Publications
Green Hydrogen in Europe: Do Strategies Meet Expectations?
Dec 2021
Publication
The possibility of producing hydrogen as an energy carrier or raw material through electrolysis of water so-called green hydrogen has been on the table as a technological option for a long time. However low conversion efficiency and a dubious climate balance have stood in the way of large-scale application ever since. Within the last three to four years however this view has changed significantly. In addition to technological improvements the increasing speed of the expansion of volatile renewable energies in Europe has also contributed to this since in principle a nearly climate-neutral utilisation of excess generation is possible through the use of hydrogen as an energy carrier in electrolysis. In addition hydrogen or products derived from it can be used in a variety of ways as a final energy carrier in all energy-intensive activities: industry heating and transport. For this reason green hydrogen production could play a key role in interconnecting all energy consuming sectors (sector coupling) a long-term goal necessary for achieving the decarbonisation of the European economy.
Pneumatic and Optical Characterization and Optimization of Hydrogen Injectors for Internal Combustion Engine Application
Aug 2022
Publication
To achieve future emission targets for internal combustion engines the use of hydrogen gas generated by renewable energy sources (known as “green” hydrogen) instead of fossil fuels plays a key role in the development of new combustion-based engine concepts. For new hydrogen engine generations there are different challenges concerning the injector layout and functionality. Especially when talking about direct hydrogen injection the key challenge is to ensure a proper mixing between hydrogen and the combustion air—the mixing of gas with a gas is not trivial as shown in this article. In terms of injector functionality it must be ensured that the requested amount of hydrogen gas needs to be provided in time and on the other hand accurately metered to provide an appropriate mixing formation quality inside the combustion chamber. This contribution discusses deep injector analysis techniques with pneumatic and optical approaches for an improved overall understanding of functionality and effects caused by operation with a gaseous fuel. A metering technique for gas flow characterization and for test simplification a comparison of hydrogen with helium and nitrogen as possible surrogate gases indicate that helium and nitrogen can act as a substitute for hydrogen in functional testing. Furthermore this contribution focuses on the usability of helium instead of hydrogen for the determination of spray properties. This is shown by the comparison of spray propagation images that were observed with the Schlieren technique in a pressure vessel proving comparable spray properties. In a next step the usage of spray-guiding devices to improve the global gas distribution during the injection period is discussed. Here it turns out that the volume increase does obviously not depend on the nozzle design. Thus the advantage of multi-hole guiding-devices is based on its flexible gas-jet orientation.
Sizing of Hybrid Supercapacitors and Lithium-Ion Batteries for Green Hydrogen Production from PV in the Australian Climate
Feb 2023
Publication
Instead of storing the energy produced by photovoltaic panels in batteries for later use to power electric loads green hydrogen can also be produced and used in transportation heating and as a natural gas alternative. Green hydrogen is produced in a process called electrolysis. Generally the electrolyser can generate hydrogen from a fluctuating power supply such as renewables. However due to the startup time of the electrolyser and electrolyser degradation accelerated by multiple shutdowns an idle mode is required. When in idle mode the electrolyser uses 10% of the rated electrolyser load. An energy management system (EMS) shall be applied where a storage technology such as a lithium-ion capacitor or lithium-ion battery is used. This paper uses a state-machine EMS of PV microgrid for green hydrogen production and energy storage to manage the hydrogen production during the morning from solar power and in the night using the stored energy in the energy storage which is sized for different scenarios using a lithium-ion capacitor and lithium-ion battery. The mission profile and life expectancy of the lithium-ion capacitor and lithium-ion battery are evaluated considering the system’s local irradiance and temperature conditions in the Australian climate. A tradeoff between storage size and cutoffs of hydrogen production as variables of the cost function is evaluated for different scenarios. The lithium-ion capacitor and lithium-ion battery are compared for each tested scenario for an optimum lifetime. It was found that a lithium-ion battery on average is 140% oversized compared to a lithium-ion capacitor but a lithium-ion capacitor has a smaller remaining capacity of 80.2% after ten years of operation due to its higher calendar aging while LiB has 86%. It was also noticed that LiB is more affected by cycling aging while LiC is affected by calendar aging. However the average internal resistance after 10 years for the lithium-ion capacitor is 264% of the initial internal resistance while for lithium-ion battery is 346% making lithium-ion capacitor a better candidate for energy storage if it is used for grid regulation as it requires maintaining a lower internal resistance over the lifetime of the storage.
