Publications
Energy and Utility Skills - Hydrogen Competency Framework Report
Jul 2021
Publication
In 2020 the Department for Business Enterprise and Industrial Strategy (BEIS) commissioned Energy & Utility Skills to develop and deliver a Hydrogen Competency Framework as part of the Hy4Heat programme. The successful completion of this work is detailed in a new report published today.
The work done by Energy & Utility Skills was underpinned by three key pillars:
Collaboration
The resulting outputs of the design development stages are:
More details about this report can be found on the Energy & Utility Skills website.
The work done by Energy & Utility Skills was underpinned by three key pillars:
Collaboration
- Driving growth in engagement levels across the industry
- Designing the framework for both initial trials and any future rollout
- The framework ensures engineers will have all the skills knowledge and understanding they need
The resulting outputs of the design development stages are:
- A Comparative Analysis of Hydrogen and existing hydrocarbon gases
- A Skills Matrix that translates the analysis into skills knowledge and understanding
- An Interim Hydrogen Technical Standard that defines acceptable parameters and requirements for hydrogen installation work
- A Hydrogen Training Specification that will enable training course consistency and facilitate industry recognition
- An independent Hydrogen Assessment Module that will facilitate the addition of a hydrogen competence category on the Gas Safe Register
More details about this report can be found on the Energy & Utility Skills website.
Construction of Natural Gas Energy-measuring System in China: A Discussion
Feb 2022
Publication
During the 13th Five-Year Plan China's natural gas industry developed rapidly and a diversified supply and marketing pattern was formed including domestic conventional gas unconventional gas (shale gas tight sandstone gas coalbed methane etc.) coal-based synthetic natural gas imported LNG and imported pipeline gas. The gross calorific value of gas sources ranged from 34 MJ/m3 to 43 MJ/m3 and the maximum difference of calorific value between different gas sources exceeded 20%. On May 24th 2019 the National Development and Reform Commission and other three ministries/commissions jointly issued the Supervision Regulation on the Fair Access of Oil and Gas Pipeline Network Facilities and required that a natural gas energy measuring and pricing system shall be established within 24 months from the implementation date of this Regulation. In order to speed up the construction of China's natural gas energy measuring system this paper summarizes domestic achievements in the construction of natural gas energy measuring system from the aspects of value traceability and energy measurement standard and analyzes natural gas flowrate measurement technology calorific value determination technology value traceability localization intelligentization and application technology of key energy measurement equipment natural gas pipeline network energy balancing technology based on big data analysis multi-source quality tracking and monitoring technology and energy measurement standard system the need of new energy detection and measurement technology and put forward strategy for the development of natural gas measuring in China. And the following research results are obtained. First China's natural gas energy measuring system can basically meet the requirements of implementing natural gas energy measurement but it still falls behind the international leading level in terms of calibration and application of high-level flowmeter (such as 0.5 class) high-accuracy gas reference material level of calorific value reference equipment and measurement standard system and needs to be further improved. Second it is necessary for China to speed up the research and application of the localization and intelligentization technologies of key energy measurement equipment. Third natural gas pipeline network shall be equipped with measurement check method energy balancing system based on big data analysis and multi-source quality tracking and monitoring system so that the energy transmission loss index of natural gas pipeline network can be superior to the international leading level (0.10%). Fourth to realize the large-scale application of hydrogen energy and bio-energy and the mixed transportation of hydrogen bio-methane and natural gas it is necessary to carry out research on new technology and standardization of hydrogen/bio-methane blended natural gas detection and measurement.
