Publications
Techno-economic Viability of Islanded Green Ammonia as a Carbon-free Energy Vector and as a Substitute for Conventional Production
Jul 2020
Publication
Decarbonising ammonia production is an environmental imperative given that it independently accounts for 1.8% of global carbon dioxide emissions and supports the feeding of over 48% of the global population. The recent decline of production costs and its potential as an energy vector warrant investigation of whether green ammonia production is commercially competitive. Considering 534 locations in 70 countries and designing and operating the islanded production process to minimise the levelised cost of ammonia (LCOA) at each we show the range of achievable LCOA the cost of process flexibility the components of LCOA and therein the scope of LCOA reduction achievable at present and in 2030. These results are benchmarked against ammonia spot prices cost per GJ of refined fuels and the LCOE of alternative energy storage methods. Currently a LCOA of $473 t1 is achievable at the best locations the required process flexibility increases the achievable LCOA by 56%; the electrolyser CAPEX and operation are the most significant costs. By 2030 $310 t1 is predicted to be achievable with multiple locations below $350 t1 . At $25.4 GJ11 ) that do not have the benefit of being carbon-free.
Simulation and Study of PEMFC System Directly Fueled by Ammonia Decomposition Gas
Mar 2022
Publication
Ammonia can be stored as a liquid under relatively easy conditions (Ambient temperature by applying 10 bar or Ambient pressure with the temperature of 239 K). At the same time liquid ammonia has a high hydrogen storage density and is therefore a particularly promising carrier for hydrogen storage. At the same time the current large-scale industrial synthesis of ammonia has long been mature and in the future it will be possible to achieve a zero-emission ammonia regeneration cycle system by replacing existing energy sources with renewable ones. Ammonia does not contain carbon and its use in fuel cells can avoid NOx production during energy release. high temperature solid oxide fuel cells can be directly fueled by ammonia and obtain good output characteristics but the challenges inherent in high temperature solid oxide fuel cells greatly limit the implementation of this option. Whereas PEMFC has gained initial commercial use however for PEMFC ammonia is a toxic gas so the general practice is to convert ammonia to pure hydrogen. Ammonia to hydrogen requires decomposition under high temperature and purification which increases the complexity of the fuel system. In contrast PEMFC that can use ammonia decomposition gas directly can simplify the fuel system and this option has already obtained preliminary experimental validation studies. The energy efficiency of the system obtained from the preliminary validation experiments is only 34–36% which is much lower than expected. Therefore this paper establishes a simulation model of PEMFC directly using ammonia decomposition gas as fuel to study the maximum efficiency of the system and the effect of the change of system parameters on the efficiency and the results show that the system efficiency can reach up to 45% under the condition of considering certain heat loss. Increasing the ammonia decomposition reaction temperature decreases the system efficiency but the effect is small and the system efficiency can reach 44% even at a temperature of 850°C. The results of the study can provide a reference for a more scientific and quantitative assessment of the potential value of direct ammonia decomposition gas-fueled PEMFC.
The Spatio-Temporal Evolution of China’s Hydrogen Fuel Cell Vehicle Innovation Network: Evidence From Patent Citation at Provincial Level
Oct 2021
Publication
Hydrogen fuel cell vehicle industry is in a rapid development stage. Studying the domestic spatial distribution of hydrogen fuel cell vehicle industry across a country especially the spatio-temporal evolution of the innovation level and position of each region in innovation network will help to understand the industry’s development trends and characteristics and avoid repeated construction. This article uses social network analysis and patent citation information of 2971 hydrogen fuel cell vehicle related invention patents owned by 218 micro-innovators across 25 provinces of China from 2001 to 2020 to construct China’s hydrogen fuel cell vehicle innovation network. Based on the dimensions of knowledge production knowledge consumption and network broker the network positions of sample provinces in three periods divided by four main national policies are classified. The main findings are as follows. 1) In China the total sales of hydrogen fuel cell vehicle and the development of supporting infrastructure are balanced and a series of national and local industrial development polices have been issued. 2) China’s hydrogen fuel cell vehicle innovation network density the proportion of universities and research institutes among the innovators and the active degree of the eastern provinces are all becoming higher. 3) The provinces in optimal network position are all from the eastern region. Shanghai and Liaoning are gradually replaced by Beijing and Jiangsu. 4) Sichuan in the western region is the only network broker based on knowledge consumption. 5) Although Zhejiang Tianjin Hebei Guangdong and Hubei are not yet in the optimal position they are outstanding knowledge producers. Specifically Guangdong is likely to climb to the optimal network position in the next period. The conclusions will help China’s provinces to formulate relevant development policies to optimize industry layout and enhance collaborative innovation in the hydrogen fuel cell vehicle industry.
