogen through a PEM electrolyzer powered by offshore wind farms and Lithium-ion batteries. A digital twin is developed in Python with the aim of supporting the sizing and carrying out a techno-economic analysis. A controller is designed to manage energy flows on an hourly basis. Three scenarios are analyzed by fixing the electrolyzer capacity to meet a steel plant’s hydrogen demand while exploring different wind farm configurations where the electrolyzer capacity represents 40% 60% and 80% of the wind farm. The layout is optimized to account for the turbine wake. Results reveal that when the electrolyzer capacity is 80% of the wind farm a better energy balance is achieved with 87.5% of the wind production consumed by the electrolyzer. In all scenarios the energy stored is less than 5% highlighting its limitation as a storage solution in this application. LCOE and LCOH differ minimally between scenarios. Saved emissions from wind power reach 268 ktonCO2 /year while those from hydrogen production amount to 520 ktonCO2 /year underlying the importance of hydrogen in hard-to-abate sectors.
Feasible Route Towards Decarbonising Marine Transport with Flexible, Hydrogen-enriched, Reactivity Controll Compression Ignition Mid-speed Engines
Feb 2025
Publication
Hydrogen (H2) admixing in Reactivity Controlled Compression Ignition (RCCI) technology engines is touted to enhance indicated efficiency (ITE>50%) optimize combustion and reduce greenhouse gas emissions. However many pending issues remain regarding engine durability nitrogen oxide (NOX) emissions and blending limits. These issues are addressed by employing a novel performance-oriented model which simulates under 3 min combustion physics with similar predictivity (>95% accuracy) as computational fluid dynamic results. This socalled multizone model is parameterized to real-world operating cycles from a dual-fuel mid-speed marine engine. By considering port-fuel injected H2 the simulations show that combustion phasing advances at an average rate of 0.3⁰CA/% H2 accompanied by a peak reduction in methane slip of 80% achievable at 25% H2 energy share. Also engine control oriented issues are addressed by demonstrating either intake temperature or diesel fuel share optimization to negate the drawbacks of combustion harshness and NOX emissions while improving ITE 1–1.5pp over baseline operation.
Development of Hydrogen Fuel Cell–Battery Hybrid Multicopter System Thermal Management and Power Management System Based on AMESim
Jan 2025
Publication
Urban Air Mobility (UAM) is gaining attention as a solution to urban population growth and air pollution. Hydrogen fuel cells are applied to overcome the limitations of battery-based UAM utilizing a PEMFC (Polymer Electrolyte Membrane Fuel Cell) with batteries in a hybrid system to enhance responsiveness. Power management improves efficiency through effective power distribution under varying loads while thermal management maintains optimal stack temperatures to prevent degradation. This study developed a hydrogen fuel cell–battery hybrid multicopter system using AMESim consisting of a 138 kW fuel cell stack 60 kW battery DC–DC converters and thrust motors. A rule-based power management system was implemented to define power distribution strategies based on SOC and load demand. The system’s operating range was designed to allocate power according to battery SOC and load variations. For an initial SOC of 45% the power management system distributed power for flight and the results showed that the state machine control system reduced hydrogen consumption by 5.85% and parasitic energy by 1.63% compared to the rule-based system.
An Advanced Design to Generate Power and Hydrogen with CO2 Capturing and Storage for Cleaner Applications
Nov 2024
Publication
The present study aims to conduct a thermodynamic analysis of a novel concept that synergistically integrates clean hydrogen and power production with a liquified natural gas (LNG) regasification system. The designed integrated energy system aims to achieve hydrogen production power production liquified natural gas regasification carbon capture storage and in situ recirculation. Hydrogen sulfide (H2S) from industrial waste streams is used as a major feedstock and filtration combustion of H2S is employed as a hydrogen production method. CO2 obtained from the combustion process is liquified and pumped at a high pressure to recirculated back to the CO2 cycle power generation combustion process. The flu gas obtained after expansion on the turbine is condensed and CO2 is captured and pressurized. The entire plant is simulated in the Aspen Plus simulation environment and a comprehensive thermodynamic assessment including the energy and exergy analysis is conducted. Additionally several parametric studies and assessments of various factors influencing the system's performance are conducted. From the sensitivity analyses it is found that at 20% CO2 recirculation the hydrogen production rate decreases by 31.81% when the operating pressure is increased from 0.05 bar to 3 bar. The adiabatic temperature is reduced by 39.72% 35.37% and 32.85% when 50% 60% and 70% CO2 is recirculated in the oxidant stream at an oxygen to natural gas (ONG) ratio of 0.5. The energy and exergy efficiencies of the system are found to be 71.48% and 60.69% respectively. The present system avoids 2571.94 tons/yr of CO2 emissions for clean hydrogen production and 1426.27 tons/yr of CO2 for clean power production which would otherwise be emitted from steam methane reforming and coal gasification.