Hydrogen Blending in Gas Pipeline Networks—A Review
May 2022
Publication
Replacing fossil fuels with non-carbon fuels is an important step towards reaching the ultimate goal of carbon neutrality. Instead of moving directly from the current natural gas energy systems to pure hydrogen an incremental blending of hydrogen with natural gas could provide a seamless transition and minimize disruptions in power and heating source distribution to the public. Academic institutions industry and governments globally are supporting research development and deployment of hydrogen blending projects such as HyDeploy GRHYD THyGA HyBlend and others which are all seeking to develop efficient pathways to meet the carbon reduction goal in coming decades. There is an understanding that successful commercialization of hydrogen blending requires both scientific advances and favorable techno-economic analysis. Ongoing studies are focused on understanding how the properties of methane-hydrogen mixtures such as density viscosity phase interactions and energy densities impact large-scale transportation via pipeline networks and enduse applications such as in modified engines oven burners boilers stoves and fuel cells. The advantages of hydrogen as a non-carbon energy carrier need to be balanced with safety concerns of blended gas during transport such as overpressure and leakage in pipelines. While studies on the short-term hydrogen embrittlement effect have shown essentially no degradation in the metal tensile strength of pipelines the long-term hydrogen embrittlement effect on pipelines is still the focus of research in other studies. Furthermore pressure reduction is one of the drawbacks that hydrogen blending brings to the cost dynamics of blended gas transport. Hence techno-economic models are also being developed to understand the energy transportation efficiency and to estimate the true cost of delivery of hydrogen blended natural gas as we move to decarbonize our energy systems. This review captures key large-scale efforts around the world that are designed to increase the confidence for a global transition to methane-hydrogen gas blends as a precursor to the adoption of a hydrogen economy by 2050.
Hydrogen-Assisted Cracking in GMA Welding of High-Strength Structural Steel—A New Look into This Issue at Narrow Groove
Jun 2021
Publication
Modern arc processes such as the modified spray arc (Mod. SA) have been developed for gas metal arc welding of high-strength structural steels with which even narrow weld seams can be welded. High-strength joints are subjected to increasingly stringent requirements in terms of welding processing and the resulting component performance. In the present work this challenge is to be met by clarifying the influences on hydrogen-assisted cracking (HAC) in a high-strength structural steel S960QL. Adapted samples analogous to the self-restraint TEKKEN test are used and analyzed with respect to crack formation microstructure diffusible hydrogen concentration and residual stresses. The variation of the seam opening angle of the test seams is between 30° and 60°. To prevent HAC the effectiveness of a dehydrogenation heat treatment (DHT) from the welding heat is investigated. As a result the weld metals produced at reduced weld opening angle show slightly higher hydrogen concentrations on average. In addition increased micro- as well as macro-crack formation can be observed on these weld metal samples. On all samples without DHT cracks in the root notch occur due to HAC which can be prevented by DHT immediately after welding.
Hydrogen Production in the Swedish Power Sector: Considering Operational Volatilities and Long-term Uncertainties
Nov 2020
Publication
With more renewables on the Swedish electricity market while decommissioning nuclear power plants electricity supply increasingly fluctuates and electricity prices are more volatile. There is hence a need for securing the electricity supply before energy storage solutions become widespread. Electricity price fluctuations moreover affect operating income of nuclear power plants due to their inherent operational inflexibility. Since the anticipated new applications of hydrogen in fuel cell vehicles and steel production producing hydrogen has become a potential source of income particularly when there is a surplus supply of electricity at low prices. The feasibility of investing in hydrogen production was investigated in a nuclear power plant applying Swedish energy policy as background. The analysis applies a system dynamics approach incorporating the stochastic feature of electricity supply and prices. The study revealed that hydrogen production brings alternative opportunities for large-scale electricity production facilities in Sweden. Factors such as hydrogen price will be influential and require in-depth investigation. This study provides guidelines for power sector policymakers and managers who plan to engage in hydrogen production for industrial applications. Although this study was focused upon nuclear power sources it can be extended to hydrogen production from renewable energy sources such as wind and solar.