Exploring Technological Solutions for Onboard Hydrogen Storage Systems Through a Heterogeneous Knowledge Network: From Current State to Future Research Opportunities
Jun 2022
Publication
With the imminent threat of the energy crises innovation in energy technologies is happening world-wide. The aim is to reduce our reliance on fossil fuels. Electric vehicles with fuel-cells that use hydrogen as an energy carrier are touted to be one of the most important potential replacements of the gasoline vehicle in both future transportation scenarios and emerging smart energy grids. However hydrogen storage is a major technical barrier that lies between where we are now and the mass application of hydrogen energy. Further exploration of onboard hydrogen storage systems (OHSS) is urgently needed and in this regard a comprehensive technology opportunity analysis will help. Hence with this research we drew on scientific papers and patents related to OHSS and developed a novel methodology for investigating the past present and future development trends in OHSS. Specifically we constructed a heterogeneous knowledge network using a unique multi-component structure with three core components: hydrogen carriers hydrogen storage materials and fuel cells. From this network we extracted both the developed and underdeveloped technological solutions in the field and applied a well-designed evaluation system and prediction model to score the future development potential of these technological solutions. What emerged was the most promising directions of research in the short medium and long term. The results show that our methodology can effectively identify technology opportunities in OHSS along with providing valuable decision support to researchers and enterprise managers associated with the development and application of OHSS.
Environmental Benefit and Investment Value of Hydrogen-Based Wind-Energy Storage System
Mar 2021
Publication
Alongside the rapid expansion of wind power installation in China wind curtailment is also mounting rapidly due to China’s energy endowment imbalance. The hydrogen-based wind-energy storage system becomes an alternative to solve the puzzle of wind power surplus. This article introduced China’s energy storage industry development and summarized the advantages of hydrogen-based wind-energy storage systems. From the perspective of resource conservation it estimated the environmental benefits of hydrogen-based wind-energy storages. This research also builds a valuation model based on the Real Options Theory to capture the distinctive flexible charging and discharging features of the hydrogen-based wind-energy storage systems. Based on the model simulation results including the investment value and operation decision of the hydrogen energy storage system with different electricity prices system parameters and different levels of subsidies are presented. The results show that the hydrogen storage system fed with the surplus wind power can annually save approximately 2.19–3.29 million tons of standard coal consumption. It will reduce 3.31–4.97 million tons of CO2 SO2 NOx and PM saving as much as 286.6–429.8 million yuan of environmental cost annually on average. The hydrogen-based wind-energy storage system’s value depends on the construction investment and operating costs and is also affected by the meanreverting nature and jumps or spikes in electricity prices. The market-oriented reform of China’s power sector is conducive to improve hydrogen-based wind-energy storage systems’ profitability. At present subsidies are still essential to reduce initial investment and attract enterprises to participate in hydrogen energy storage projects.
A Simulated Roadmap of Hydrogen Technology Contribution to Climate Change Mitigation Based on Representative Concentration Pathways Considerations
Apr 2018
Publication
Hydrogen as fuel has been a promising technology toward climate change mitigation efforts. To this end in this paper we analyze the contribution of hydrogen technology to our future environmental goals. It is assumed that hydrogen is being produced in higher efficiency across time and this is simulated on Global Change Assessment Model (GCAM). The environmental restrictions applied are the expected emissions representative concentration pathways (RCP) 2.6 4.5 and 6.0. Our results have shown increasing hydrogen production as the environmental constraints become stricter and hydrogen more efficient in being produced. This increase has been quantified and provided on open access as Supporting Information to this manuscript.