Green Hydrogen as a Sustainable Operations Strategy: A Socio-economic Perspective
Nov 2024
Publication
Hydrogen is an energy carrier that can support the development of sustainable and flexible energy systems. However decarbonization can occur when green sources are used for energy production and appropriate water use is manifested. This work aims to propose a socio-economic analysis of hydrogen production from an integrated wind and electrolysis plant in southern Italy. The estimated production amounts to about 1.8 million kg and the LCOH is calculated to be 3.60 €/kg in the base scenario. Analyses of the alternative scenarios allow us to observe that with a high probability the value ranges between 3.20-4.00 €/kg and that the capacity factor is the factor that most affects the economic results. Social analysis conducted through an online survey shows a strong knowledge gap as only 27.5% claim to know the difference between green and grey hydrogen. There is a slight propensity to install systems near their homes but this tends to increase due to increased knowledge on the topic. Respondents state sustainable behaviours and this study suggests that these aspects should also be transformed into the energy choices that are implemented every day. The study suggests information to policy-makers businesses and citizens as it outlines that green hydrogen is an operations strategy that moves toward sustainable development.
Experimental and Numerical Research on Temperature Evolution during the Fast-Filling Process of a Type III Hydrogen Tank
May 2022
Publication
The temperature rises hydrogen tanks during the fast-filling process could threaten the safety of the hydrogen fuel cell vehicle. In this paper a 2D axisymmetric model of a type III hydrogen for the bus was built to investigate the temperature evolution during the fast-filling process. A test rig was carried out to validate the numerical model with air. It was found significant temperature rise occurred during the filling process despite the temperature of the filling air being cooled down due to the throttling effect. After verification the 2D model of the hydrogen tank was employed to study the temperature distribution and evolution of hydrogen during the fast-filling process. Thermal stratification was observed along the axial direction of the tank. Then the effects of filling parameters were examined and a formula was fitted to predict the final temperature based on the simulated results. At last an effort was paid on trying the improve the temperature distribution by increasing the injector length of the hydrogen tank. The results showed the maximal temperature and mass averaged temperature decreased by 2 K and 3.4 K with the length of the injector increased from 50 mm to 250 mm.
Design of the Converter Prototype for Powering the Hydrogen Electrolyzer
Feb 2025
Publication
Electrolysis which uses direct current is the most common way to produce hydrogen gas. However its efficiency is very low about 70%. The method used when current pulses are used by electrolysis is called pulse electrolysis. According to other studies this method can increase the efficiency of the production of hydrogen gas by the electrolysis of water. The main objective of this paper is to present a prototype of a converter that provides current pulses with specific parameters. This converter can produce positive and negative pulse-modulated current pulses of defined amplitude and duty. Also the number of positive and negative pulses in one working cycle is adjustable. This converter’s design enables us to research pulse water electrolysis its electrical behavior and the possibilities of increasing the efficiency of the electrolysis process. While this paper focuses on the development of the prototype for future research the technology could be extended to other applications requiring precise current pulse control.
Analysis of Corporate Acceptance of Hydrogen Energy Technology Based on the Extended Technology Acceptance Model
Feb 2025
Publication
Hydrogen holds an important strategic position in the energy systems of many countries. Many studies have analyzed the acceptance of hydrogen energy technology from the public’s perspective but few have examined it from the corporate perspective. This paper establishes a technology acceptance model and employs structural equation modeling to investigate the factors affecting the acceptance of hydrogen energy technology within enterprises. After conducting questionnaire surveys among employees of energy enterprises electric power companies and new energy vehicle manufacturers the results indicate that while most of the interviewed enterprises have positive attitudes towards hydrogen technology their willingness to develop hydrogen business does not appear to be correspondingly positive. In addition government trust perceived benefit and social influence positively impact corporate acceptability indirectly whereas perceived risk exhibits a negative indirect effect on corporate acceptance. Finally this paper discusses the results of the above studies and makes corresponding policy recommendations.
Formic Acid as a Hydrogen Energy Carrier
Dec 2016
Publication
The high volumetric capacity (53 g H2/L) and its low toxicity and flammability under ambient conditions make formic acid a promising hydrogen energy carrier. Particularly in the past decade significant advancements have been achieved in catalyst development for selective hydrogen generation from formic acid. This Perspective highlights the advantages of this approach with discussions focused on potential applications in the transportation sector together with analysis of technical requirements limitations and costs.
Green Hydrogen, a Solution for Replacing Fossil Fuels to Reduce CO2 Emissions
Aug 2024
Publication
The article examines the role of green hydrogen in reducing CO2 emissions in the transition to climate neutrality highlighting both its benefits and challenges. It starts by discussing the production of green hydrogen from renewable sources and provides a brief analysis of primary resource structures for energy production in European countries including Romania. Despite progress there remains a significant reliance on fossil fuels in some countries. Economic technologies for green hydrogen production are explored with a note that its production alone does not solve all issues due to complex and costly compression and storage operations. The concept of impure green hydrogen derived from biomass gasification pyrolysis fermentation and wastewater purification is also discussed. Economic efficiency and future trends in green hydrogen production are outlined. The article concludes with an analysis of hydrogen-methane mixture combustion technologies offering a conceptual framework for economically utilizing green hydrogen in the transition to a green hydrogen economy.