First Hydrogen Fuel Sampling from a Fuel Cell Hydrogen Electrical Vehicle–Validation of Hydrogen Fuel Sampling System to Investigate FCEV Performance
Aug 2022
Publication
Fuel cell electric vehicles (FCEV) are developing quickly from passenger vehicles to trucks or fork-lifts. Policymakers are supporting an ambitious strategy to deploy fuel cell electrical vehicles with infrastructure as hydrogen refueling stations (HRS) as the European Green deal for Europe. The hydrogen fuel quality according to international standard as ISO 14687 is critical to ensure the FCEV performance and that poor hydrogen quality may not cause FCEV loss of performance. However the sampling system is only available for nozzle sampling at HRS. If a FCEV may show a lack of performance there is currently no methodology to sample hydrogen fuel from a FCEV itself. It would support the investigation to determine if hydrogen fuel may have caused any performance loss. This article presents the first FCEV sampling system and its comparison with the hydrogen fuel sampling from the HRS nozzle (as requested by international standard ISO 14687). The results showed good agreement with the hydrogen fuel sample. The results demonstrate that the prototype developed provides representative samples from the FCEV and can be an alternative to determine hydrogen fuel quality. The prototype will require improvements and a larger sampling campaign.
Low-carbon Economic Dispatch of Power Systems Based on Mobile Hydrogen Storage
Mar 2022
Publication
To alleviate the global warming crisis carbon reduction is an inevitable trend of sustainable development. The energy carrier with Hydrogen (H2) is considered to be one of the promising choices for realizing a low-carbon economy. With the increasing penetration level of wind power generation and for well-balancing wind generation fluctuations this paper proposes a low-carbon economic dispatch method for power systems based on mobile hydrogen storage(MHS). The wind power surplus during off-peak load periods is first utilized to generate green H2. Afterward the green H2 is optimally transported to multiple hydrogen storage(HS) stations for generating power electricity by flexibly controlling the electrolysis(EL) methanation(ME) carbon capture(CCS) and H2 power generation processes in such a way the wind power is coordinated with the hydrogen production transport and utilization to reduce the total carbon emission and minimize the operation cost of power systems. Finally the proposed power system low-carbon economic dispatch model is verified by case studies.
An Analysis on the Compressed Hydrogen Storage System for the Fast-Filling Process of Hydrogen Gas at the Pressure of 82 MPa
May 2021
Publication
During the fast-filling of a high-pressure hydrogen tank the temperature of hydrogen would rise significantly and may lead to failure of the tank. In addition the temperature rise also reduces hydrogen density in the tank which causes mass decrement into the tank. Therefore it is of practical significance to study the temperature rise and the amount of charging of hydrogen for hydrogen safety. In this paper the change of hydrogen temperature in the tank according to the pressure rise during the process of charging the high-pressure tank in the process of a 82-MPa hydrogen filling system the final temperature the amount of filling of hydrogen gas and the change of pressure of hydrogen through the pressure reducing valve and the performance of heat exchanger for cooling high-temperature hydrogen were analyzed by theoretical and numerical methods. When high-pressure filling began in the initial vacuum state the condition was called the “First cycle”. When the high-pressure charging process began in the remaining condition the process was called the “Second cycle”. As a result of the theoretical analysis the final temperatures of hydrogen gas were calculated to be 436.09 K for the first cycle of the high-pressure tank and 403.55 for the second cycle analysis. The internal temperature of the buffer tank increased by 345.69 K and 32.54 K in the first cycle and second cycles after high-pressure filling. In addition the final masses were calculated to be 11.58 kg and 12.26 kg for the first cycle and second cycle of the high-pressure tank respectively. The works of the paper can provide suggestions for the temperature rise of 82 MPa compressed hydrogen storage system and offer necessary theory and numerical methods for guiding safe operation and construction of a hydrogen filling system.
A Review of the Optimization Strategies and Methods Used to Locate Hydrogen Fuel Refueling Stations
Feb 2023
Publication
Increasing sales of conventional fuel-based vehicles are leading to an increase in carbon emissions which are dangerous to the environment. To reduce these conventional fuel-based vehicles must be replaced with alternative fuel vehicles such as hydrogen-fueled. Hydrogen can fuel vehicles with near-zero greenhouse gas emissions. However to increase the penetration of such alternative fuel vehicles there needs to be adequate infrastructure specifically refueling infrastructure in place. This paper presents a comprehensive review of the different optimization strategies and methods used in the location of hydrogen refueling stations. The findings of the review in this paper show that there are various methods which can be used to optimally locate refueling stations the most popular being the p-median and flow-capture location models. It is also evident from the review that there are limited studies that consider location strategies of hydrogen refueling stations within a rural setting; most studies are focused on urban locations due to the high probability of penetration into these areas. Furthermore it is apparent that there is still a need to incorporate factors such as the safety elements of hydrogen refueling station construction and for risk assessments to provide more robust realistic solutions for the optimal location of hydrogen refueling stations. Hence the methods reviewed in this paper can be used and expanded upon to create useful and accurate models for a hydrogen refueling network. Furthermore this paper will assist future studies to achieve an understanding of the extant studies on hydrogen refueling station and their optimal location strategies.
