Publications
Understanding Degradation Effects of Elevated Temperature Operating Conditions in Polymer Electrolyte Water Electrolyzers
Apr 2021
Publication
The cost of polymer electrolyte water electrolysis (PEWE) is dominated by the price of electricity used to power the water splitting reaction. We present a liquid water fed polymer electrolyte water electrolyzer cell operated at a cell temperature of 100 °C in comparison to a cell operated at state-of-the-art operation temperature of 60 °C over a 300 h constant current period. The hydrogen conversion efficiency increases by up to 5% at elevated temperature and makes green hydrogen cheaper. However temperature is a stress factor that accelerates degradation causes in the cell. The PEWE cell operated at a cell temperature of 100 °C shows a 5 times increased cell voltage loss rate compared to the PEWE cell at 60 °C. The initial performance gain was found to be consumed after a projected operation time of 3500 h. Elevated temperature operation is only viable if a voltage loss rate of less than 5.8 μV h−1 can be attained. The major degradation phenomena that impact performance loss at 100 °C are ohmic (49%) and anode kinetic losses (45%). Damage to components was identified by post-test electron-microscopic analysis of the catalyst coated membrane and measurement of cation content in the drag water. The chemical decomposition of the ionomer increases by a factor of 10 at 100 °C vs 60 °C. Failure by short circuit formation was estimated to be a failure mode after a projected lifetime 3700 h. At elevated temperature and differential pressure operation hydrogen gas cross-over is limiting since a content of 4% hydrogen in oxygen represents the lower explosion limit.
Cost Reduction in Low-carbon Hydrogen: Effective but Insufficient to Mitigate Carbon Emissions
Jun 2023
Publication
Many countries have announced hydrogen promotion strategies to achieve net zero CO2 emissions around 2050. The cost of producing low-carbon (green and blue) hydrogen has been projected to fall considerably as production is scaled up although more so for green hydrogen than for blue hydrogen. This article uses a global computable general equilibrium (CGE) model to explore whether the cost reduction of green and blue hydrogen production can mitigate the use of fossil fuels and related carbon emissions. The results show that cost reduction can raise low-carbon hydrogen consumption markedly in relative terms but marginally in absolute terms resulting in a modest decrease in fossil fuel use and related carbon emissions. The cost reduction of low-carbon hydrogen slightly lowers the use of coal and gas but marginally increases the use of oil. If regional CO2 taxes are introduced the increase in green hydrogen production is considerably larger than in the case of low-carbon hydrogen cost reduction alone. However if cost reduction in low-carbon hydrogen is introduced in addition to the CO2 tax the emissions from fossil fuels are only marginally reduced. Hence synergy efects between the two measures on emissions are practically absent. A low-carbon hydrogen cost reduction alone is efective but insufcient to have a substantial climate impact. This study also calls for modeling development to capture special user preferences for low-carbon hydrogen related to climate mitigation when phasing in new energy carriers like hydrogen.
Renewable Hydrogen Standards, Certifications, and Labels: A State-of-the-art Review from a Sustainability Systems Governance Perspective
Feb 2024
Publication
A range of existing and newly developed hydrogen standards certification and labelling (SCL) schemes aim to promote the role of ‘renewable’ ‘clean’ or ‘green’ hydrogen in decarbonising energy transitions. This paper analyses a sample of these SCLs to assess their role in the scaling up of renewable hydrogen and its derivatives. To analyse these hydrogen SCLs we embellish a novel conceptual framework that brings together Sustainability Systems Thinking and Governance (SSG) literatures. The results reveal noteworthy scheme differences in motivation approach criteria and governance; highlighting the complex interconnected and dynamic reality within which energy systems are embedded. We consider whether the sustainable utilisation of renewable hydrogen is well-served by the proliferation of SCLs and recommend an SSG-informed approach. An SSG approach will better promote collaboration towards an authoritative global multistakeholder compromise on hydrogen certification that balances economic considerations with social and environmental dimensions.
Critical Perspective on Green Hydrogen-based Seasonal Operation of Energy-intensive Industry Sectors with Solid Products
Nov 2024
Publication
In the light of a future decarbonized power grid based primarily on non-dispatchable renewable energy sources the operation of industrial plants should be decarbonized and flexible. An innovative novel concept combining industrial plants with (i) a water electrolysis unit (ii) a hydrogen storage unit and (iii) a fuel cell unit would enable seasonal supply-demand balancing in the local power grid and storage of surplus energy in the form of stable solid products. The feasibility of this concept was demonstrated in a case study taking into account the overall energy balance and economics. The characteristics of the local power grid and the hydrogen round-trip efficiency must be carefully considered when dimensioning the hydrogen units. It was found that industries producing iron and steel cement ceramics glass aluminum paper and other metals have the potential for seasonal operation. Future research efforts in the fields of technology economics and social sciences should support the sustainable flexibility transition of energy-intensive industries with solid products.
Palladium-alloy Membrane Reactors for Fuel Reforming and Hydrogen Production: Hydrogen Production Modelling
Jul 2023
Publication
Endeavors have recently been concentrated on minimizing the dependency on fossil fuels in order to mitigate the ever-increasing problem of greenhouse gas (GHG) emissions. Hydrogen energy is regarded as an alternative to fossil fuels due to its cleaner emission attributes. Reforming of hydrocarbon fuels is amongst the most popular and widely used methods for hydrogen production. Hydrogen produced from reforming processes requires additional processes to separate from the reformed gases. In some cases further purification of hydrogen has to be carried out to use the hydrogen in power generation applications. Metallic membranes especially palladium (Pd)-based ones have demonstrated sustainable hydrogen separation potential with around 99.99% hydrogen purity. Comprehensive and critical research investigations must be performed to optimize membrane-assisted reforming as well as to maximize the production of hydrogen. The computational fluid dynamic (CFD) can be an excellent tool to analyze and visualize the flow/reaction/permeation mechanisms at a lower cost in contrast with the experiments. In order to provide the necessary background knowledge on membrane reactor modeling this study reviews summarizes and analyses the kinetics of different fuel reforming processes equations to determine hydrogen permeation and lastly various geometry and operating condition adopted in the literature associated with membrane-reactor modeling works. It is indicated that hydrogen permeation through Pd-membranes depends highly on the difference in hydrogen pressure. It is found that hydrogen permeation can be improved by employing different pressure configuration introducing sweep flow on the permeate side of the membrane reducing retentate side flow rate and increasing the temperature.
Energy-exergy Evaluation of Liquefied Hydrogen Production System Based on Steam Methane Reforming and LNG Revaporization
Jul 2023
Publication
The research motivation of this paper is to utilize the large amount of energy wasted during the LNG (liquefied natural gas) gasification process and proposes a synergistic liquefied hydrogen (LH2) production and storage process scheme for LNG receiving station and methane reforming hydrogen production process - SMR-LNG combined liquefied hydrogen production system which uses the cold energy from LNG to pre-cool the hydrogen and subsequently uses an expander to complete the liquefaction of hydrogen. The proposed process is modeled and simulated by Aspen HYSYS software and its efficiency is evaluated and sensitivity analysis is carried out. The simulation results show that the system can produce liquefied hydrogen with a flow rate of 5.89t/h with 99.99% purity when the LNG supply rate is 50t/h. The power consumption of liquefied hydrogen is 46.6kWh/kg LH2; meanwhile the energy consumption of the HL subsystem is 15.9kWh/kg LH2 lower than traditional value of 17~19kWh/kg LH2. The efficiency of the hydrogen production subsystem was 16.9%; the efficiency of the hydrogen liquefaction (HL) subsystem was 29.61% which was significantly higher than the conventional industrial value of 21%; the overall energy efficiency (EE1) of the system was 56.52% with the exergy efficiency (EE2) of 22.2% reflecting a relatively good thermodynamic perfection. The energy consumption of liquefied hydrogen per unit product is 98.71 GJ/kg LH2.