Hydrogen Admixture Effects on Natural Gas-Oxygen Burner for Glass-melting: Flame Imaging, Temperature Profiles, Exhaust Gas Analysis, and False Air Impact
Jan 2025
Publication
An experimental investigation is carried out to evaluate the effect of introducing hydrogen into natural gas flames on the combustion process (different temperature profiles flame locations and burning velocity) in glass melting furnaces. This work considers the fundamental changes in a non-premixed natural gas-oxygen flame (referred to as oxyfuel flame) with varying levels of hydrogen admixtures ranging from 0 to 100 vol%. To facilitate meaningful data comparisons the burner power output is maintained at a constant thermal power of 20 kW during the entire series of tests. At first the flow field of the oxyfuel burner is measured by using laser doppler anemometry (LDA). Then the burner is tested in a multi-segment combustion chamber with optical accesses. A camera system is employed to visually observe the combustion zone capturing signals in both the visible (VIS) and ultraviolet (UV) wavelengths. The chemiluminescence of the OH* radicals could be determined over the entire flame length. Notably the study reveals variations in flame position especially with higher hydrogen concentrations. Furthermore radial and axial flame temperature profiles are recorded at various po sitions. The analysis extends to major exhaust gas components (CO2 NOx O2) at different fuel compositions and multiple equivalence ratios. In addition a study is being carried out to investigate the influence of false air impacts. The obtained results indicate that the flame temperature increases slightly with pure hydrogen. The NOx values in the overall exhaust gas also show an increase with a higher hydrogen admixture. In particular the influence of false air can lead to a significant rise in NOx levels.
Design and Optimization Strategy of a Net-Zero City Based on a Small Modular Reactor and Renewable Energy
Aug 2025
Publication
This study proposes the SMR Smart Net-Zero City (SSNC) framework—a scalable model for achieving carbon neutrality by integrating Small Modular Reactors (SMRs) renewable energy sources and sector coupling within a microgrid architecture. As deploying renewables alone would require economically and technically impractical energy storage systems SMRs provide a reliable and flexible baseload power source. Sector coupling systems—such as hydrogen production and heat generation—enhance grid stability by absorbing surplus energy and supporting the decarbonization of non-electric sectors. The core contribution of this study lies in its real-time data emulation framework which overcomes a critical limitation in the current energy landscape: the absence of operational data for future technologies such as SMRs and their coupled hydrogen production systems. As these technologies are still in the pre-commercial stage direct physical integration and validation are not yet feasible. To address this the researchers leveraged real-time data from an existing commercial microgrid specifically focusing on the import of grid electricity during energy shortfalls and export during solar surpluses. These patterns were repurposed to simulate the real-time operational behavior of future SMRs (ProxySMR) and sector coupling loads. This physically grounded simulation approach enables highfidelity approximation of unavailable technologies and introduces a novel methodology to characterize their dynamic response within operational contexts. A key element of the SSNC control logic is a day–night strategy: maximum SMR output and minimal hydrogen production at night and minimal SMR output with maximum hydrogen production during the day—balancing supply and demand while maintaining high SMR utilization for economic efficiency. The SSNC testbed was validated through a seven-day continuous operation in Busan demonstrating stable performance and approximately 75% SMR utilization thereby supporting the feasibility of this proxy-based method. Importantly to the best of our knowledge this study represents the first publicly reported attempt to emulate the real-time dynamics of a net-zero city concept based on not-yet-commercial SMRs and sector coupling systems using live operational data. This simulation-based framework offers a forward-looking data-driven pathway to inform the development and control of next-generation carbon-neutral energy systems.
A Review of Life Cycle Assessment (LCA) Studies for Hydrogen Production Technologies through Water Electrolysis: Recent Advances
Aug 2024
Publication
Climate change is a major concern for the sustainable development of global energy systems. Hydrogen produced through water electrolysis offers a crucial solution by storing and generating renewable energy with minimal environmental impact thereby reducing carbon emissions in the energy sector. Our research evaluates current hydrogen production technologies such as alkaline water electrolysis (AWE) proton exchange membrane water electrolysis (PEMWE) solid oxide electrolysis (SOEC) and anion exchange membrane water electrolysis (AEMWE). We systematically review life cycle assessments (LCA) for these technologies analyzing their environmental impacts and recent technological advancements. This study fills essential gaps by providing detailed LCAs for emerging technologies and evaluating their scalability and environmental footprints. Our analysis outlines the strengths and weaknesses of each technology guiding future research and assisting stakeholders in making informed decisions about integrating hydrogen production into the global energy mix. Our approach highlights operational efficiencies and potential sustainability enhancements by employing comparative analyses and reviewing advancements in membrane technology and electrocatalysts. A significant finding is that PEMWE when integrated with renewable energy sources offers rapid response capabilities that are vital for adaptive energy systems and reducing carbon footprints.
Life Cycle Assessment and Exergoenvironmental Analysis of a Double-Effect Vapor Absorption Chiller Using Green Hydrogen, Natural Gas, and Biomethane
Dec 2024
Publication
This study conducts a life cycle assessment and exergoenvironmental evaluation of a double-effect vapor absorption chiller (DEAC) with a cooling capacity of 352 kW employing three different energy sources: natural gas biomethane and green hydrogen. The main objectives of this paper are as follows: (i) provide an exergoenvironmental model for DEAC technologies (ii) evaluation of a case-study where a DEAC is used to cover the cooling demand of a specific university building in the Northeast of Brazil and (iii) evaluate the scenario where the DEAC is fed by green hydrogen (GH2) and compare it with conventional energy resources (natural gas and biomethane). In order to develop the exergoenvironmental model two methodologies are essential: a thermodynamic analysis and a Life Cycle Assessment (LCA). The thermodynamic analysis was carried out using the Engineering Equation Solver (EES: 10.998) software. The LCA has been developed through the open-source software openLCA version 1.10.3 with the Ecoinvent 3.7.1 life cycle inventory database whereas the chosen life cycle inventory assessment (LCIA) method was the ReCiPe Endpoint LCA method (Humanitarian medium weighting–H A). The main results indicate that green hydrogen provides a 99.84% reduction in environmental impacts compared to natural gas during the operational phase while biomethane reduces these impacts by 54.21% relative to natural gas. In the context of life cycle assessment (LCA) green hydrogen decreases fossil resource depletion by 18% and climate change-related emissions by 33.16% compared to natural gas. This study contributes to enhancing the understanding of the environmental and exergoenvironmental impacts of a double-effect vapor absorption chiller by varying the fuel usage during the operational phase.