Study on Enhancing Hydrogen Production Potential from Renewable Energy in Multi-terminal DC System
Aug 2021
Publication
Renewable energy complementary hydrogen production can enhance the full consumption of renewable energy and reduce the abandonment of wind and solar power. The integration of renewable energy and hydrogen production equipment through existing multi-terminal DC systems can reduce new power lines construction and save investment in distribution equipment. For integrated renewable energy/hydrogen energy in an existing multi-terminal DC system this paper investigates its potential of hydrogen production based on renewable energy while ensuring the normal performance of the existing system being not affected. The typical structure and control strategy of the integrated renewable energy/hydrogen energy in multi-terminal DC system are firstly described. Then the state space model of the system is constructed and the key parameters affecting the hydrogen production capacity are studied by using the eigenvalues analysis method. Finally the corresponding system simulation model and test platform are built and the theoretical analysis results are verified and the potential of using multi-terminal DC system to enhance hydrogen production is quantitatively analyzed. The proposed scheme can enhance the hydrogen production potential from renewable energy meanwhile the normal performance of the existing system is not affected.
Optimising Renewable Generation Configurations of Off-grid Green Ammonia Production System Considering Haber-Bosch Flexibility
Feb 2023
Publication
Green ammonia has received increasing interest for its potential as an energy carrier in the international trade of renewable power. This paper considers the factors that contribute to producing cost-competitive green ammonia from an exporter’s perspective. These factors include renewable resource quality across potential sites operating modes for off-grid plants and seasonal complementarity with trade buyers. The study applies a mixed-integer programming model and uses Australia as a case study because of its excellent solar and wind resources and the potential for synergy between Southern Hemisphere supply and Northern Hemisphere demand. Although renewable resources are unevenly distributed across Australia and present distinct diurnal and seasonal variability modelling shows that most of the pre-identified hydrogen hubs in each state and territory of Australia can produce cost-competitive green ammonia providing the electrolysis and Haber-Bosch processes are partially flexible to cope with the variability of renewables. Flexible operation reduces energy curtailment and leads to lower storage capacity requirements using batteries or hydrogen storage which would otherwise increase system costs. In addition an optimised combination of wind and solar can reduce the magnitude of storage required. Providing that a partially flexible Haber Bosch plant is commercially available the modelling shows a levelised cost of ammonia (LCOA) of AU$756/tonne and AU$659/tonne in 2025 and 2030 respectively. Based on these results green ammonia would be cost-competitive with grey ammonia in 2030 given a feedstock natural gas price higher than AU$14/MBtu. For green ammonia to be cost-competitive with grey ammonia assuming a lower gas price of AU$6/MBtu a carbon price would need to be in place of at least AU$123/tonne. Given that there is a greater demand for energy in winter concurrent with lower solar power production there may be opportunities for solar-based Southern Hemisphere suppliers to supply the major industrial regions most of which are located in the Northern Hemisphere.
Multi-Model Assessment for Secondary Smelting Decarbonisation: The Role of Hydrogen in the Clean Energy Transition
Jan 2023
Publication
Extensive decarbonisation efforts result in major changes in energy demand for the extractive industry. In 2021 the extraction and primary processing of metals and minerals accounted for 4.5 Gt of CO2 eq. per year. The aluminium industry was responsible for 1.1 Gt CO2 eq. direct and indirect emissions. To reach the European milestone of zero emissions by 2050 a reduction of 3% annually is essential. To this end the industry needs to take a turn towards less impactful production practices coupling secondary production with green energy sources. The present work aims to comprehensively compare the lifecycle energy consumption and environmental performance of a secondary aluminium smelter employing alternative thermal and electricity sources. In this frame a comparative analysis of the environmental impact of different thermal energy sources namely natural gas light fuel oil liquified petroleum gas hydrogen and electricity for a secondary aluminium smelter is presented. The results show that H2 produced by renewables (green H2 ) is the most environmentally beneficial option accounting for −84.156 kg CO2 eq. By producing thermal energy as well as electricity on site H2 technologies also serve as a decentralized power station for green energy production. These technologies account for a reduction of 118% compared to conventionally used natural gas. The results offer a comprehensive overview to aid decision-makers in comparing environmental impacts caused by different energy sources.