Hydrogen-Electric Coupling Coordinated Control Strategy of Multi-Station Integrated System Based on the Honeycomb Topology
Mar 2022
Publication
With the high-proportion accession of renewable energy and randomness of the load side in the new energy power system unbalanced feeder power and heavy overload of the transformer caused by massive access of highly uncertain source loads become more and more serious. In order to solve the aforementioned problems a honeycomb topology of the multi-station integrated system is proposed. The soft open point (SOP) is used as the key integrated equipment of the internal unit of a multi-station integrated system. The honeycomb grid structure is composed of flexible nodes and the multi-station integrated system is composed of multi-network flexible interconnection. Based on the characteristics of the regional resource endowment hydrogen energy flow is deeply coupled in parts of honeycomb grids. In order to improve the reliability and flexibility of the multi-station integrated unit the structure of the new multi-station integrated unit the power balance constraints on the unit and the switching process of SOP control mode are studied. At the same time the hydrogen electricity coupling structure and the coordinated control strategy of hydrogen electricity conversion are proposed to solve the problem of deep application of hydrogen energy. Finally the effectiveness of the proposed multi-station integrated system is verified by using three simulation models.
Contribution of Potential Clean Trucks in Carbon Peak Pathway of Road Freight Based on Scenario Analysis: A Case Study of China
Oct 2022
Publication
Reducing the carbon emissions from trucks is critical to achieving the carbon peak of road freight. Based on the prediction of truck population and well-to-wheel (WTW) emission analysis of traditional diesel trucks and potential clean trucks including natural gas battery-electric plug-in hybrid electric and hydrogen fuel cell the paper analyzed the total greenhouse gas (GHG) emissions of China's road freight under four scenarios including baseline policy facilitation (PF) technology breakthrough (TB) and PF-TB. The truck population from 2021 to 2035 is predicted based on regression analysis by selecting the data from 2002 to 2020 of the main variables such as the GDP scale road freight turnover road freight volume and the number of trucks. The study forecasts the truck population of different segments such as mini-duty trucks (MiDT) light-duty trucks (LDT) medium-duty trucks (MDT) and heavy-duty trucks (HDT). Relevant WTW emissions data are collected and adopted based on the popular truck in China's market PHEVs have better emission intensity especially in the HDT field which reduces by 51% compared with ICEVs. Results show that the scenario of TB and PF-TB can reach the carbon peak with 0.13% and 1.5% total GHG emissions reduction per year. In contrast the baseline and PF scenario fail the carbon peak due to only focusing on the number of clean trucks while lacking the restrictions on the GHG emission factors of energy and ignoring the improvement of trucks' energy efficiency and the total emissions increased by 29.76% and 16.69% respectively compared with 2020. As the insights adopting clean trucks has an important but limited effect which should coordinate with the transition to low carbon energy and the melioration of clean trucks to reach the carbon peak of road freight in China.
A Systematic Review of the Techno-economic Assessment of Various Hydrogen Production Methods of Power Generation
Oct 2022
Publication
Hydrogen is a low or zero-carbon energy source that is considered the most promising and potential energy carrier of the future. In this study the energy sources feedstocks and various methods of hydrogen production from power generation are comparatively investigated in detail. In addition this study presents an economic assessment to evaluate cost-effectiveness based on different economic indicators including sensitivity analysis and uncertainty analysis. Proton exchange membrane fuel cell (PEMFCs) technology has the most potential to be developed compared to several other technologies. PEMFCs have been widely used in various fields and have advantages (i.e. start-up zero-emissions high power density). Among the various sources of uncertainty in the sensitivity analysis the cost estimation method shows inflationary deviations from the proposed cost of capital. This is due to the selection process and untested technology. In addition the cost of electricity and raw materials as the main factors that are unpredictable.
Fuel Cell Hybrid Model for Predicting Hydrogen Inflow through Energy Demand
Nov 2019
Publication
Hydrogen-based energy storage and generation is an increasingly used technology especially in renewable systems because they are non-polluting devices. Fuel cells are complex nonlinear systems so a good model is required to establish efficient control strategies. This paper presents a hybrid model to predict the variation of H2 flow of a hydrogen fuel cell. This model combining clusters’ techniques to get multiple Artificial Neural Networks models whose results are merged by Polynomial Regression algorithms to obtain a more accurate estimate. The model proposed in this article use the power generated by the fuel cell the hydrogen inlet flow and the desired power variation to predict the necessary variation of the hydrogen flow that allows the stack to reach the desired working point. The proposed algorithm has been tested on a real proton exchange membrane fuel cell and the results show a great precision of the model so that it can be very useful to improve the efficiency of the fuel cell system.