A Novel Hydrogen Leak Detection Method for PEM Fuel Cells Using Active Thermography
Feb 2025
Publication
Hydrogen leakage in Proton Exchange Membrane (PEM) fuel cells poses critical safety efficiency and operational reliability risks. This study introduces an innovative infrared (IR) thermography-based methodology for detecting and quantifying hydrogen leaks towards the outside of PEM fuel cells. The proposed method leverages the catalytic properties of a membrane electrode assembly (MEA) as an active thermal tracer facilitating real-time visualisation and assessment of hydrogen leaks. Experimental tests were conducted on a single-cell PEM fuel cell equipped with intact and defective gaskets to evaluate the method’s effectiveness. Results indicate that the active tracer generates distinct thermal signatures proportional to the leakage rate overcoming the limitations of hydrogen’s low IR emissivity. Comparative analysis with passive tracers and baseline configurations highlights the active tracer-based approach’s superior positional accuracy and sensitivity. Additionally the method aligns detected thermal anomalies with defect locations validated through pressure distribution maps. This novel non-invasive technique offers precise reliable and scalable solutions for hydrogen leak detection making it suitable for dynamic operational environments and industrial applications. The findings significantly advance hydrogen’s safety diagnostics supporting the broader adoption of hydrogen-based energy systems.
Strategy Development for Hydrogen-Conversion Businesses in Côte d’Ivoire
Aug 2024
Publication
Côte d’Ivoire has substantially neglected crop residues from farms in rural areas so this study aimed to provide strategies for the sustainable conversion of these products to hydrogen. The use of existing data showed that in the Côte d’Ivoire there were up to 16801306 tons of crop residues from 11 crop types in 2019 from which 1296424.84 tons of hydrogen could potentially be derived via theoretical gasification and dark fermentation approaches. As 907497.39 tons of hydrogen is expected annually the following estimations were derived. The three hydrogen-project implementation scenarios developed indicate that Ivorian industries could be supplied with 9026635 gigajoules of heat alongside 17910 cars and 4732 buses in the transport sector. It was estimated that 817293.95 tons of green ammonia could be supplied to farmers. According to the study 5727992 households could be expected to have access to 1718.40 gigawatts of electricity. Due to these changes in the transport energy industry and agricultural sectors a reduction of 1644722.08 tons of carbon dioxide per year could theoretically be achieved. With these scenarios around 263276.87 tons of hydrogen could be exported to other countries. The conversion of crop residues to hydrogen is a promising opportunity with environmental and socio-economic impacts. Therefore this study requires further extensive research.
The H2Excellence Project-Fuel Cells and Green Hydrogen Centers of Vocational Excellence Towards Achieving Affordable, Secure, and Sustainable Energy for Europe
Feb 2025
Publication
The demand for green hydrogen (H2) and related technologies is expected to increase in the coming years driven by climate changes and energy security of supply issues amid the European and global energy crises. The European Green Deal and REpowerEU Plan have identified H2 as a key pillar for reaching climate neutrality by 2050 and for the intensification of hydrogen delivery targets bringing the large-scale adoption of hydrogen production and applications and stressing the need for a skilled workforce in emergent H2 markets. To that end the H2Excellence project will establish a Platform of Vocational Excellence in the field of fuel cells and green hydrogen technologies with an educational and training scheme to tackle identified skill gaps and to implement life-long learning opportunities. This project aims to become a European benchmark in training and knowledge transfer incorporating the entire hydrogen value chain. The work is supported by the Knowledge Triangle Model integrating education research and innovation efforts to build a dynamic ecosystem in the green hydrogen sector. In this work activities conducted so far by LNEG as a project partner and expected impacts are highlighted. Those activities are based on a stakeholder needs assessment conducted by project partners and on the knowledge and experience accumulated in research activities developed in the Materials for Energy research area.
Experimental Investigation of Hydrogen Enriched Natural Gas Combustion with a Focus on Nitrogen Oxide Formation on a Semi-industrial Scale
Mar 2024
Publication
Combustion of hydrogen-enriched natural gas is a valuable short-term strategy for reducing CO2 emissions from high temperature industrial heating. This paper presents several experiments on combustion characteristics and the formation of nitrogen oxides. The experiments included hydrogen contents up to 100% and fuel heat inputs up to 75 kW. Water-cooled lances were used to influence the furnace temperature. The analysis includes the distribution of furnace temperatures the composition of flue gas the cooling capacity of the lances under steady-state operating conditions and OH*-chemiluminescence imaging of the near burner region. The presented results demonstrate the dependence of furnace conditions and NOX formation on various factors such as different air inlet fluxes furnace temperature and fuel composition for constant heat inputs. Efficiency increased by up to 5.5% and significant changes in flame shaped along with a maximum increase in NOX emissions when comparing natural gas to hydrogen was measured at 167%.