Probabilistic Analysis of Low-Emission Hydrogen Production from a Photovoltaic Carport
Oct 2024
Publication
This article presents a 3D model of a yellow hydrogen generation system that uses the electricity produced by a photovoltaic carport. The 3D models of all key system components were collected and their characteristics were described. Based on the design of the 3D model of the photovoltaic carport the amount of energy produced monthly was determined. These quantities were then applied to determine the production of low-emission hydrogen. In order to increase the amount of low-emission hydrogen produced the usage of a stationary energy storage facility was proposed. The Metalog family of probability distributions was adopted to develop a strategic model for low-emission hydrogen production. The hydrogen economy of a company that uses small amounts of hydrogen can be based on such a model. The 3D modeling and calculations show that it is possible to design a compact low-emission hydrogen generation system using rapid prototyping tools including the photovoltaic carport with an electrolyzer placed in the container and an energy storage facility. This is an effective solution for the climate and energy transition of companies with low hydrogen demand. In the analytical part the Metalog probability distribution family was employed to determine the amount of monthly energy produced by 6.3 kWp photovoltaic systems located in two European countries: Poland and Italy. Calculating the probability of producing specific amounts of hydrogen in two European countries is an answer to a frequently asked question: In which European countries will the production of low-emission hydrogen from photovoltaic systems be the most profitable? As a result of the calculations for the analyzed year 2023 in Poland and Italy specific answers were obtained regarding the probability of monthly energy generation and monthly hydrogen production. Many companies from Poland and Italy are taking part in the European competition to create hydrogen banks. Only those that offer low-emission hydrogen at the lowest prices will receive EU funding.
Analysis of the Combustion Speed in a Spark Ignition Engine Fuelled with Hydrogen and Gasoline Blends at Different Air Fuel Ratios
Nov 2024
Publication
The use of hydrogen in internal combustion engines is a promising solution for the decarbonisation of the transport sector. The current transition scenario is marked by the unavailability and storage challenges of hydrogen. Dual fuel combustion of hydrogen and gasoline in current spark ignition engines is a feasible solution in the short and medium term as it can improve engine efficiency reduce pollutant emissions and contribute significantly in tank to wheel decarbonisation without major engine modification. However new research is needed to understand how the incorporation of hydrogen affects existing engines to effectively implement gasoline-hydrogen dual fuel option. Understanding the impact of hydrogen on the combustion process (e.g. combustion speed) will guide and optimize the operation of engines under dual fuel combustion conditions. In this work a commercial gasoline direct injection engine has been modified to operate with gasolinehydrogen fuels. The experiments have been carried out at various air–fuel ratios ranging from stoichiometric to lean combustion conditions at constant engine speed and torque. At each one of the 14 experimental points 200-cycle in-cylinder pressure traces were recorded and processed with a quasi-dimensional diagnostic model and a combustion speed analysis was then carried out. It has been understood that hydrogen mainly reduces the duration of the first combustion phase. Hydrogen also enables to increase air excess ratios (lean in fuel combustion) without significantly increasing combustion duration. Furthermore a correlation is proposed to predict combustion speed as a function of the fuel and air mixture properties. This correlation can be incorporated to calculate combustion duration in predictive models of engines operating under different fuel mixtures and different geometries of the combustion chamber with pent-roof cylinder head and flat piston head.
A Multi-stage Framework for Coordinated Scheduling of Networked Microgrids in Active Distribution Systems with Hydrogen Refueling and Charging Stations
May 2024
Publication
Due to the increase in electric energy consumption and the significant growth in the number of electric vehicles (EV) at the level of the distribution network new networks have started using new fuels such as hydrogen to improve environmental indicators and at the same time better efficiency from the excess capacity of renewable resources. In this article the services that can be provided by hydrogen refueling stations and charging electric vehicles in the optimal performance of microgrids have been investigated. The model proposed in this paper includes a two-stage stochastic framework for scheduling resources in microgrids especially hydrogen refueling stations and electric vehicle charging. In this model two main goals of cost minimization and greenhouse gas emissions are considered. In the proposed framework and in the first stage the service range of microgrids is determined precisely according to the electrical limitations of distribution systems in emergency situations. Then in the second stage the problem of energy management in each microgrid will be solved centrally. In this situation various indicators including the output energy of renewable sources smart charging of hydrogen and electric vehicle charging stations (EV/FCV) and flexible loads (FL) are evaluated. The final mathematical model is implemented as a multivariate integer multiple linear problem (MILP) using the GUROBI solver in GAMS software. The simulation results on the modified IEEE 118-Bus network show the positive effect of the presence of flexible loads and smart charging strategies by charging stations. Also the numerical derivation shows that the operating costs of the entire system can be reduced by 4.77% and the use of smart charging strategies can reduce greenhouse gas emissions by 49.13%.
Detailed Assessment of Dispersion for High-pressure H2 in Multi-fuel Environment
Sep 2023
Publication
The MultHyFuel project notably aims to produce the data missing for usable risk analysis and mitigation activity for Hydrogen Refuelling Stations (HRS) in a multi-fuel context. In this framework realistic releases of hydrogen that could occur in representative multi-fuel forecourts were studied. These releases can occur inside or outside fuel dispensers and they can interact with a complex environment notably made of parked cars and trucks. This paper is focused on the most critical scenarios that were addressed by a sub-group through the use of Computational Fluid Dynamics (CFD) modelling. Once the corresponding source terms for hydrogen releases were known two stages are followed:<br/>♦ Model Validation – to evaluate the CFD models selected by the task partners and to evaluate their performance through comparison to experimental data.<br/>♦ Realistic Release Modelling – to perform demonstration simulations of a range of critical scenarios.<br/>The CFD models selected for the Model Validation have been tested against measured data for a set of experiments involving hydrogen releases. Each experiment accounts for physical features that are encountered in the realistic cases. The selected experiments include an under-expanded hydrogen jet discharging into the open atmosphere with no obstacles or through an array of obstacles. Additionally a very different set-up was studied with buoyancy-driven releases inside a naturally ventilated enclosure. The results of the Model Validation exercise show that the models produce acceptable solutions when compared to measured data and give confidence in the ability of the models and the modellers to capture the behaviour of the realistic releases adequately. The Realistic Release Modelling phase will provide estimation of the flammable gas cloud volume for a set of critical scenarios and will be described at the second stage.
Conceptual Design of an Offshore Hydrogen Platform
Feb 2024
Publication
Offshore green hydrogen emerges as a guiding light in the global pursuit of environmental sustainability and net-zero objectives. The burgeoning expansion of offshore wind power faces significant challenges in grid integration. This avenue towards generating offshore green hydrogen capitalises on its ecological advantages and substantial energy potential to efficiently channel offshore wind power for onshore energy demands. However a substantial research void exists in efficiently integrating offshore wind electricity and green hydrogen. Innovative designs of offshore hydrogen platforms present a promising solution to bridge the gap between offshore wind and hydrogen integration. Surprisingly there is a lack of commercially established offshore platforms dedicated to the hydrogen industry. However the wealth of knowledge from oil and gas platforms contributes valuable insights to hydrogen platform design. Diverging from the conventional decentralised hydrogen units catering to individual turbines this study firstly introduces a pioneering centralised Offshore Green Hydrogen Platform (OGHP) which seamlessly integrates modular production storage and offloading modulars. The modular design of facilitates scalability as wind capacity increases. Through a detailed case study centred around a 100-Megawatt floating wind farm the design process of offshore green hydrogen modulars and its floating sub-structure is elucidated. Stability analysis and hydrodynamic analysis are performed to ensure the safety of the OGHP under the operation conditions. The case study will enhance our understanding OGHP and its modularised components. The conceptual design of modular OGHP offers an alternative solution to ‘‘Power-to-X’’ for offshore renewable energy sector.
Pressure Evolution from Head-on Reflection of High-speed Deflagration in Hydrogen Mixtures
Sep 2023
Publication
Our previous reported experiments revealed that the reflection of high-speed deflagrations in hydrogenair and hydrogen-oxygen mixtures produces higher mechanical loading and reflected pressures than reflecting detonations. This surprising result was shown to correlate with the onset of detonation in the gases behind the reflected shock. We revisit these experiments with the aim of developing a closed-form model for the pressure evolution due to the shock-induced ignition and rapid transition to detonation. We find that the reflection condition of fast deflagrations corresponds to the chain-branching crossover regime of hydrogen ignition in which the reduced activation energy is very large and the reaction characteristic time is very short compared to the induction time. We formulate a closed-form model in the limit of fast reaction times as compared to the induction time which is used to predict a square wave pressure profile generated by self-similar propagation of internal Chapman-Jouguet detonation waves followed by Taylor expansion waves. The model predictions are compared with Navier-Stokes numerical simulations with full chemistry as well as simple Euler calculations using calibrated one-step or twostep chain-branching models. Both simplified numerical models were found to be in good agreement with the full chemistry model. We thus demonstrate that the end pressure evolution due to the reflection of high-speed deflagrations can be well predicted analytically and numerically using relatively simple models in this ignition regime of main interest for safety analysis and explosion mitigations. The slight departures from the square wave model are investigated based on the physical wave processes occurring in the shocked gases controlling the shock-to-detonation transition. Using the two-step model we study how the variations of the rate of energy release control the pressure evolution in the end gas extending the analysis of Sharpe to very large rates of energy release.