Electrochemical Ammonia: Power to Ammonia Ratio and Balance of Plant Requirements for Two Different Electrolysis Approaches
Nov 2021
Publication
Electrochemical ammonia generation allows direct low pressure synthesis of ammonia as an alternative to the established Haber-Bosch process. The increasing need to drive industry with renewable electricity central to decarbonisation and electrochemical ammonia synthesis offers a possible efficient and low emission route for this increasingly important chemical. It also provides a potential route for more distributed and small-scale ammonia synthesis with a reduced production footprint. Electrochemical ammonia synthesis is still early stage but has seen recent acceleration in fundamental understanding. In this work two different ammonia electrolysis systems are considered. Balance of plant (BOP) requirements are presented and modelled to compare performance and determine trade-offs. The first option (water fed cell) uses direct ammonia synthesis from water and air. The second (hydrogen-fed cell) involves a two-step electrolysis approach firstly producing hydrogen followed by electrochemical ammonia generation. Results indicate that the water fed approach shows the most promise in achieving low energy demand for direct electrochemical ammonia generation. Breaking the reaction into two steps for the hydrogen fed approach introduces a source of inefficiency which is not overcome by reduced BOP energy demands and will only be an attractive pathway for reactors which promise both high efficiency and increased ammonia formation rate compared to water fed cells. The most optimised scenario investigated here with 90% faradaic efficiency (FE) and 1.5 V cell potential (75% nitrogen utilisation) gives a power to ammonia value of 15 kWh/kg NH3 for a water fed cell. For the best hydrogen fed arrangement the requirement is 19 kWh/kg NH3. This is achieved with 0.5 V cell potential and 75% utilisation of both hydrogen and nitrogen (90% FE). Modelling demonstrated that balance of plant requirements for electrochemical ammonia are significant. Electrochemical energy inputs dominate energy requirements at low FE however in cases of high FE the BOP accounts for approximately 50% of the total energy demand mostly from ammonia separation requirements. In the hydrogen fed cell arrangement it was also demonstrated that recycle of unconverted hydrogen is essential for efficient operation even in the case where this increases BOP energy inputs
EU Decarbonization under Geopolitical Pressure: Changing Paradigms and Implications for Energy and Climate Policy
Mar 2023
Publication
This paper aims to assess the impact of EU energy and climate policy as a response to Russia’s war in Ukraine on the EU decarbonization enterprise. It showcases how the Russian invasion was a crunch point that forced the EU to abandon its liberal market dogma and embrace in practice an open strategic autonomy approach. This led to an updated energy and climate policy with significant changes underpinning its main pillars interdependence diversification and the focus of market regulation and build-up. The reversal of enforced interdependence with Russia and the legislative barrage to support and build-up a domestic clean energy market unlocks significant emission reduction potential with measures targeting energy efficiency solar wind and hydrogen development; an urban renewable revolution and electricity and carbon market reforms standing out. Such positive decarbonization effects however are weakened by source and fuel diversification moves that extend to coal and shale gas especially when leading to an infrastructure build-up and locking-in gas use in the mid-term. Despite these caveats the analysis overall vindicates the hypothesis that geopolitics constitutes a facilitator and accelerator of EU energy transition.