Prediction of Efficiency, Performance, and Emissions Based on a Validated Simulation Model in Hydrogen–Gasoline Dual-Fuel Internal Combustion Engines
Nov 2024
Publication
This study explores the performance and emissions characteristics of a dual-fuel internal combustion engine operating on a blend of hydrogen and gasoline. This research began with a baseline simulation of a conventional gasoline engine which was subsequently validated through experimental testing on an AVL testbed. The simulation results closely matched the testbed data confirming the accuracy of the model with deviations within 5%. Building on this validated model a hydrogen–gasoline dual-fuel engine simulation was developed. The predictive simulation revealed an approximately 5% increase in overall engine efficiency at the optimal operating point primarily due to hydrogen’s combustion properties. Additionally the injected gasoline mass and CO2 emissions were reduced by around 30% across the RPM range. However the introduction of hydrogen also resulted in a slight reduction (~10%) in torque attributed to the lower volumetric efficiency caused by hydrogen displacing intake air. While CO emissions were significantly reduced NOx emissions nearly doubled due to the higher combustion temperatures associated with hydrogen. This research demonstrates the potential of hydrogen–gasoline dual-fuel systems in reducing carbon emissions while highlighting the need for further optimization to balance performance with environmental impact.
Hybrid Renewable Multi-generation System Optimization: Attaining Sustainable Development Goals
Jan 2025
Publication
The optimization of hybrid renewable multi-generation systems is crucial for enhancing energy efficiency reducing costs and ensuring sustainable power generation. These factors can be significantly affected by system designs optimization methods climate changes and varying energy demands. The optimization of a stand-alone hybrid renewable energy system (HRES) that integrates various combinations of electricity heating cooling hydrogen and freshwater needs has not been reported in a single comprehensive study. Additionally there has been insufficient attention given to the impact of temporal resolution the recovery of excess energy usage and aligning these efforts with the sustainable development goals (SDGs). This study reviews the recent state-of-theart studies on the stand-alone HRES options for meeting electric heating cooling hydrogen electric vehicles and freshwater demands with various combinations. This study further contributes by examining contemporary literature on sizing optimization reliability analysis sensitivity analysis control techniques detailed modelling and techno-environmental-economic features. It also provides justification for selecting configurations suitable for specific geographical locations along with an analysis of the choice of algorithms and power management systems required to meet the various load demands of a self-sufficient community. By highlighting the im provements and potentials of HRES to achieve various United Nations SDGs this review study aims to bridge existing research gaps.
Hydrogen Valley in Cyprus: Insights and Strategies for Citizen Engagement
Jan 2025
Publication
: In remote areas or islands like Cyprus the isolated energy system high energy consumption in the transport sector and projected excess electricity production from solar sources create favourable conditions for establishing a hydrogen valley. But even after addressing technological managerial economic and financial challenges the success of a hydrogen valley hinges on the acceptance and engagement of the local population. The role of citizens is under-researched by academia and overlooked by policymakers. Our paper’s contribution is unique data from a purposefully developed survey of Cypriot residents. The findings reveal robust support for the renewable energy transition in principle with 90% expressing supportive views of which 57% ‘strongly support’ the transition and notably middle-aged more educated and fully employed individuals showing the strongest support. At the same time our results show that 62% are unfamiliar with the concept of a hydrogen economy. The promising finding is that 80% of citizens are ‘very likely’ (25%) or ‘somewhat likely’ (55%) to engage in discussions or activities related to the creation of a hydrogen valley in Cyprus. Gender differences in the willingness to engage are however evident: 32% of males indicated they are ‘very likely’ to participate versus 23% of females. We conclude that the prevailing citizen behaviour in Cyprus is “Seeking Information” and we make policy suggestions outlining the top ten engagement tools to foster awareness among the general population and the top ten strategies targeting active supporters of hydrogen in Cyprus to elevate their involvement to ‘Action’ and ‘Advocacy’ levels of engagement.
Hydrogen 5.0: Interdisciplinary Development of a Proof-of-Concept Smart System for Green Hydrogen Leak Detection
Feb 2025
Publication
Green hydrogen is a promising energy vector for industrial applications. However hydrogen leaks can occur causing greenhouse effects and posing safety risks for operators and local communities potentially leading to legal liabilities. Industry 4.0 focuses on digital industrial modernization while Industry 5.0 emphasizes collaborative humancentered and sustainable processes. This study developed and analyzed an Industry 5.0 proof of concept as an additional safety layer for hydrogen leak management. The proof of concept was implemented using Raspberry Pi microcomputers integrated computer vision and OpenAI GPT-3 for dynamic email communication. A legal liability analysis for Chile and Spain identified potential challenges in transitioning the system into a marketready product. The findings suggest the system should act as a complementary safety layer rather than a primary detection system to mitigate legal liability risks as operational deployment without full certification and validation could lead to malfunctions. This study illustrated how hydrogen detection and management can be integrated into Industry 5.0 smart systems. With growing global interest in sustainable engineering and AI regulation as reflected in Regulation (EU) 2024/1689 legal considerations over technologies like the one presented in this study are becoming increasingly relevant.