Control and Optimization of Hydrogen Hybrid Electric Vehicles Using GPS-Based Speed Estimation
Dec 2024
Publication
This paper investigates the feasibility of hydrogen-powered hybrid electric vehicles as a solution to transportation-related pollution. It focuses on optimizing energy use to improve efficiency and reduce emissions. The study details the creation and real-time performance assessment of a hydrogen hybrid electric vehicle (HHEV)system using an STM32F407VG board. This system includes a fuel cell (FC) as the main energy source a battery (Bat) to provide energy during hydrogen supply disruptions and a supercapacitor (SC) to handle power fluctuations. A multi-agent-based artificial intelligence tool is used to model the system components and an energy management algorithm (EMA) is applied to optimize energy use and support decision-making. Real Global Positioning System (GPS) data are analyzed to estimate energy consumption based on trip and speed parameters. The EMA developed and implemented in real-time using Matlab/Simulink(2016) identifies the most energy-efficient routes. The results show that the proposed vehicle architecture and management strategy effectively select optimal routes with minimal energy use.
Hydrogen Energy Storage: New Techno-economic Emergence Solution Analysis
Aug 2015
Publication
The integration of various renewable energy sources as well as the liberalization of electricity markets are established facts in modern electrical power systems. The increased share of renewable sources within power systems intensifies the supply variability and intermittency. Therefore energy storage is deemed as one of the solutions for stabilizing the supply of electricity to maintain generation-demand balance and to guarantee uninterrupted supply of energy to users. In the context of sustainable development and energy resources depletion the question of the growth of renewable energy electricity production is highly linked to the ability to propose new and adapted energy storage solutions. The purpose of this multidisciplinary paper is to highlight the new hydrogen production and storage technology its efficiency and the impact of the policy context on its development. A comprehensive techno/socio/economic study of long term hydrogen based storage systems in electrical networks is addressed. The European policy concerning the different energy storage systems and hydrogen production is explicitly discussed. The state of the art of the techno-economic features of the hydrogen production and storage is introduced. Using Matlab-Simulink for a power system of rated 70 kW generator the excess produced hydrogen during high generation periods or low demand can be sold either directly to the grid owners or as filled hydrogen bottles. The affordable use of Hydrogen-based technologies for long term electricity storage is verified.
Assessment of Hydrogen Gas Turbine-fuel Cell Powerplant for Rotorcraft
Jul 2023
Publication
Conventional turboshaft engines are high power density movers suffering from low efficiency at part power operation and producing significant emissions. This paper presents a design exploration and feasibility assessment of a hybrid hydrogen-fueled powerplant for Urban Air Mobility (UAM) rotorcraft. A multi-disciplinary approach is devised comprising models for rotorcraft performance tank and subsystems sizing and engine performance. The respective trade-offs between payload-range and mission level performance are quantified for kerosene-fueled and hybrid hydrogen tilt-rotor variants. The effects of gas turbine scaling and fuel cell pressurization are evaluated for different hybridization degrees. Gas turbine scaling with hybridization (towards the fuel cell) results in up to 21% benefit in energy consumption relative to the non-scaled case with the benefits being more pronounced at high hybridization degrees. Pressurizing the fuel cell has shown significant potential as cell efficiency can increase up to 10% when pressurized to 6 bar which translates to a 6% increase in overall efficiency. The results indicate that current fuel cells (1 kW/kg) combined with current hydrogen tank technology severely limit the payload range capability of the tilt-rotor. However for advanced fuel cell technology (2.5 kW/kg) and low ranges hybrid powerplant show the potential to reduce energy consumption and reduce emissions footprint.
Optimal Siting and Sizing of Hydrogen Production Modules in Distribution Networks with Photovoltaic Uncertainties
Nov 2023
Publication
Hydrogen production modules (HPMs) play a crucial role in harnessing abundant photovoltaic power by producing and supplying hydrogen to factories resulting in significant operational cost reductions and efficient utilization of the photovoltaic panel output. However the output of photovoltaic power is stochastic which will affect the revenue of investing in an HPM. This paper presents a comprehensive analysis of HPMs starting with the modeling of their operational process and investigating their influence on distribution system operations. Building upon these discussions a deterministic optimization model is established to address the corresponding challenges. Furthermore a two-stage stochastic planning model is proposed to determine optimal locations and sizes of HPMs in distribution systems accounting for uncertainties. The objective of the twostage stochastic planning model is to minimize the distribution system’s operational costs plus the investment costs of the HPM subject to power flow constraints. To tackle the stochastic nature of photovoltaic power a data-driven algorithm is introduced to cluster historical data into representative scenarios effectively reducing the planning model’s scale. To ensure an efficient solution a Benders’ decomposition-based algorithm is proposed which is an iterative method with a fast convergence speed. The proposed model and algorithms are validated using a widely utilized IEEE 33-bus system through numerical experiments demonstrating the optimality of the HPM plan generated by the algorithm. The proposed model and algorithms offer an effective approach for decision-makers in managing uncertainties and optimizing HPM deployment paving the way for sustainable and efficient energy solutions in distribution systems. Sensitivity analysis verifies the optimality of the HPM’s siting and sizing obtained by the proposed algorithm which also reveals immense economic and environmental benefits.
Computational Predictions of Hydrogen-assisted Fatigue Crack Growth
May 2024
Publication
A new model is presented to predict hydrogen-assisted fatigue. The model combines a phase field description of fracture and fatigue stress-assisted hydrogen diffusion and a toughness degradation formulation with cyclic and hydrogen contributions. Hydrogen-assisted fatigue crack growth predictions exhibit an excellent agreement with experiments over all the scenarios considered spanning multiple load ratios H2 pressures and loading frequencies. These are obtained without any calibration with hydrogen-assisted fatigue data taking as input only mechanical and hydrogen transport material properties the material’s fatigue characteristics (from a single test in air) and the sensitivity of fracture toughness to hydrogen content. Furthermore the model is used to determine: (i) what are suitable test loading frequencies to obtain conservative data and (ii) the underestimation made when not pre-charging samples. The model can handle both laboratory specimens and large-scale engineering components enabling the Virtual Testing paradigm in infrastructure exposed to hydrogen environments and cyclic loading.
Field Test Series for Development of Mitigation Barriers and its Designs Against Hydrogen Explosion
Sep 2023
Publication
A field test series where a composite pressure vessel for hydrogen is exploded by fire 1) to provide the facts and the data for the safety distance based on overpressure; 2) to validate the current status of mitigation barrier per KGS FP216 and further designs for developments of the codes and standards relating to hydrogen refueling stations. A pair of barriers to be tested are installed approximately 4 m apart standing face to face. The explosion source is a type-4 composite vessel of 175 L filled with compressed hydrogen up to 70 MPa. The vessel is in the middle of the barriers and the body part is heated with an LPG burner until it blows out. The incident overpressures from the blast are measured with 40 high-speed pressure sensors which are respectively installed 2 to 32 m away from the explosion. In the tests with the barrier constructed per the current status of KGS FP216 the explosion of the vessel resulted in partial destruction of the reinforced concrete barrier and made the steel plate barrier dissociated from the foundation then flew away approximately 25 m. The peak overpressure was 14.65 kPa at 32 m. The test data will be further analyzed to select the barriers for the subsequent tests and to develop the codes and standards for hydrogen refueling stations.