Low Carbon Scenario Analysis of a Hydrogen-Based Energy Transition for On-Road Transportation in California
Nov 2021
Publication
Fuel cell electric vehicles (FCEV) are emerging as one of the prominent zero emission vehicle technologies. This study follows a deterministic modeling approach to project two scenarios of FCEV adoption and the resulting hydrogen demand (low and high) up to 2050 in California using a transportation transition model. The study then estimates the number of hydrogen production and refueling facilities required to meet demand. The impact of system scale-up and learning rates on hydrogen price is evaluated using standalone supply chain models: H2A HDSAM HRSAM and HDRSAM. A sensitivity analysis explores key factors that affect hydrogen prices. In the high scenario light and heavy-duty fuel cell vehicle stocks reach 12.5 million and 1 million by 2050 respectively. The resulting annual hydrogen demand is 3.9 billion kg making hydrogen the dominant transportation fuel. Satisfying such high future demands will require rapid increases in infrastructure investments starting now but especially after 2030 when there is an exponential increase in the number of production plants and refueling stations. In the long term electrolytic hydrogen delivered using dedicated hydrogen pipelines to larger stations offers substantial cost savings. Feedstock prices size of the hydrogen market and station utilization are the prominent parameters that affect hydrogen price.
Hydrogen Technology Towards the Solution of Environment-Friendly New Energy Vehicles
Aug 2021
Publication
The popularity of climate neutral new energy vehicles for reduced emissions and improved air quality has been raising great attention for many years. World-wide a strong commitment continues to drive the demand for zero-emission through alternative energy sources and propulsion systems. Despite the fact that 71.27% of hydrogen is produced from natural gas green hydrogen is a promising clean way to contribute to and maintain a climate neutral ecosystem. Thereby reaching CO2 targets for 2030 and beyond requires cross-sectoral changes. However the strong motivation of governments for climate neutrality is challenging many sectors. One of them is the transport sector as it is challenged to find viable all-in solutions that satisfy social economic and sustainable requirements. Currently the use of new energy vehicles operating on green sustainable hydrogen technologies such as batteries or fuel cells has been the focus for reducing the mobility induced emissions. In Europe 50% of the total emissions result from mobility. The following article reviews the background ongoing challenges and potentials of new energy vehicles towards the development of an environmentally friendly hydrogen economy. A change management process mindset has been adapted to discuss the key scientific and commercial challenges for a successful transition.
Decarbonizing the German Industrial Thermal Energy Use with Solar, Hydrogen, and Other Options - Recommendations for the World
Nov 2022
Publication
This paper is based on a position paper of the German Industry Association Concentrated Solar Power e.V. to the German government and discusses options on how to decarbonize the heat demand of the domestic industry. Among other option concentration solar collectors are a suitable option in Germany which has not been expected by many experts. The paper derives requirements that are needed to ensure a quick and sustainable way to decarbonize industrial heat demand. They are considered to also be relevant for many other countries that follow the same ambition to become climate neutral in the next decades. They major statements are: A mix of different renewable energy technologies in conjunction with efficiency measures is needed to ensure a secure climate-friendly and cost-efficient heat supply for the industry; The different technology options for the provision of heat from renewable sources through electrification and through hydrogen can and must be combined and integrated with each other. In this context concentrating solar thermal represents an important part of the hybrid supply portfolio of a decarbonized industry This requires: The definition of an expansion target for process heat and the flanking measures; Ensuring the equivalence of renewable heat renewable electricity and green hydrogen - also as hybrid solutions; The promotion of concentrating solar thermal reference projects as an impetus for market ramp-up in Germany; The launch of an information campaign for heat consumers and the establishment of a pool of consultants.
Hydrogen Production, Storage and Transport for Renewable Energy and Chemicals: An Environmental Footprint Assessment
Dec 2022
Publication
Hydrogen applications range from an energy carrier to a feedstock producing bulk and other chemicals and as an essential reactant in various industrial applications. However the sustainability of hydrogen production storage and transport are neither unquestionable nor equal. Hydrogen is produced from natural gas biogas aluminium acid gas biomass electrolytic water splitting and others; a total of eleven sources were investigated in this work. The environmental impact of hydrogen production storage and transport is evaluated in terms of greenhouse gas and energy footprints acidification eutrophication human toxicity potential and eco-cost. Different electricity mixes and energy footprint accounting approaches supported by sensitivity analysis are conducted for a comprehensive overview. H2 produced from acid gas is identified as the production route with the highest eco-benefit (− 41188 €/t H2) while the biomass gasification method incurred the highest eco-cost (11259 €/t H2). The water electrolysis method shows a net positive energy footprint (60.32 GJ/t H2) suggesting that more energy is used than produced. Considering the operating footprint of storage and transportation gaseous hydrogen transported via a pipeline is a better alternative from an environmental point of view and with a lower energy footprint (38 %–85%) than the other options. Storage and transport (without construction) could have accounted for around 35.5% of the total GHG footprint of a hydrogen value chain (production storage transportation and losses) if liquefied and transported via road transport instead of a pipeline. The identified results propose which technologies are less burdensome to the environment.