Numerical Study of the Filling Process of a Liquid Hydrogen Storage Tank under Different Sloshing Conditions
Aug 2020
Publication
Cryogenic vessels are widely used in many areas such as liquefied natural gas (LNG) aerospace and medical fields. A suitable filling method is one of the prerequisites for the effective use of cryogenic containers. In this study the filling process for the sloshing condition of a liquid hydrogen storage tank is numerically simulated and analyzed by coupling the sloshing model and the phase-change model. The effects of different sloshing conditions during the filling process are investigated by changing the amplitude and frequency of the sloshing. Within the scope of this study there is a critical value for the effect of sloshing conditions on the pressure curve during the filling process. The critical value corresponds to a frequency f equal to 3 Hz and an amplitude A equal to 0.03 m. According to the simulation results when the sloshing exceeds the critical value the internal pressure curve of the storage tank increases significantly. Under microgravity conditions within the scope of this study the pressure curve changes less than the normal gravity even if the amplitude and frequency increase. The sloshing makes it easier for the liquid to spread along the wall during the filling process. This also further weakens the temperature stratification in the storage tank.
A Moving Window Method for Time Series Optimisation, with Applications to Energy Storage and Hydrogen Production
Jan 2025
Publication
Temporal decomposition methods aim to solve optimisation problems by converting one problem over a large time series into a series of subproblems over shorter time series. This paper introduces one such method where subproblems are defined over a window that moves back and forth repeatedly over the length of the large time series creating a convergent sequence of solutions and mitigating some of the boundary considerations prevalent in other temporal decomposition methods. To illustrate this moving window method it is applied to two models: an energy storage facility trading electricity in a market; and a hydrogen electrolyser powered by renewable electricity produced and potentially stored onsite. The method is simple to implement and it is found that for large optimisation problems it consistently requires less computation time than the base optimisation algorithm used in this study (by factors up to 100 times). In addition it is analytically demonstrated that decomposition methods in which a minimum is attained for each subproblem need not attain a minimum for the overall problem.
Feasibility of Retrofitting a Conventional Vessel with Hydrogen Power Systems: A Case Study in Australia
Feb 2025
Publication
As the pursuit of greener energy solutions continues industries worldwide are turning away from fossil fuels and exploring the development of sustainable alternatives to meet their energy requirements. As a signatory to the Paris Agreement Australia has committed to reducing greenhouse gas emission by 43% by 2030 and reaching net-zero emissions by 2050. Australia’s domestic maritime sector should align with these targets. This paper aims to contribute to ongoing efforts to achieve these goals by examining the technical and commercial considerations involved in retrofitting conventional vessels with hydrogen power. This includes but is not limited to an analysis of cost risk and performance and compliance with classification society rules international codes and Australian regulations. This study was conducted using a small domestic commercial vessel as a reference to explore the feasibility of implementation of hydrogen-fuelled vessels (HFVs) across Australia. The findings indicate that Australia’s existing hydrogen infrastructure requires significant development for HFVs to meet the cost risk and performance benchmarks of conventional vessels. The case study identifies key determining factors for feasible hydrogen retrofitting and provides recommendations for the success criteria.
Hydrogen as a Renewable Fuel of Non-Biological Origins in the European Union—The Emerging Market and Regulatory Framework
Jan 2025
Publication
The European Union continues to lead global efforts toward climate neutrality by developing a cohesive regulatory and market framework for alternative fuels including renewable hydrogen. This review article critically examines the recent evolution of the EU’s policy landscape specifically for hydrogen as a renewable fuel of non-biological origin (RFNBO) highlighting its growing importance in hard-to-abate sectors such as industry and transportation. We assess the interplay of market-based mechanisms (e.g. EU ETS II) direct mandates (e.g. FuelEU Maritime RED III) and support auction-based measures (e.g. the European Hydrogen Bank) that collectively shape both the demand and the supply of hydrogen as RFNBO fuel. The article also addresses emerging cost capacity and technical barriers—ranging from constrained electrolyzer deployment to complex certification requirements—that hinder large-scale adoption and market rollout. The article aims to discuss advancing and changing regulatory and market environment for the development of infrastructure and market for hydrogen as RFNBO fuel in the EU in 2019–2024. Synthesizing current research and policy developments we propose targeted recommendations including enhanced cross-border coordination and capacity-based incentives to accelerate investment and infrastructure development. This review informs policymakers industry stakeholders and researchers on critical success factors for integrating hydrogen as a cornerstone of the EU’s climate neutrality efforts.
RES-electrolyser Coupling witin TRIERES Hydrogen Valley - A Flexible Technoeconomic Assessment Tool
Jan 2025
Publication
The escalating urgency to address climate change has sparked unprecedented interest in green hydrogen as a clean energy carrier. The intermittent nature of Renewable Energy Sources (RES) like wind and solar can introduce unpredictability into the energy supply potentially causing mismatches in the power grid. To this end green hydrogen production can provide a solution by enhancing system flexibility thereby accommodating the fluctuations and stochastic characteristics of RES. Furthermore green hydrogen could play a pivotal role in decarbonizing hard-to-abate sectors and promoting sector coupling. This research article endeavors to delve into this subject by developing a dynamic techno-economic analysis tool capable of flexibly assessing the optimal setup of Alkaline (AEL) electrolysis coupled with RES in a specific region or hub. The focus lies on achieving costeffectiveness efficiency and sustainable production of green hydrogen. The tool leverages a comprehensive dataset covering a full year of hourly data on both renewable electricity production from intermittent RES and wholesale electricity market prices alongside customizable inputs from users. It can be applied across various scenarios including direct coupling with dedicated RES plants and hybrid configurations utilizing the electricity grid as a backup source. The model optimizes RES electrolyser and hydrogen storage capacities to minimize the Levelized Cost of Hydrogen (LCOH) and/or the operational Carbon Intensity (CI) of hydrogen produced. The tool is applied within a real-world application study in the framework of the TRIERES Hydrogen Valley Project which is taking shape in Peloponnese Greece. For the various configurations analysed the LCOH ranges from 7.75 to 12.68 €/kgH2. The cost-optimal system configuration featuring a hybrid RES power supply of 12 MW solar and 19 MW wind energy alongside with 3.5 tonnes of hydrogen storage leads to a minimum LCOH of 7.75 €/kgH2. Subsidies on electrolyser stack and balance of plant CAPEX can reduce LCOH by up to 0.6 €/kgH2.