Erosive Effects of Hydrogen Jet Fires on Tunnel Structural Materials
Sep 2023
Publication
This paper presents work undertaken as part of the Hytunnel-CS project a consortium investigating safety considerations for fuel cell hydrogen (FCH) vehicles in tunnels and similar confined spaces. This test programme investigated erosive effects of an ignited high pressure hydrogen jet impinging onto tunnel structural materials specifically concrete as used for tunnel linings and asphalt road surfacing for the road itself. The chosen test conditions mimicked a high-pressure release (700 bar) from an FCH car as a result of activation of the thermal pressure relief device (TPRD) on the fuel tank. These devices typically have a release opening of 2 mm and thus a nozzle diameter of approximately 2 mm was used. The resultant releases were ignited using a propane pilot light and test samples were placed in the jet path at varying standoff distances from the release nozzle.<br/>An initial characterization test of a free unimpeded ignited jet demonstrated a rapid and intense temperature increase up to 1650 °C lasting in the order of 3 - 5 minutes for that fuel inventory (4 kg hydrogen). Five tests were carried out where the ignited jet was impinged onto five structural samples. It was found that erosion occurred in the concrete samples where no fire mitigation namely addition of polypropylene fibres was applied. The road-surface sample was found to become molten but did not progress to combustion.<br/>Post-test material analysis including compressive strength and thermal conductivity measurements was carried out on some of the concrete samples to investigate whether structural deformities had occurred within the sample microstructure. The results suggested that the erosive damage caused by the hydrogen jet was mostly superficial and as such did not present an increased fire risk to the structural integrity to that of conventional hydrocarbon fires i.e. those that would result from petrol or diesel fuel tank releases. In terms of fire resistance standards it is suggested that current fire mitigation strategies and structural testing standards would be adequate for hydrogen vehicles on the road network.
Study on the Effects of the Hydrogen Substitution Rate on the Performance of a Hydrogen–Diesel Dual-Fuel Engine under Different Loads
Aug 2023
Publication
Due to having zero carbon emissions and renewable advantages hydrogen has great prospects as a renewable form of alternate energy. Engine load and hydrogen substitution rate have a considerable influence on a hydrogen–diesel dual-fuel engine’s efficiency. This experiment’s objective is to study the influence of hydrogen substitution rate on engine combustion and emission under different loads and to study the impact of exhaust gas recirculation (EGR) technology or main injection timing on the engine’s capability under high load and high hydrogen substitution rate. The range of the maximum hydrogen substitution rate was determined under different loads (30%~90%) at 1800 rpm and then the effects of the EGR rate (0%~15%) and main injection timing (−8 ◦CA ATDC~0 ◦CA ATDC) on the engine performance under 90% high load were studied. The research results show that the larger the load the smaller the maximum hydrogen substitution rate that can be added to the dual-fuel engine. Under each load with the increase of the hydrogen substitution rate the cylinder pressure and the peak heat release rate (HRR) increase the equivalent brake-specific fuel consumption (BSFCequ) decreases the thermal efficiency increases the maximum thermal efficiency is 43.1% the carbon dioxide (CO2 ) emission is effectively reduced by 35.2% and the nitrogen oxide (NOx) emission decreases at medium and low loads and the maximum increase rate is 20.1% at 90% load. Under high load with the increase of EGR rate or the delay of main injection timing the problem of NOx emission increases after hydrogen doping can be effectively solved. As the EGR rate rises from 0% to 15% the maximum reduction of NOx is 63.1% and with the delay of main injection timing from −8 ◦CA ATDC to 0 ◦CA ATDC the maximum reduction of NOx is 44.5%.
Small-Scale High-Pressure Hydrogen Storage Vessels: A Review
Feb 2024
Publication
Nowadays high-pressure hydrogen storage is the most commercially used technology owing to its high hydrogen purity rapid charging/discharging of hydrogen and low-cost manufacturing. Despite numerous reviews on hydrogen storage technologies there is a relative scarcity of comprehensive examinations specifically focused on high-pressure gaseous hydrogen storage and its associated materials. This article systematically presents the manufacturing processes and materials used for a variety of high-pressure hydrogen storage containers including metal cylinders carbon fiber composite cylinders and emerging glass material-based hydrogen storage containers. Furthermore it introduces the relevant principles and theoretical studies showcasing their advantages and disadvantages compared to conventional high-pressure hydrogen storage containers. Finally this article provides an outlook on the future development of high-pressure hydrogen storage containers.
Green with Envy? Hydrogen Production in a Carbon-constrained World
Jan 2024
Publication
Hydrogen is widely recognized as a key component of a decarbonized global energy system serving as both a fuel source and an energy storage medium. While current hydrogen production relies almost entirely on emissionsintensive processes two low-emissions production pathways – natural-gas-derived production combined with carbon capture and storage and electrolysis using carbon-free electricity – are poised to change the global supply mix. Our study assesses the financial conditions under which natural-gas-based hydrogen production combined with carbon capture and storage would be available at a cost lower than hydrogen produced through electrolysis and the degree to which these conditions are likely to arise in a transition to a net-zero world. We also assess the degree to which emissions reduction policies namely carbon pricing and carbon capture and storage tax credits affect the relative costs of hydrogen production derived from different pathways. We show that while carbon pricing can improve the relative cost of both green and blue hydrogen production compared with unabated grey hydrogen targeted tax credits favouring either blue or green hydrogen explicitly may increase emissions and/or increase the costs of the energy transition.
Synergy of Carbon Capture, Waste Heat Recovery and Hydrogen Production for Industrial Decarbonisation
May 2024
Publication
Industry is the biggest sector of energy consumption and greenhouse gas emissions whose decarbonisation is essential to achieve the Sustainable Development Goals. Carbon capture energy efficiency improvement and hydrogen are among the main strategies for industrial decarbonization. However novel approaches are needed to address the key requirements and differences between sectors to ensure they can work together to well integrate industrial decarbonisation with heat CO2 and hydrogen. The emerging Calcium Looping (CaL) is attracting interest in designing CO2-involved chemical processes for heat capture and storage. The reversibility relatively high-temperature (600 to 900 ◦C) and high energy capacity output as well as carbon capture function make CaL well-fit for CO2 capture and utilisation and waste heat recovery from industrial flue gases. Meanwhile methane dry reforming (MDR) is a promising technology to produce blue hydrogen via the consumption of two major greenhouse gases i.e. CO2 and CH4. It has great potential to combine the two technologies to achieve insitu CO2 utilization with multiple benefits. In this paper progresses on the reaction conditions and performance of CaL for CO2 capture and industrial waste heat recovery as well as MDR were screened. Secondly recent approaches to CaL-MDR synergy have been reviewed to identify the advantages. The major challenges in such a synergistic process include MDR catalyst deactivation CaL sorbents sintering and system integration. Thirdly the paper outlooks future work to explore a rational design of a multi-function system for the proposed synergistic process.
PEM Water Electrolysis for Hydrogen Production: Fundamentals, Advances, and Prospects
Jun 2022
Publication
Hydrogen as a clean energy carrier is of great potential to be an alternative fuel in the future. Proton exchange membrane (PEM) water electrolysis is hailed as the most desired technology for high purity hydrogen production and self-consistent with volatility of renewable energies has ignited much attention in the past decades based on the high current density greater energy efficiency small mass-volume characteristic easy handling and maintenance. To date substantial efforts have been devoted to the development of advanced electrocatalysts to improve electrolytic efficiency and reduce the cost of PEM electrolyser. In this review we firstly compare the alkaline water electrolysis (AWE) solid oxide electrolysis (SOE) and PEM water electrolysis and highlight the advantages of PEM water electrolysis. Furthermore we summarize the recent progress in PEM water electrolysis including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts in the acidic electrolyte. We also introduce other PEM cell components (including membrane electrode assembly current collector and bipolar plate). Finally the current challenges and an outlook for the future development of PEM water electrolysis technology for application in future hydrogen production are provided.