On-Board Liquid Hydrogen Cold Energy Utilization System for a Heavy-Duty Fuel Cell Hybrid Truck
Aug 2021
Publication
In this paper a kind of on-board liquid hydrogen (LH2 ) cold energy utilization system for a heavy-duty fuel cell hybrid truck is proposed. Through this system the cold energy of LH2 is used for cooling the inlet air of a compressor and the coolant of the accessories cooling system sequentially to reduce the parasitic power including the air compressor water pump and radiator fan power. To estimate the cold energy utilization ratio and parasitic power saving capabilities of this system a model based on AMESim software was established and simulated under different ambient temperatures and fuel cell stack loads. The simulation results show that cold energy utilization ratio can keep at a high level except under extremely low ambient temperature and light load. Compared to the original LH2 system without cold energy utilization the total parasitic power consumption can be saved by up to 15% (namely 1.8 kW).
The Potential Role of Ammonia as Marine Fuel—Based on Energy Systems Modeling and Multi-Criteria Decision Analysis
Apr 2020
Publication
To reduce the climate impact of shipping the introduction of alternative fuels is required. There is a range of different marine fuel options but ammonia a potential zero carbon fuel has recently received a lot of attention. The purpose of this paper is to assess the prospects for ammonia as a future fuel for the shipping sector in relation to other marine fuels. The assessment is based on a synthesis of knowledge in combination with: (i) energy systems modeling including the cost-effectiveness of ammonia as marine fuel in relation to other fuels for reaching global climate targets; and (ii) a multi-criteria decision analysis (MCDA) approach ranking marine fuel options while considering estimated fuel performance and the importance of criteria based on maritime stakeholder preferences. In the long-term and to reach global GHG reduction the energy systems modeled indicate that the use of hydrogen represents a more cost-effective marine fuel option than ammonia. However in the MCDA covering more aspects we find that ammonia may be almost as interesting for shipping related stakeholders as hydrogen and various biomass-based fuels. Ammonia may to some extent be an interesting future marine fuel option but many issues remain to be solved before large-scale introduction.
Australians’ Considerations for Use of Hydrogen in the Transport Sector
Sep 2019
Publication
Hydrogen fuel cells power a range of vehicles including cars buses trucks forklifts and even trains. As fuel cell electric vehicles emit no carbon emissions and only produce water vapor as a by-product they present an attractive option for countries who are experiencing high pollution from transport. This paper presents the findings of ten focus groups and a subset of a national survey which focused specifically on use of hydrogen in the transport sector (N=948). When discussing hydrogen transport options Australian focus group participants felt that rolling out hydrogen fuel cell buses as a first step for fuel cell electric vehicle deployment would be a good way to increase familiarity with the technology. Deploying hydrogen public transport vehicles before personal vehicles was thought to be a positive way to demonstrate the safe use of hydrogen and build confidence in the technology. At the same time it was felt it would allow any issues to be ironed out before the roll out of large-scale infrastructure on a to support domestic use. Long haul trucks were also perceived to be a good idea however safety issues were raised in the focus groups when discussing these vehicles. Survey respondents also expressed positive support for the use of hydrogen fuel cell buses and long-haul trucks. They reported being happy to be a passenger in a fuel cell bus. Safety and environmental benefits remained paramount with cost considerations being the third most important issue. Respondents supportive of hydrogen technologies were most likely to report purchasing a hydrogen vehicle over other options
Setting Thresholds to Define Indifferences and Preferences in PROMETHEE for Life Cycle Sustainability Assessment of European Hydrogen Production
Jun 2021
Publication