The Interaction between Short- and Long-Term Energy Storage in an nZEB Office Building
Mar 2024
Publication
The establishment of near-autonomous micro-grids in commercial or public building complexes is gaining increasing popularity. Short-term storage capacity is provided by means of large battery installations or more often by the employees’ increasing use of electric vehicle batteries which are allowed to operate in bi-directional charging mode. In addition to the above short-term storage means a long-term storage medium is considered essential to the optimal operation of the building’s micro-grid. The most promising long-term energy storage carrier is hydrogen which is produced by standard electrolyzer units by exploiting the surplus electricity produced by photovoltaic installation due to the seasonal or weekly variation in a building’s electricity consumption. To this end a novel concept is studied in this paper. The details of the proposed concept are described in the context of a nearly Zero Energy Building (nZEB) and the associated micro-grid. The hydrogen produced is stored in a high-pressure tank to be used occasionally as fuel in an advanced technology hydrogen spark ignition engine which moves a synchronous generator. A size optimization study is carried out to determine the genset’s rating the electrolyzer units’ capacity and the tilt angle of the rooftop’s photovoltaic panels which minimize the building’s interaction with the external grid. The hydrogen-fueled genset engine is optimally sized to 40 kW (0.18 kW/kWp PV). The optimal tilt angle of the rooftop PV panels is 39◦ . The maximum capacity of the electrolyzer units is optimized to 72 kW (0.33 kWmax/kWp PV). The resulting system is tacitly assumed to integrate to an external hydrogen network to make up for the expected mismatches between hydrogen production and consumption. The significance of technology in addressing the current challenges in the field of energy storage and micro-grid optimization is discussed with an emphasis on its potential benefits. Moreover areas for further research are highlighted aiming to further advance sustainable energy solutions.
A Review of Hydrogen/rock/brine Interaction: Implications for Hydrogen Geo-storage
Dec 2022
Publication
Hydrogen (H2) is currently considered a clean fuel to decrease anthropogenic greenhouse gas emissions and will play a vital role in climate change mitigation. Nevertheless one of the primary challenges of achieving a complete H2 economy is the large-scale storage of H2 which is unsafe on the surface because H2 is highly compressible volatile and flammable. Hydrogen storage in geological formations could be a potential solution to this problem because of the abundance of such formations and their high storage capacities. Wettability plays a critical role in the displacement of formation water and determines the containment safety storage capacity and amount of trapped H2 (or recovery factor). However no comprehensive review article has been published explaining H2 wettability in geological conditions. Therefore this review focuses on the influence of various parameters such as salinity temperature pressure surface roughness and formation type on wettability and consequently H2 storage. Significant gaps exist in the literature on understanding the effect of organic material on H2 storage capacity. Thus this review summarizes recent advances in rock/H2/brine systems containing organic material in various geological reservoirs. The paper also presents influential parameters affecting H2 storage capacity and containment safety including liquid–gas interfacial tension rock–fluid interfacial tension and adsorption. The paper aims to provide the scientific community with an expert opinion to understand the challenges of H2 storage and identify storage solutions. In addition the essential differences between underground H2 storage (UHS) natural gas storage and carbon dioxide geological storage are discussed and the direction of future research is presented. Therefore this review promotes thorough knowledge of UHS provides guidance on operating large-scale UHS projects encourages climate engineers to focus more on UHS research and provides an overview of advanced technology. This review also inspires researchers in the field of climate change to give more credit to UHS studies.
Determining the Production and Transport Cost for H2 on a Global Scale
May 2022
Publication
Hydrogen (H2) produced using renewable energy could be used to reduce greenhouse gas (GHG) emissions in industrial sectors such as steel chemicals transportation and energy storage. Knowing the delivered cost of renewable H2 is essential to decisionmakers looking to utilize it. The cheapest location to source it from as well as the transport method and medium are also crucial information. This study presents a Monte Carlo simulation to determine the delivered cost for renewable H2 for any usage location globally as well as the most cost-effective production location and transport route from nearly 6000 global locations. Several industrially dense locations are selected for case studies the primary two being Cologne Germany and Houston United States. The minimum delivered H2 cost to Cologne is 9.4 €/kg for small scale (no pipelines considered) shipped from northern Egypt as a liquid organic hydrogen carrier (LOHC) and 7.6 €/kg piped directly as H2 gas from southern France for large scale (pipelines considered). For smallscale H2 in Houston the minimum delivered cost is 8.6 €/kg trucked as H2 gas from the western Gulf of Mexico and 7.6 €/kg for large-scale demand piped as H2 gas from southern California. The south-west United States and Mexico northern Chile the Middle East and north Africa south-west Africa and north-west Australia are identified as the regions with the lowest renewable H2 cost potential with production costs ranging from 6.7—7.8 €/kg in these regions. Each is able to supply differing industrially dominant areas. Furthermore the effect of parameters such as year of construction electrolyser and H2 demand is analysed. For the case studies in Houston and Cologne the delivered H2 cost is expected to reduce to about 7.8 €/kg by 2050 in Cologne (no pipelines considered PEM electrolyser) and 6.8 €/kg in Houston.