Semi-Systematic Literature Review on the Contribution of Hydrogen to Universal Access to Energy in the Rationale of Sustainable Development Goal Target 7.1
Feb 2023
Publication
As part of the United Nations’ (UN) Sustainable Development Goal 7 (SDG7) SDG target 7.1 recognizes universal electrification and the provision of clean cooking fuel as two fundamental challenges for global society. Faltering progress toward SDG target 7.1 calls for innovative technologies to stimulate advancements. Hydrogen has been proposed as a versatile energy carrier to be applied in both pillars of SDG target 7.1: electrification and clean cooking. This paper conducts a semi-systematic literature review to provide the status quo of research on the application of hydrogen in the rationale of SDG 7.1 covering the technical integration pathways as well as the key economic environmental and social aspects of its use. We identify decisive factors for the future development of hydrogen use in the rationale of SDG target 7.1 and by complementing our analysis with insights from the related literature propose future avenues of research. The literature on electrification proposes that hydrogen can serve as a backup power supply in rural off-grid communities. While common electrification efforts aim to supply appliances that use lower amounts of electricity a hydrogen-based power supply can satisfy appliances with higher power demands including electric cook stoves while simultaneously supporting clean cooking efforts. Alternatively with the exclusive aim of stimulating clean cooking hydrogen is proposed to be used as a clean cooking fuel via direct combustion in distribution and utilization infrastructures analogous to Liquid Petroleum Gas (LPG). While expected economic and technical developments are seen as likely to render hydrogen technologies economically competitive with conventional fossil fuels in the future the potential of renewably produced hydrogen usage to reduce climate-change impacts and point-of-use emissions is already evident today. Social benefits are likely when meeting essential safety standards as a hydrogen-based power supply offers service on a high tier that might overachieve SDG 7.1 ambitions while hydrogen cooking via combustion fits into the existing social habits of LPG users. However the literature lacks clear evidence on the social impact of hydrogen usage. Impact assessments of demonstration projects are required to fill this research gap.
Forecasting the Development of Clean Energy Vehicles in Large Cities: A System Dynamics Perspective
Jan 2024
Publication
Clean energy vehicles (CEVs) e.g. battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) are being adopted gradually to substitute for internal combustion engine vehicles (ICEVs) around the world. The fueling infrastructure is one of the key drivers for the development of the CEV market. When the government develops funding policies to support the fueling infrastructure development for FCEVs and BEVs it has to assess the effectiveness of different policy options and identify the optimal policy combination which is very challenging in transportation research. In this paper we develop a system dynamics model to study the feedback mechanism between the fueling infrastructure funding policies and the medium- to long-term diffusion of FCEVs and BEVs and the competition between FCEVs and BEVs based on relevant policy and market data in Guangzhou China. The results of the modeling analysis are as follows. (1) Funding hydrogen refueling stations and public charging piles has positive implications for achieving the substitution of CEVs for ICEVs. (2) Adjusting the funding ratio of hydrogen refueling stations and public charging piles or increasing the funding budget and extending the funding cycle does not have a significant impact on the overall substitution of CEVs for ICEVs but only impacts the relative competitive advantage between FCEVs and BEVs. (3) An equal share of funding for hydrogen refueling stations and public charging piles would have better strategic value for future net-zero-emissions urban transportation. (4) Making a moderate-level full investment in hydrogen refueling stations coupled with hydrogen refueling subsidies can provide the ideal conditions for FCEV diffusion.
Techno-economic Viability of Decentralised Solar Photovoltaic-based Green Hydrogen Production for Sustainable Energy Transition in Ghana
Feb 2024
Publication
Transition to a sustainable energy supply is essential for addressing the challenges of climate change and achieving a low-carbon future. Green hydrogen produced from solar photovoltaic (PV) systems presents a promising solution in Ghana where energy demands are increasing rapidly. The levelized cost of hydrogen (LCOH) is considered a critical metric to evaluate hydrogen production techniques cost competitiveness and economic viability. This study presents a comprehensive analysis of LCOH from solar PV systems. The study considered a 5 MW green hydrogen production plant in Ghana’s capital Accra as a proposed system. The results indicate that the LCOH is about $9.49/kg which is comparable to other findings obtained within the SubSaharan Africa region. The study also forecasted that the LCOH for solar PV-based hydrogen produced will decrease to $5–6.5/kg by 2030 and $2–2.5/kg by 2050 or lower making it competitive with fossil fuel-based hydrogen. The findings of this study highlight the potential of green hydrogen as a sustainable energy solution and its role in driving the country’s net-zero emissions agenda in relation to its energy transition targets. The study’s outcomes are relevant to policymakers researchers investors and energy stakeholders in making informed decisions regarding deploying decentralised green hydrogen technologies in Ghana and similar contexts worldwide.
Techno-Economic Analysis of Cement Decarbonization Techniques: Oxygen Enrichment vs. Hydrogen Fuel
Feb 2024
Publication
The Paris Agreement aims to limit global warming and one of the most polluting sectors is heavy industry where cement production is a significant contributor. This work briefly explores some alternatives recycling reducing clinker content waste heat recovery and carbon capture discussing their advantages and drawbacks. Then it examines the economic viability and benefits of increasing oxygen concentration in the primary burning air from 21 to 27 vol.% which could improve clinker production by 7% and the production of hydrogen through PEM electrolysis to make up 5% of the fuel thermal fraction considering both in a cement plant producing 3000 tons of clinker per day. This analysis used reference values from Secil an international company for cement and building materials to determine the required scale of the oxygen and hydrogen production respectively and calculate the CAPEX of each approach. It is concluded that oxygen enrichment can provide substantial fuel savings for a relatively low cost despite a possible significant increase in NOx emissions. However hydrogen production at this scale is not currently economically viable.
Modeling the Long-term Evolution of the Italian Power Sector: The Role of Renewable Resources and Energy Storage Facilities
Feb 2024
Publication
The aim of this study is to investigate the long-term planning of the Italian power sector from 2021 to 2050. The key role of photovoltaic and wind technologies in combination with power-to-power systems based on hydrogen and batteries is investigated. An updated version of the OSeMOSYS tool is used which employs a clustering method for the representation of time-varying input data. First the potential of variable renewable energy sources (VRES) is assessed. A sensitivity analysis is also performed on the temporal resolution of the model to determine an adequate trade-off between the computation time and the accuracy of the results. Then a technoeconomic optimization scenario is carried out resulting in a total net present cost of about 233.7 B€. A high penetration of VRES technologies is foreseen by 2050 with a total VRES installed capacity of 272.9 GW (mainly photovoltaic and onshore wind). Batteries are found to be the preferable energy storage solution in the first part of the energy transition while the hydrogen storage starts to be convenient from about the year 2040. Indeed the role of hydrogen storage becomes fundamental as the VRES penetration increases thanks to its cost-effective long-term storage capability. By 2050 74.6 % of electricity generation will be based on VRES which will also enable a significant reduction in CO2 emissions of about 87 %.
A Review on Biohydrogen Sources, Production Routes, and Its Application as a Fuel Cell
Aug 2023
Publication
More than 80% of the energy from fossil fuels is utilized in homes and industries. Increased use of fossil fuels not only depletes them but also contributes to global warming. By 2050 the usage of fossil fuels will be approximately lower than 80% than it is today. There is no yearly variation in the amount of CO2 in the atmosphere due to soil and land plants. Therefore an alternative source of energy is required to overcome these problems. Biohydrogen is considered to be a renewable source of energy which is useful for electricity generation rather than relying on harmful fossil fuels. Hydrogen can be produced from a variety of sources and technologies and has numerous applications including electricity generation being a clean energy carrier and as an alternative fuel. In this review a detailed elaboration about different kinds of sources involved in biohydrogen production various biohydrogen production routes and their applications in electricity generation is provided.
A Novel Layout for Combined Heat and Power Production for a Hospital Based on a Solid Oxide Fuel Cell
Feb 2024
Publication
This paper addresses the problem of the reduction in the huge energy demand of hospitals and health care facilities. The sharp increase in the natural gas price due to the Ukrainian–Russian war has significantly reduced economic savings achieved by combined heat and power (CHP) units especially for hospitals. In this framework this research proposes a novel system based on the integration of a reversible CHP solid oxide fuel cell (SOFC) and a photovoltaic field (PV). The PV power is mainly used for balancing the hospital load. The excess power production is exploited to produce renewable hydrogen. The SOFC operates in electrical tracking mode. The cogenerative heat produced by the SOFC is exploited to partially meet the thermal load of the hospital. The SOFC is driven by the renewable hydrogen produced by the plant. When this hydrogen is not available the SOFC is driven by natural gas. In fact the SOFC is coupled with an external reformer. The simulation model of the whole plant including the reversible SOFC PV and hospital is developed in the TRNSYS18 environment and MATLAB. The model of the hospital is calibrated by means of measured data. The proposed system achieves very interesting results with a primary energy-saving index of 33% and a payback period of 6.7 years. Therefore this energy measure results in a promising solution for reducing the environmental impact of hospital and health care facilities.