The Life Cycle Sustainability Assessment (LCSA) is a proven method for sustainability assessment. However the interpretation phase of an LCSA is challenging because many different single results are obtained. Additionally performing a Multi-Criteria Decision Analysis (MCDA) is one way—not only for LCSA—to gain clarity about how to interpret the results. One common form of MCDAs are outranking methods. For these type of methods it becomes of utmost importance to clarify when results become preferable. Thus thresholds are commonly used to prevent decisions based on results that are actually indifferent between the analyzed options. In this paper a new approach is presented to identify and quantify such thresholds for Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) based on uncertainty of Life Cycle Impact Assessment (LCIA) methods. Common thresholds and this new approach are discussed using a case study on finding a preferred location for sustainable industrial hydrogen production comparing three locations in European countries. The single LCSA results indicated different preferences for the environmental economic and social assessment. The application of PROMETHEE helped to find a clear solution. The comparison of the newly-specified thresholds based on LCIA uncertainty with default thresholds provided important insights of how to interpret the LCSA results regarding industrial hydrogen production.
Heat in Buildings Strategy: Achieving Net Zero Emissions in Scotland's Buildings
Oct 2021
Publication
Sets out our vision for the future of heat in buildings and the actions we are taking in the buildings sector to deliver our climate change commitments maximise economic opportunities and ensure a just transition including helping address fuel poverty.
Goal and Scope in Life Cycle Sustainability Analysis: The Case of Hydrogen Production from Biomass
Aug 2014
Publication
The framework for life cycle sustainability analysis (LCSA) developed within the project CALCAS (Co-ordination Action for innovation in Life-Cycle Analysis for Sustainability) is introducing a truly integrated approach for sustainability studies. However it needs to be further conceptually refined and to be made operational. In particular one of the gaps still hindering the adoption of integrated analytic tools for sustainability studies is the lack of a clear link between the goal and scope definition and the modeling phase. This paper presents an approach to structure the goal and scope phase of LCSA so as to identify the relevant mechanisms to be further detailed and analyzed in the modeling phase. The approach is illustrated with an on-going study on a new technology for the production of high purity hydrogen from biomass to be used in automotive fuel cells.
Transient Numerical Modeling and Model Predictive Control of an Industrial-scale Steam Methane Reforming Reactor
Mar 2021
Publication
A steam methane reforming reactor is a key equipment in hydrogen production and numerical analysis and process control can provide a critical insight into its reforming mechanisms and flexible operation in real engineering applications. The present paper firstly studies the transport phenomena in an industrial-scale steam methane reforming reactor by transient numerical simulations. Wall effect and local non thermal equilibrium is considered in the simulations. A temperature profile of the tube outer wall is given by user defined functions integrated into the ANSYS FLUENT software. Dynamic simulations show that the species distribution is closely related to the temperature distribution which makes the temperature of the reactor tube wall an important factor for the hydrogen production of the reformer and the thermal conductivity of the catalyst network is crucial in the heat transfer in the reactor. Besides there exists a delay of the reformer's hydrogen production when the temperature profile of the tube wall changes. Among inlet temperature inlet mass flow rate and inlet steam-to-carbon (S/C) ratio the mass flow rate is the most influencing factor for the hydrogen production. The dynamic matrix control (DMC) scheme is subsequently designed to manipulate the mole fraction of hydrogen of the outlet to the target value by setting the temperature profile trajectory of the reforming tube with time. The proportional-integral control strategy is also studied for comparison. The closed-loop simulation results show that the proposed DMC control strategy can reduce the overshoot and have a small change of the input variable. In addition the disturbances of feed disturbance can also be well rejected to assure the tracking performance indicating the superiority of the DMC controller. All the results give insight to the theoretical analysis and controller design of a steam methane reformer and demonstrate the potential of the CFD modeling in study the transport mechanism and the idea of combining CFD modelling with controller design for the real application.
Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems
May 2018
Publication
From an environment perspective the increased penetration of wind and solar generation in power systems is remarkable. However as the intermittent renewable generation briskly grows electrical grids are experiencing significant discrepancies between supply and demand as a result of limited system flexibility. This paper investigates the optimal sizing and control of the hydrogen energy storage system for increased utilization of renewable generation. Using a Finnish case study a mathematical model is presented to investigate the optimal storage capacity in a renewable power system. In addition the impact of demand response for domestic storage space heating in terms of the optimal sizing of energy storage is discussed. Finally sensitivity analyses are conducted to observe the impact of a small share of controllable baseload production as well as the oversizing of renewable generation in terms of required hydrogen storage size.
Development of a Flashback Correlation for Burner-stabilized Hydrogen-air Premixed Flames
Feb 2022
Publication
With a growing need for replacing fossil fuels with cleaner alternatives hydrogen has emerged as a viable candidate for providing heat and power. However stable and safe combustion of hydrogen is not simple and as such a number of key issues have been identified that need to be understood for a safe design of combustion chambers. One such issue is the higher propensity of hydrogen flames to flashback compared to that for methane flames. The flashback problem is coupled with higher burner temperatures that could cause strong thermal stresses in burners and could hinder their performance. In order to systematically investigate flashback in premixed hydrogen-air flames for finding a global flashback criteria in this study we use numerical simulations as a basic tool to study flashback limits of slit burners. Flashback limits are found for varying geometrical parameters and equivalence ratios and the sensitivity of each parameter on the flashback limit and burner temperatures are identified and analyzed. It is shown that the conventional flashback correlation with critical velocity gradient does not collapse the flashback data as it does not take into account stretch induced preferential diffusion effects. A new Karlovitz number definition is introduced with physical insights that collapses the flashback data at all tested conditions in an excellent manner.
The Role of Synthetic Fuels for a Carbon Neutral Economy
Apr 2017
Publication
Fossil fuels depletion and increasing environmental impacts arising from their use call for seeking growing supplies from renewable and nuclear primary energy sources. However it is necessary to simultaneously attend to both the electrical power needs and the specificities of the transport and industrial sector requirements. A major question posed by the shift away from traditional fossil fuels towards renewable energy sources lies in matching the power demand with the daily and seasonal oscillation and the intermittency of these natural energy fluxes. Huge energy storage requirements become necessary or otherwise the decline of the power factor of both the renewable and conventional generation would mean loss of resources. On the other hand liquid and gaseous fuels for which there is vast storage and distribution capacity available appear essential to supply the transport sector for a very long time ahead besides their domestic and industrial roles. Within this context the present assessment suggests that proven technologies and sound tested principles are available to develop an integrated energy system relying on synthetic fuels. These would incorporate carbon capture and utilization in a closed carbon cycle progressively relying mostly on solar and/or nuclear primary sources providing both electric power and gaseous/liquid hydrocarbon fuels having ample storage capacity and able to timely satisfy all forms of energy demand. The principles and means are already available to develop a carbon-neutral synthetic fuel economy.
A Review of Hydrogen Production and Supply Chain Modeling and Optmization
Jan 2023
Publication
This paper reviews recent optimization models for hydrogen supply chains and production. Optimization is a central component of systematic methodologies to support hydrogen expansion. Hydrogen production is expected to evolve in the coming years to help replace fossil fuels; these high expectations arise from the potential to produce low-carbon hydrogen via electrolysis using electricity generated by renewable sources. However hydrogen is currently mainly used in refinery and industrial operations; therefore physical infrastructures for transmission distribution integration with other energy systems and efficient hydrogen production processes are lacking. Given the potential of hydrogen the greenfield state of infrastructures and the variability of renewable sources systematic methodologies are needed to reach competitive hydrogen prices and design hydrogen supply chains. Future research topics are identified: 1) improved hydrogen demand projections 2) integrated sector modeling 3) improving temporal and spatial resolutions 4) accounting for climate change 5) new methods to address sophisticated models.
No more items...