Life Cycle Assessment of Alternative Ship Fuels for Coastal Ferry Operating in Republic of Korea
Aug 2020
Publication
In this study the environmental impacts of various alternative ship fuels for a coastal ferry were assessed by the life cycle assessment (LCA) analysis. The comparative study was performed with marine gas oil (MGO) natural gas and hydrogen with various energy sources for a 12000 gross tonne (GT) coastal ferry operating in the Republic of Korea (ROK). Considering the energy imports of ROK i.e. MGO from Saudi Arabia and natural gas from Qatar these countries were chosen to provide the MGO and the natural gas for the LCA. The hydrogen is considered to be produced by steam methane reforming (SMR) from natural gas with hard coal nuclear energy renewable energy and electricity in the ROK model. The lifecycles of the fuels were analyzed in classifications of Well-toTank Tank-to-Wake and Well-to-Wake phases. The environmental impacts were provided in terms of global warming potential (GWP) acidification potential (AP) photochemical potential (POCP) eutrophication potential (EP) and particulate matter (PM). The results showed that MGO and natural gas cannot be used for ships to meet the International Maritime Organization’s (IMO) 2050 GHG regulation. Moreover it was pointed out that the energy sources in SMR are important contributing factors to emission levels. The paper concludes with suggestions for a hydrogen application plan for ships from small nearshore ships in order to truly achieve a ship with zero emissions based on the results of this study.
Hydrogen Emissions from a Hydrogen Economy and their Potential Global Warming Impact
Aug 2022
Publication
Hydrogen (H2) is expected to be a key instrument to meet the European Union (EU) Green Deal main objective: i.e. climate neutrality by 2050. Renewable hydrogen deployment is expected to significantly reduce EU greenhouse gas (GHG) emissions by displacing carbon-intensive sources of energy. However concerns have been raised recently regarding the potential global warming impact caused by hydrogen emissions. Although hydrogen is neither intentionally emitted to the atmosphere when used nor a direct greenhouse gas hydrogen losses affect atmospheric chemistry indirectly contributing to global warming. To better understand the potential environmental impact of a hydrogen economy and to assess the need for action in this respect the Clean Hydrogen Joint Undertaking and the U.S. Department of Energy jointly organised with the support of the European Commission Hydrogen Europe Hydrogen Europe Research the Hydrogen Council and the International Partnership for Hydrogen and Fuel Cells in the Economy a 2-day expert workshop. Experts agreed that a low-carbon and in particular a renewable hydrogen economy would significantly reduce the global warming impact compared to a fossil fuel economy. However hydrogen losses to the atmosphere will impact the lifetime of other greenhouse gases namely methane ozone and water vapour indirectly contributing to the increase of the Earth’s temperature in the near-term. To minimise the climate impact of a hydrogen economy losses should therefore be minimised prevented and monitored. Unfortunately current loss rates along the hydrogen supply chain are not well constrained and are currently estimated to go from few percents for compressed hydrogen (1-4%) up to 10-20% for liquefied hydrogen. Both the global warming impact of hydrogen emissions and the leakage rates from a developed hydrogen economy are subject to a high level of uncertainty. It is therefore of paramount importance to invest in developing the ability to accurately quantify hydrogen emissions as well as engage in more research on hydrogen leakage prevention and monitoring systems. More data from the hydrogen industry and improved observational capacity are needed to improve the accuracy of the global hydrogen budget. Finally it is recommended to always report the amount and location of hydrogen emissions when environmental assessments are performed. There is a range of emission metrics and time scales that are designed to evaluate the climate impacts of short-lived GHG emissions compared to CO2 (i.e. CO2 equivalents). The metric choice must depend on the specific policy goal as they can provide very different perspectives on the relative importance of H2 emissions on the climate depending on the time horizon of concern. These differences need to be viewed in the context of the specific policy objectives.