H2 URESONIC: Design of a Solar-Hydrogen University Renewable Energy System for a New and Innovative Campus
Feb 2024
Publication
The necessity to move to sustainable energy solutions has inspired an investigation of innovative technologies for satisfying educational institutions’ sustainable energy needs. The possibility of a solar-hydrogen storage system and its integration into university energy management is investigated in this article. The study opens by providing context noting the growing relevance of renewable energy in universities as well as the necessity for effective energy storage systems. The goal is to delve into solar-hydrogen technology outlining its components operating mechanism and benefits over typical storage systems. The chapter on Integration Design examines current university energy infrastructure identifies problems and provides ways for integrating solar-hydrogen systems seamlessly. This integration relies heavily on technological and economic considerations such as a cost-benefit analysis and scalability studies. Case studies include real-world examples performance measurements and significant insights learned from successful implementations. The chapter Future Prospects investigates new trends in solar-hydrogen technology as well as the impact of government legislation providing a forward-looking viewpoint for colleges considering adoption. The report concludes with a summary of significant findings emphasizing the benefits of solar-hydrogen integration and making recommendations for future implementations. The limitation of this research is that it only focuses on design and simulation as a phase of preliminary study.
Utilization of Hydro Sources in Canada for Green Hydrogen Fuel Production
Oct 2024
Publication
The present study comprehensively examines the application of hydro wave tidal undersea current and geothermal energy sources of Canada for green hydrogen fuel production. The estimated potential capacity of each province is derived from official data and acceptable assumptions and is subject to discussion and evaluation in the context of a viable hydrogen economy. According to the findings the potential for green hydrogen generation in Canada is projected to be 48.86 megatons. The economic value of the produced green hydrogen results in an equivalent of 21.30 billion US$. The top three provinces with the highest green hydrogen production potential using hydro resources including hydro wave tidal undersea current and geothermal are Alberta Quebec and British Columbia with 26.13 Mt 7.34 Mt and 4.39 Mt respectively. Quebec is ranked first by only considering the marine sources including 4.14 Mt with hydro 1.46 Mt with wave 0.27 Mt underwater current and 1.45 Mt with tidal respectively. Alberta is listed as the province with the highest capacity for hydrogen production from geothermal energy amounting up to 26.09 Mt. The primary objective is to provide comprehensive hydrogen maps for each province in Canada which will be based on the identified renewable energy potential and the utilization of electrolysers. This may further be examined within the framework of the prevailing policies implemented by local communities and officials in order to develop a sustainable energy plan for the nation.
Power Sector Effects of Green Hydrogen Production in Germany
Aug 2023
Publication
The use of green hydrogen can support the decarbonization of sectors which are difficult to electrify such as industry or heavy transport. Yet the wider power sector effects of providing green hydrogen are not well understood so far. We use an open-source electricity sector model to investigate potential power sector interactions of three alternative supply chains for green hydrogen in Germany in the year 2030. We distinguish between model settings in which Germany is modeled as an electric island versus embedded in an interconnected system with its neighboring countries as well as settings with and without technology-specific capacity bounds on wind energy. The findings suggest that large-scale hydrogen storage can provide valuable flexibility to the power system in settings with high renewable energy shares. These benefits are more pronounced in the absence of flexibility from geographical balancing. We further find that the effects of green hydrogen production on the optimal generation portfolio strongly depend on the model assumptions regarding capacity expansion potentials. We also identify a potential distributional effect of green hydrogen production at the expense of other electricity consumers of which policy makers should be aware.
A New Method to Quantify the Leakage Scenarios (Frequencies and Flowrates) on Hydrogen High Pressure Components
Sep 2023
Publication
This work is part of the MULTHYFUEL E.U. research program [1] aiming at enabling the implementation of hydrogen dispersers in refuelling stations. One important challenge is the severity of accidents due to a leakage of hydrogen from a dispenser in the forecourt. The work presented in this paper deals with the quantification of the leakage scenarios in terms of frequencies and severities. The risk analysis exercise although performed by experts showed very large discrepancies between the frequencies of leakages of the same categories and even between the consequences. A large part of the disagreement comes from the failure databases chosen as shown in the paper. The mismatch between the components on which the databases have been settled and the actual hydrogen components may be responsible for this situation. However as it stands limited confidence can be laid on the outcome of the risk analysis.<br/>A new method is being developed to calculate the frequencies of the leakage and the flowrate based on an accurate description of each component and of each hazardous situation. For instance the possibility for a fitting to become untight due to pressure cycling is modelled based on the contact mechanics. Human errors can also be introduced by describing the tasks. In addition of the description of the method the application to a disperser is proposed with some comparison to experiments. One of the outcomes is that leakage cross sections can be much larger than expected.
Advancements in Hydrogen Energy Systems: A Review of Levelized Costs, Financial Incentives and Technological Innovations
Apr 2024
Publication
Hydrogen energy systems (HES) are increasingly recognized as pivotal in cutting global carbon dioxide (CO2) emissions especially in transportation power generation and industrial sectors. This paper offers a comprehensive review of HES emphasizing their diverse applications and economic viability. By 2030 hydrogen energy is expected to revolutionize various sectors significantly impacting CO2 abatement and energy demand. In electricity and power generation hydrogen could reduce CO2 emissions by 50–100 million tons annually requiring 10–20 million tons of hydrogen and an investment of $50–100 billion underscoring its role in grid stabilization. Additionally in the heating sector hydrogen could facilitate a CO2 abatement of 30–50 million tons. We examine the levelized cost of hydrogen (LCOH) production influenced by factors like production methods efficiency and infrastructure. While steam methane reforming is cost-effective it poses a larger environmental impact compared to electrolysis. The global life-cycle cost of hydrogen production decreases as production scales up with current costs ranging from $1–3 per kg for fossil-based sources to $3.4–7.5 per kg for electrolysis using low-emission electricity. These costs are projected to decrease especially for electrolytic hydrogen in regions with abundant solar energy. However despite the technical feasibility of decarbonization high production costs still pose challenges. A systematic and effective transition to a hydrogen economy requires comprehensive policy and financial support mechanisms including incentives subsidies tax measures and funding for research and development of pilot projects. Additionally the paper discusses hydrogen's role in advanced storage technologies such as hydrides and Japan's ENE-FARM solution for residential energy emphasizing the need for strategic investments across the hydrogen value chain to enhance HES competitiveness reduce LCOH and advance the learning rates of hydrogen production technologies.
Techno-economic Assessment of Low-carbon Ammonia as Fuel for the Maritime Sector
Mar 2025
Publication
Low-carbon ammonia has recently received interest as alternative fuel for the maritime sector. This paper presents a techno-economic analysis of the total cost of ownership (TCO) of a Post-Panamax vessel powered by low-carbon ammonia. We also calculate the annual increase in carbon tax needed to compensate for the increment in TCO compared to a vessel powered by very low sulfur fuel oil. The increment in TCO is calculated as function of propulsion efficiency to account for uncertainties in the thermodynamics of ammonia combustion for three different cost scenarios of low-carbon ammonia. We evaluate the benefits and drawbacks of hydrogen and diesel as dual fuel for three types of propulsion systems: a compression ignition engine a spark-ignition engine and a combination of a solid oxide fuel cell (SOFC) system and a spark-ignition engine. We incorporate three different cost levels for ammonia and a variable engine efficiency ranging from 35% to 55%. If the ammonia engine has the efficiency of a conventional marine engine the increment in TCO is 25% in the most optimistic cost scenario. SOFCs can reach a better efficiency and yield no pollutant emissions but the reduction in fuel expenses in comparison to conventional combustion engines only offsets their high investment costs at either low engine efficiency or high fuel prices. The increment in TCO and reduction in GHG emissions depend on whether high combustion efficiencies small dual fuel fractions and low NOx N2O and NH3 emissions can be simultaneously achieved.