Modeling of Hydrogen Dispersion, Jet Fires and Explosions Caused by Hydrogen Pipeline Leakage
Dec 2023
Publication
Accidental hydrogen releases from pipelines pose significant risks particularly with the expanding deployment of hydrogen infrastructure. Despite this there has been a lack of thorough investigation into hydrogen leakage from pipelines especially under complex real-world conditions. This study addresses this gap by modeling hydrogen gas dispersion jet fires and explosions based on practical scenarios. Various factors influencing accident consequences such as leak hole size wind speed wind direction and trench presence were systematically examined. The findings reveal that both hydrogen dispersion distance and jet flame thermal radiation distance increase with leak hole size and wind speed. Specifically the longest dispersion and radiation distances occur when the wind direction aligns with the trench which is 110 m where the hydrogen concentration is 4% and 76 m where the radiation is 15.8 kW/m2 in the case of a 325 mm leak hole and wind under 10 m/s. Meanwhile pipelines lacking trenching exhibit the shortest distances 0.17 m and 0.98 m at a hydrogen concentration of 4% and 15.8 kW/m2 radiation with a leak hole size of 3.25 mm and no wind. Moreover under relatively higher wind speeds hydrogen concentration stratification occurs. Notably the low congestion surrounding the pipeline results in an explosion overpressure too low to cause damage; namely the highest overpressure is 8 kPa but this lasts less than 0.2 s. This comprehensive numerical study of hydrogen pipeline leakage offers valuable quantitative insights serving as a vital reference for facility siting and design considerations to eliminate the risk of fire incidents.
Operable Range Extension of Ammonia Direct Injection Spark Ignition Engine by Hydrogen Addition
Feb 2024
Publication
Ammonia is gaining attention as a non-carbon environmental-friendly fuel due to its superior storage capability compared to hydrogen. However its high minimum ignition energy and slow laminar flame speed make it unsuitable for application in combustion-based energy conversion devices. In particular when applied to internal combustion engines issues such as combustion instability and limitations in operational range exist. Therefore the intention is to address these issues by adding hydrogen which has a wider flammable range and a faster laminar flame speed to ammonia. In this study the extension of the operable range of ammonia-fueled spark ignition engine by hydrogen addition was mainly discussed. Ammonia was injected directly in the cylinder and hydrogen was supplied into the intake port. The result showed that operable range of ammonia fueled combustion with hydrogen addition could be extended from 0.2 to 1.4 MPa with relatively stable combustion i.e. CoV of gIMEP
Deploying Green Hydrogen to Decarbonize China's Coal Chemical Sector
Dec 2023
Publication
China’s coal chemical sector uses coal as both a fuel and feedstock and its increasing greenhouse gas (GHG) emissions are hard to abate by electrification alone. Here we explore the GHG mitigation potential and costs for onsite deployment of green H2 and O2 in China’s coal chemical sector using a lifecycle assessment and techno-economic analyses. We estimate that China’s coal chemical production resulted in GHG emissions of 1.1 gigaton CO2 equivalent (GtCO2eq) in 2020 equal to 9% of national emissions. We project GHG emissions from China’s coal chemical production in 2030 to be 1.3 GtCO2eq ~50% of which can be reduced by using solar or wind power-based electrolytic H2 and O2 to replace coal-based H2 and air separation-based O2 at a cost of 10 or 153 Chinese Yuan (CNY)/tCO2eq respectively. We suggest that provincial regions determine whether to use solar or wind power for water electrolysis based on lowest cost options which collectively reduce 53% of the 2030 baseline GHG emissions at a cost of 9 CNY/tCO2eq. Inner Mongolia Shaanxi Ningxia and Xinjiang collectively account for 52% of total GHG mitigation with net cost reductions. These regions are well suited for pilot policies to advance demonstration projects.
Green Hydrogen Credit Subsidized Renewable Energy-hydrogen Business Models for Achieving the Carbon Netural Future
Feb 2024
Publication
The global resurgence of hydrogen as a clean energy source particularly green hydrogen derived from renewable energy is pivotal for achieving a carbon-neutral future. However scalability poses a significant challenge. This research proposes innovative business models leveraging the low-emission property of green hydrogen to reduce its financial costs thereby fostering its widespread adoption. Key components of the business workflow are elaborated mathematical formulations of market parameters are derived and case studies are presented to demonstrate the feasibility and efficiency of these models. Results demonstrate that the substantial costs associated with the current hydrogen industry can be effectively subsidized via the implementation of proposed business models. When the carbon emission price falls within the range of approximately 86–105 USD/ton free access to hydrogen becomes a viable option for end-users. This highlights the significance and promising potential of the proposed business models within the green hydrogen credit framework.