Flexible Power and Biomass-To-Methanol Plants With Different Gasification Technologies
Jan 2022
Publication
The competitiveness of biofuels may be increased by integrating biomass gasification plants with electrolysis units which generate hydrogen to be combined with carbon-rich syngas. This option allows increasing the yield of the final product by retaining a higher amount of biogenic carbon and improving the resilience of the energy sector by favoring electric grid services and sector coupling. This article illustrates a techno-economic comparative analysis of three flexible power and biomass to methanol plants based on different gasification technologies: direct gasification indirect gasification and sorptionenhanced gasification. The design and operational criteria of each plant are conceived to operate both without green hydrogen addition (baseline mode) and with hydrogen addition (enhanced mode) following an intermittent use of the electrolysis system which is turned on when the electricity price allows an economically viable hydrogen production. The methanol production plants include a gasification section syngas cleaning conditioning and compression section methanol synthesis and purification and heat recovery steam cycle to be flexibly operated. Due to the high oxygen demand in the gasifier the direct gasification-based plant obtains a great advantage to be operated between a minimum load to satisfy the oxygen demand at high electricity prices and a maximum load to maximize methanol production at low electricity prices. This allows avoiding large oxygen storages with significant benefits for Capex and safety issues. The analysis reports specific fixed-capital investments between 1823 and 2048 €/kW of methanol output in the enhanced operation and LCOFs between 29.7 and 31.7 €/GJLHV. Economic advantages may be derived from a decrease in the electrolysis capital investment especially for the direct gasification-based plants which employ the greatest sized electrolyzer. Methanol breakeven selling prices range between 545 and 582 €/t with the 2019 reference Denmark electricity price curve and between 484 and 535 €/t with an assumed modified electricity price curve of a future energy mix with increased penetration of intermittent renewables.
Hydrogen for the De-carbonization of the Resources and Energy Intensive Industries (REIIs)
Aug 2022
Publication
This study deals with the use of hydrogen for the de-carbonization of the Resources and Energy Intensive Industries (REIIs) and gives a specific insight of the situation of the steel-making industry. The growing use of hydrogen in our economy is synonym for an equal increase in electricity consumption. This results from the fact that the current most promising technologies of H2 production is water electrolysis. For this purpose the EU hydrogen strategy foresees a progressive ramp up of H2 production capacities. But bottlenecks (especially regarding energy needed for electrolysers) may occur. Capacities should reach 40 GW (around 10 Mt/y) by the end of 2030. The steel-making industry relies heavily on H2 to decarbonise its process (through direct iron ore reduction). Our study analyses the conditions under which this new process will be able to compete with both European and offshore existing carbonised assets (i.e. blast furnaces). It emphasises the need for integrated and consistent policies from carbon prices to the carbon border adjustment mechanism through carbon contracts for differences but also highlightsthat a better regulation of electricity prices should not be neglected.
Potential Global Warming Impact of 1 kW Polymer Electrolyte Membrane Fuel Cell System for Residential Buildings on Operation Phase
Mar 2023
Publication
This study established global warming potential(GWP) emission factors through a life cycle assessment on the operation phases of two different 1 kW polymer electrolyte membrane fuel cell (PEMFC) systems for residential buildings (NG-PEMFC fed with hydrogen from natural gas reforming; WE-PEMFC fed with hydrogen from photovoltaics-powered water electrolyzer). Their effectiveness was also compared with conventional power grid systems in Korea specifically in the area of greenhouse gas emissions. The operation phases of the NG-PEMFC and the WE-PEMFC were divided into burner reformer and stack and into water electrolysis and stack respectively. The functional unit of each fuel cell system was defined as 1 kWh of electricity production. In the case of NG-PEMFC the GWP was 3.72E-01 kg-CO2eq/kWh the embodied carbon emissions due to using city gas during the life cycle process was about 20.87 % the carbon emission ratio according to the reformer's combustion burner was 6.07 % and the direct carbon emission ratio of the air emissions from the reformer was 73.06 % indicating that the carbon emission from the reformer contributed over 80 % of the total GWP. As for the WE-PEMFC the GWP was 1.76E-01 kg-CO2eq/kWh and the embodied carbon emissions from photovoltaic power generation during the life cycle process contributed over 99 % of the total GWP.
No more items...