Mapping Hydrogen Initiatives in Italy: An Overview of Funding and Projects
May 2024
Publication
The global momentum towards hydrogen has led to various initiatives aimed at harnessing hydrogen’s potential. In particular low-carbon hydrogen is recognized for its crucial role in reducing greenhouse gas emissions across hard-to-abate sectors such as steel cement and heavy-duty transport. This study focuses on the presentation of all hydrogen-related financing initiatives in Italy providing a comprehensive overview of the various activities and their geographical locations. The examined funding comes from the National Recovery and Resilience Plan (PNRR) from projects directly funded through the Important Projects of Common European Interest (IPCEI) and from several initiatives supported by private companies or other funding sources (hydrogen valleys). Specific calls for proposals within the PNRR initiative outline the allocation of funds focusing on hydrogen production in brownfield areas (52 expected hydrogen production plants by 2026) hydrogen use in hard-to-abate sectors and the establishment of hydrogen refuelling stations for both road (48 refuelling stations by 2026) and railway transport (10 hydrogen-based railway lines). A detailed description of the funded initiatives (150 in total) is presented encompassing their geographical location typology and size (when available) as well as the funding they have received. This overview sheds light on regions prioritising decarbonisation efforts in heavy-duty transport especially along cross-border commercial routes as evident in northern Italy. Conversely some regions concentrate more on local transport typically buses or on the industrial sector primarily steel and chemical industries. Additionally the study presents initiatives aimed at strengthening the national manufacturing capacity for hydrogenrelated technologies alongside new regulatory and incentive schemes for hydrogen. The ultimate goal of this analysis is to foster connections among existing and planned projects stimulate new initiatives along the entire hydrogen value chain raise an awareness of hydrogen among stakeholders and promote cooperation and international competitiveness.
Critical Review of Life Cycle Assessment of Hydrogen Production Pathways
May 2024
Publication
In light of growing concerns regarding greenhouse gas emissions and the increasingly severe impacts of climate change the global situation demands immediate action to transition towards sustainable energy solutions. In this sense hydrogen could play a fundamental role in the energy transition offering a potential clean and versatile energy carrier. This paper reviews the recent results of Life Cycle Assessment studies of different hydrogen production pathways which are trying to define the routes that can guarantee the least environmental burdens. Steam methane reforming was considered as the benchmark for Global Warming Potential with an average emission of 11 kgCO2eq/kgH2. Hydrogen produced from water electrolysis powered by renewable energy (green H2 ) or nuclear energy (pink H2 ) showed the average lowest impacts with mean values of 2.02 kgCO2eq/kgH2 and 0.41 kgCO2eq/kgH2 respectively. The use of grid electricity to power the electrolyzer (yellow H2 ) raised the mean carbon footprint up to 17.2 kgCO2eq/kgH2 with a peak of 41.4 kgCO2eq/kgH2 in the case of countries with low renewable energy production. Waste pyrolysis and/or gasification presented average emissions three times higher than steam methane reforming while the recourse to residual biomass and biowaste significantly lowered greenhouse gas emissions. The acidification potential presents comparable results for all the technologies studied except for biomass gasification which showed significantly higher and more scattered values. Regarding the abiotic depletion potential (mineral) the main issue is the lack of an established recycling strategy especially for electrolysis technologies that hamper the inclusion of the End of Life stage in LCA computation. Whenever data were available hotspots for each hydrogen production process were identified.
A General Criterion for the Design and Operation of Flexible Hydrogen Storage in Power-to-X Processed
Dec 2024
Publication
This paper introduces a general criterion for the optimal design and operation of hydrogen storage tanks. Specifically the proposed procedure identifies the optimal delivery schedule that minimizes the capacity of material storage systems. Indeed many manufacturing processes need some buffer storage to administer mass flows appropriately according to the operating needs (one class above all: Power-to-X processes) and have one of their highest expenditures right in those tanks when proving not sufficiently flexible. Hence the novelty of the proposed method lies in a rigorous mathematical formulation that converts arbitrarily fluctuating inlet streams into optimally fluctuating outlet streams that minimize the storage volume and comply with different operating requirements. The criterion is validated by considering the techno-economic assessment of a chemical plant featuring a dedicated green hydrogen production facility that feeds the process. Specifically the required capacity of the “Flexible” hydrogen buffer storage which connects the green hydrogen generation system to the conversion process significantly decreases by 91.31%–99.31% (depending on the flexibility ranges enabled by the downstream conversion process) compared to the “Rigid” storage alternative based on a constant outlet mass flow withdrawal coinciding with the hydrogen consumption rate at nominal operating conditions. Correspondingly the resulting levelized cost of hydrogen benefits accordingly ranging from 4.19 to 6.03 USD/kg (California 2023).
A Parametric Study on In-situ Hydrogen Production from Hydrocarbon Reservoirs - Effect of Reservoir and Well Properties
Jul 2024
Publication
Energy transition is a key driver to combat climate change and achieve zero carbon future. Sustainable and costeffective hydrogen production will provide valuable addition to the renewable energy mix and help minimize greenhouse gas emissions. This study investigates the performance of in-situ hydrogen production (IHP) process using a full-field compositional model as a precursor to experimental validation The reservoir model was simulated as one geological unit with a single point uniform porosity value of 0.13 and a five-point connection type between cell to minimize computational cost. Twenty-one hydrogen forming reactions were modelled based on the reservoir fluid composition selected for this study. The thermodynamic and kinetic parameters for the reactions were obtained from published experiments due to the absence of experimental data specific to the reservoir. A total of fifty-four simulation runs were conducted using CMG STARS software for 5478 days and cumulative hydrogen produced for each run was recorded. Results generated were then used to build a proxy model using Box-Behnken design of experiment method and Support Vector Machine with RBF kernel. To ascertain accuracy of the proxy models analysis of variance (ANOVA) was conducted on the variables. The average absolute percentage error between the proxy model and numerical simulation was calculated to be 10.82%. Optimization of the proxy model was performed using genetic algorithm to maximize cumulative hydrogen produced. Based on this optimized model the influence of porosity permeability well location injection rate and injection pressure were studied. Key results from this study reveals that lower permeability and porosity reservoirs supports more hydrogen yield injection pressure had a negligible effect on hydrogen yield and increase in oxygen injection rate corelated strongly with hydrogen production until a threshold value beyond which hydrogen yield decreased. The framework developed in the study could be used as tool to assess candidate reservoirs for in-situ hydrogen production.
Mechanistic Evaluation of the Reservoir Engineering Performance for the Underground Hydrogen Storage in a Deep North Sea Aquifer
Jul 2023
Publication
Underground hydrogen storage (UHS) in aquifers salt caverns and depleted hydrocarbon reservoirs allows for the storage of larger volumes of H2 compared to surface storage in vessels. In this work we investigate the impact of aquifer-related mechanisms and parameters on the performance of UHS in an associated North Sea aquifer using 3D numerical compositional simulations. Simulation results revealed that the aquifer's permeability heterogeneity has a significant impact on the H2 recovery efficiency where a more homogenous rock would lead to improved H2 productivity. The inclusion of relative permeability hysteresis resulted in a drop in the H2 injectivity and recovery due to H2 discontinuity inside the aquifer which leads to residual H2 during the withdrawal periods. In contrast the effects of hydrogen solubility and hydrogen diffusion were negligible when studied each in isolation from other factors. Hence it is essential to properly account for hysteresis and heterogeneity when evaluating UHS in aquifers.
Review of Environmental Life Cycle Assessment for Fuel Cell Electric Vehicles in Road Transport
Mar 2025
Publication
This article summarizes current research on the life cycle assessment (LCA) of fuel cell electric vehicles (FCEVs) in road transport. Increasing greenhouse gas emissions and climate change are pushing the transport sector to intensify efforts toward decarbonization. One promising solution is the adoption of hydrogen technologies whose development is supported by European Union regulations such as the “Fit for 55” package. FCEVs are characterized by zero emissions during operation but their environmental impact largely depends on the methods of hydrogen production. The use of renewable energy sources in hydrogen production can significantly reduce greenhouse gas emissions while hydrogen produced from fossil fuels can even result in higher emissions compared to internal combustion engine vehicles. This article also discusses the importance of hydrogen refueling infrastructure and the efficiency of fuel storage and transportation systems. In conclusion LCA shows that FCEVs can support the achievement of climate goals provided that the development of hydrogen production technologies based on renewable sources and the corresponding infrastructure is ensured. The authors also highlight the potential of hybrid technologies as a transitional solution in the process of transforming the transport sector.