Safety Aspects Related to the Underground Hydrogen Storage
Sep 2023
Publication
The transition from fossil fuels to the renewable energies (wind solar) is a key factor to face climate change and build a sustainable reliable and secure energy system. To balance the intermittent energy demand and supply affecting the renewable sources the surplus of electrical energy may be converted in hydrogen and then storage in geological formations. While the risks associated to the natural gas storage in the sub-surface are well known from decades those associated with hydrogen underground storage (UHS) are relatively underexplored. This paper presents an inventory of risks related to large H2-storage in depleted gas and oil fields salt caverns and aquifers. Different issues such as integrity and durability of materials H2 leakages and interaction with the reservoir H2 uncontrolled outflow from the wellhead with potential combustion of air-hydrogen mixture (fire and explosion) soil subsidence and induced seismicity are analyzed.
Influence of Capillary Threshold Pressure and Injection Well Location on the Dynamic CO2 and H2 Storage Capacity for the Deep Geological Structure
Jul 2021
Publication
The subject of this study is the analysis of influence of capillary threshold pressure and injection well location on the dynamic CO2 and H2 storage capacity for the Lower Jurassic reservoir of the Sierpc structure from central Poland. The results of injection modeling allowed us to compare the amount of CO2 and H2 that the considered structure can store safely over a given time interval. The modeling was performed using a single well for 30 different locations considering that the minimum capillary pressure of the cap rock and the fracturing pressure should not be exceeded for each gas separately. Other values of capillary threshold pressure for CO2 and H2 significantly affect the amount of a given gas that can be injected into the reservoir. The structure under consideration can store approximately 1 Mt CO2 in 31 years while in the case of H2 it is slightly above 4000 tons. The determined CO2 storage capacity is limited; the structure seems to be more prospective for underground H2 storage. The CO2 and H2 dynamic storage capacity maps are an important element of the analysis of the use of gas storage structures. A much higher fingering effect was observed for H2 than for CO2 which may affect the withdrawal of hydrogen. It is recommended to determine the optimum storage depth particularly for hydrogen. The presented results important for the assessment of the capacity of geological structures also relate to the safety of use of CO2 and H2 underground storage space.
Sudden Releases of Hydrogen into a Tunnel
Sep 2023
Publication
This paper presents work undertaken by the HSE as part of the Hytunnel-CS project a consortium investigating safety considerations for fuel cell hydrogen (FCH) vehicles in tunnels and similar confined spaces. The sudden failure of a pressurised hydrogen vessel was identified as a scenario of concern due to the severity of the consequences associated with such an event. In order to investigate this scenario experimentally HSE designed a bespoke and reusable ‘sudden release’ vessel. This paper presents an overview of the vessel and the results of a series of 13 tests whereby hydrogen was released from the bespoke vessel into a tunnel at pressures up to 65 MPa. The starting pressure and the volume of hydrogen in the vessel were altered throughout the campaign. Four of the tests also included congestion in the tunnel. The tests reliably autoignited. Overpressure measurements and flame arrival times measured with exposed-tip thermocouples enabled analysis of the severity of the events. A high-pressure fast-acting pressure transducer in the body of the vessel showed the pressure decay in the vessel which shows that 90% of the hydrogen was evacuated in between 1.8 and 3.2 ms (depending on the hydrogen inventory). Schlieren flow imagery was also used at the release point of the hydrogen showing the progression of the shock front following initiation of the tests. An assessment of the footage shows an estimated initial velocity of Mach 3.9 at 0.4 m from the release point. Based on this an ignition mechanism is proposed based upon the temperature behind the initial shock front.
Hydrogen Production by Methane Pyrolysis in Molten Binary Copper Alloys
Sep 2023
Publication
The utilization of hydrogen as an energy carrier and reduction agent in important industrial sectors is considered a key parameter on the way to a sustainable future. Steam reforming of methane is currently the most industrially used process to produce hydrogen. One major drawback of this method is the simultaneous generation of carbon dioxide. Methane pyrolysis represents a viable alternative as the basic reaction produces no CO2 but solid carbon besides hydrogen. The aim of this study is the investigation of different molten copper alloys regarding their efficiency as catalytic media for the pyrolysis of methane in an inductively heated bubble column reactor. The conducted experiments demonstrate a strong influence of the catalyst in use on the one hand on the conversion rate of methane and on the other hand on the properties of the produced carbon. Optimization of these parameters is of crucial importance to achieve the economic competitiveness of the process.
Assessing the Potential of Decarbonization Options for Industrial Sectors
Jan 2024
Publication
Industry emits around a quarter of global greenhouse gas (GHG) emissions. This paper presents the first comprehensive review to identify the main decarbonization options for this sector and their abatement potentials. First we identify the important GHG emitting processes and establish a global average baseline for their current emissions intensity and energy use. We then quantify the energy and emissions reduction potential of the most significant abatement options as well as their technology readiness level (TRL). We find that energy-intensive industries have a range of decarbonization technologies available with medium to high TRLs and mature options also exist for decarbonizing low-temperature heat across a wide range of industrial sectors. However electrification and novel process change options to reduce emissions from high-temperature and sector-specific processes have much lower TRLs in comparison. We conclude by highlighting important barriers to the deployment of industrial decarbonization options and identifying future research development and demonstration needs.
No more items...