Standalone and System-level Perspectives on Hydrogen-based Sustainable Aviation Fuel Pathways for Denmark
Mar 2025
Publication
Aviation is one of the most challenging sectors to electrify directly due to its high energy density demands. Hydrogen offers a pathway for indirect electrification in such sectors enabling sustainable aviation fuels (SAF) production when combined with a carbon source. SAF produced via methanol or Fischer-Tropsch (FT) synthesis (e-SAF) has higher volumetric density than hydrogen remains liquid under standard conditions and can be used as a direct drop-in fuel. Certain FT-based e-SAF pathways are already certified for use in blends enhancing their appeal for sustainable aviation. This study evaluates e-SAF pathways in terms of resource efficiency and costs for different carbon sources. The results from both a standalone and system-level perspective indicate that biomass gasification-sourced carbon is the most energy-efficient pathway given biomass availability. For point-source and direct air capture pathways electricity costs for renewable hydrogen dominate the overall costs comprising about 70 % of total e-SAF costs. Given cheap renewable electricity and by-product revenues e-SAF can achieve price levels of 0.5–1.1 €/litre which is cost-competitive with their fossil-based counterparts. A breakeven electricity price of 9–29 €/MWh is needed for e-SAF made via a point source-based CO2 pathway compared with a moderate aviation fossil fuel price of 0.5 €/litre.
Environmental Assessment of a Hydrogen Supply Chain Using LOHC System with Novel Low-PGM Catalysts: A Life Cycle Approach
Nov 2024
Publication
Hydrogen has emerged as a key element in the transition to a sustainable energy model. Among hydrogen storage and transport technologies liquid organic hydrogen carriers (LOHCs) stand out as a promising alternative for large-scale long-term use. Catalysts essential in these systems are usually composed of platinum group metals (PGMs) over alumina known for their high cost and scarcity. This study analyzes the overall environmental impact of the LOHC benzyltoluene/perhydro-benzyltoluene-based hydrogen supply chain by means of the life cycle assessment (LCA) focusing on the synthesis processes of novel low-PGM catalysts which remain under explored in existing literature. The results identify dehydrogenation as the most impactful step due to significant heat consumption and highlight the substantial environmental footprint associated with the use of platinum in catalyst production. This research provides crucial insights into the environmental implications of LOHC systems particularly the role of novel low-PGM catalysts and offers guidance for their future large-scale applications.
Techno-economic Assessment of Liquid Carrier Methods for Intercontinental Shipping of Hydrogen: A Case Study
Nov 2024
Publication
As global economies seek to transition to low-carbon energy systems to achieve net zero targets hydrogen has potential to play a key role to decarbonise sectors that are unsuited to electrification or where long-term energy storage is required. Hydrogen can also assist in enabling decentralized renewable power generation to satisfy higher electricity demand to match the scale-up of electrified technologies. In this context suitable transport storage and distribution networks will be essential to connect hydrogen generation and utilisation sites. This paper presents a techno-economic impact evaluation of international marine hydrogen transportation between Canada and the Netherlands comparing liquid hydrogen ammonia and a dibenzyl toluene liquid organic hydrogen carrier (LOHC) as potential transport vectors. Economic costs energy consumption and losses in each phase of the transportation system were analysed for each vector. Based on the devised scenarios our model suggests levelised costs of hydrogen of 6.35–9.49 $2022/kgH2 and pathway efficiencies of 55.6–71.9%. While liquid hydrogen was identified as the most cost-competitive carrier sensitivity analysis revealed a merit order for system optimisation strategies based upon which LOHC could outperform both liquid hydrogen and ammonia in the future.
The Making of H2-scapes in the Global South: Political Geography Perspectives on an Emergent Field of Research
Feb 2025
Publication
Clean hydrogen is touted as a cornerstone of the global energy transition. It can help to decarbonize hard-to-electrify sectors ship renewable power over great distances and boost energy security. Clean hydrogen’s appeal is increasingly felt in the Global South where countries seek to benefit from production export and consumption opportunities new infrastructures and technological innovations. These geographies are however in the process of taking shape and their associated power configurations spatialities and socio-ecological consequences are yet to be more thoroughly understood and examined. Drawing on political geography perspectives this article proposes the concept of “hydrogen landscape” – or in short H2-scape – to theorize and explore hydrogen transitions as space-making processes imbued with power relations institutional orders and social meanings. In this endeavor it outlines a conceptual framework for understanding the making of H2-scapes and offers three concrete directions for advancing empirical research on hydrogen transitions in the Global South: (1) H2-scapes as resource frontiers; (2) H2-scapes as port-centered arrangements; and (3) H2-scapes as failure. As hydrogen booms in finances projects and visibility the article illuminates conceptual tools and perspectives to think about and facilitate further research on the emergent political geographies of hydrogen transitions particularly in more uneven unequal and vulnerable Global South landscapes.
Hydrogen Production from Low-quality Water: Challenges and Perspectives
Sep 2022
Publication
The Next Generation EU plan fosters the development of a large capacity for hydrogen generation. However water and energy resources are strictly connected to an indissoluble nexus. For that water electrolysis may counteract the coexistence of two primary UNO Sustainable Development Goals humankind must face to achieve a prosperous and equal society namely SDG 7 (Affordable access to renewable energy sources) and SDG 6 (clean water). To design innovative energy systems implementing hydrogen as an efficient and sustainable vector water resources need careful management and energy use ought not to compete with freshwater delivery. Therefore the present study reviews the technologies available for hydrogen production and their fitness to water quality standards. Among the feeding possibilities to be scrutinized wastewaters and saline waters are worth attention. Each source of water asks for a specific design and management of the water treatment pre-process. Since these steps are energydemanding in some applications the direct use of low-quality water to produce hydrogen may be envisaged. An example is the direct feeding of seawater to Solid Oxide Electrolysers (SOE). SOEs appear more promising than commercial low-temperature electrolysis systems since water steam production integrates the function of preliminary water treatment.
Impact of Impurities on Water Electrolysis: A Review
Feb 2023
Publication
Low temperature water electrolysers such as Proton Exchange Membrane Water Electrolysers (PEMWEs) Alkaline Water Electrolysers (AWEs) and Anion Exchange Membrane Water Electrolysers (AEMWEs) are known to be sensitive to water quality with a range of common impurities impacting performance hydrogen quality and device lifetime. Purification of feed water adds to cost operational complexity and design limitations while failure of purification equipment can lead to degradation of electrolyser materials and components. Increased robustness to impurities will offer a route to longer device lifetimes and reduced operating costs but understanding of the impact of impurities and associated degradation mechanisms is currently limited. This critical review offers for the first time a comprehensive overview of relevant impurities in operating electrolysers and their impact. Impurity sources degradation mechanisms characterisation techniques water purification technologies and mitigation strategies are identified and discussed. The review generalises already reported mechanisms proposes new mechanisms and provides a framework for consideration of operational implications.
The Multi-Objective Distributed Robust Optimization Scheduling of Integrated Energy Systems Considering Green Hydrogen Certificates and Low-Carbon Demand Response
Feb 2025
Publication
To address the issues of energy wastage and uncertainty impacts associated with high levels of renewable energy integration a multi-objective distributed robust low-carbon optimization scheduling strategy for hydrogen-integrated Integrated Energy Systems (IES) is proposed. This strategy incorporates a green hydrogen trading mechanism and lowcarbon demand response. Firstly to leverage the low-carbon and clean characteristics of hydrogen energy an efficient hydrogen utilization model was constructed consisting of electricity-based hydrogen production waste heat recovery multi-stage hydrogen use hydrogen blending in gas and hydrogen storage. This significantly enhanced the system’s renewable energy consumption and carbon reduction. Secondly to improve the consumption of green hydrogen a novel reward–punishment green hydrogen certificate trading mechanism was proposed. The impact of green hydrogen trading prices on system operation was discussed promoting the synergistic operation of green hydrogen and green electricity. Based on the traditional demand-response model a novel low-carbon demand-response strategy is proposed with carbon emission factors serving as guiding signals. Finally considering the uncertainty of renewable energy an innovative optimal trade-off multi-objective distributed robust model was proposed which simultaneously considered low-carbon economic and robustness aspects. The model was solved using an improved adaptive particle swarm optimization algorithm. Case study results show that after introducing the reward–punishment green hydrogen trading mechanism and low-carbon demand response the system’s total cost was reduced by approximately 5.16% and 4.37% and carbon emissions were reduced by approximately 7.84% and 6.72% respectively. Moreover the proposed multi-objective distributed robust model not only considers the system’s economy low-carbon and robustness but also offers higher solving efficiency and optimization performance compared to multi-objective optimization methods.
No more items...