The Role of Hydrogen in the Optimal Design of Off-grid Hybrid Renewable Energy Systems
Jan 2022
Publication
The optimal design of off-grid hybrid renewable energy systems (HRESs) is a challenging task which often involves conflicting goals to be faced. In this work levelized cost of energy (LCOE) and CO2 emissions have been addressed simultaneously by using the ε-constraint method together with the particle swarm optimization (PSO) algorithm. Cost-emissions Pareto fronts of different HRES configurations were developed to gain greater awareness about the potential of renewable-based energy systems in off-grid applications. Various combinations of the following components were investigated: photovoltaic panels wind turbines batteries hydrogen and diesel generators. The hydrogen-based system comprises an electrolyzer to convert the excess renewable energy into hydrogen a pressurized tank for H2 storage and a fuel cell for the reconversion of hydrogen into electricity during renewable energy deficits. Electrolyzer and fuel cell devices were modelled by means of part-load performance curves. Size-dependent costs and component lifetimes as a function of the cumulative operational duty were also considered for a more accurate techno-economic assessment. The proposed methodology was applied to the Froan islands (Norway) which were chosen as a reference case study since they are well representative of many other insular microgrid environments in Northern Europe. Results from the sizing simulations revealed that energy storage devices are key components to reduce the dependency on fossil fuels. In particular the hydrogen storage system is crucial in off-grid areas to enhance the RES penetration and avoid a sharp increase in the cost of energy. Hydrogen in fact allows the battery and RES technologies not to be oversized thanks to its cost-effective long-term storage capability. Concerning the extreme case with no diesel the cheapest configuration which includes both batteries and hydrogen has an LCOE of 0.41 €/kWh. This value is around 35% lower than the LCOE of a system with only batteries as energy storage.
Jet Zero Strategy: One Year On
Jul 2023
Publication
This report sets out progress against our strategic framework for decarbonising aviation as well as the latest aviation emissions data and updated Jet Zero analysis.<br/>Among the significant milestones achieved since the Jet Zero strategy launch are the:<br/>- agreement at the International Civil Aviation Organization for a long-term aspirational goal for aviation of net zero 2050 carbon dioxide (CO2) emissions for international aviation<br/>- publication of the 2040 zero emissions airport target call for evidence<br/>significant progress on sustainable aviation fuels (SAF) including:<br/>- publishing the second SAF mandate consultation<br/>- launching a second round of the Advanced Fuels Fund<br/>- publishing the Philip New report and the government response on how to develop a UK SAF industry<br/>- publication of the government response to the UK ETS consultation setting out a range of commitments that will enhance the effectiveness of the UK Emissions Trading Scheme (ETS) for aviation<br/>- launch of the expressions of interest for 2 DfT- funded research projects into aviation’s non-CO2 impacts<br/>The report also acknowledges that big challenges remain and we need to continue to work across the aviation sector and with experts across the economy to ensure we continue to make progress on our path to decarbonise aviation.
Ecological and Economic Evaluation of Hydrogen Production by Different Water Electrolysis Technologies
Jul 2020
Publication
The economic and ecological production of green hydrogen by water electrolysis is one of the major challenges within Carbon2Chem and other power-to-X projects. This paper presents an evaluation of the different water electrolysis technologies with respect to their specific energy demand carbon footprint and the forecast production costs in 2030. From a current perspective alkaline water electrolysis is evaluated as the most favorable technology for the cost-effective production of low-carbon hydrogen with fluctuating renewables.
Residential Fuel Transition and Fuel Interchangeability in Current Self-Aspirating Combustion Applications: Historical Development and Future Expectations
May 2022
Publication
To reduce greenhouse gases and air pollutants new technologies are emerging to reduce fossil fuel usage and to adopt more renewable energy sources. As the major aspects of fuel consumption power generation transportation and industrial applications have been given significant attention. The past few decades witnessed astonishing technological advancement in these energy sectors. In contrast the residential sector has had relatively little attention despite its significant utilization of fuels for a much longer period. However almost every energy transition in human history was initiated by the residential sector. For example the transition from fuelwood to cheap coal in the 1700s first took place in residential houses due to urbanization and industrialization. The present review demonstrates the energy transitions in the residential sector during the past two centuries while portending an upcoming energy transition and future energy structure for the residential sector. The feasibility of the 100% electrification of residential buildings is discussed based on current residential appliance adoption and the analysis indicates a hybrid residential energy structure is preferred over depending on a single energy source. Technical considerations and suggestions are given to help incorporate more renewable energy into the residential fuel supply system. Finally it is observed that compared to the numerous regulations on large energy-consumption aspects standards for residential appliances are scarce. Therefore it is concluded that establishing appropriate testing methods is a critical enabling step to facilitate the adoption of renewable fuels in future appliances.
Experimental Study for Thermal Methane Cracking Reaction to Generate Very Pur Hydrogen in Small or Medium Scales by Using Regenrative Reactor
Sep 2022
Publication
Non-catalytic thermal methane cracking (TMC) is an alternative for hydrogen manufacturing and traditional commercial processes in small-scale hydrogen generation. Supplying the high-level temperatures (850–1800°C) inside the reactors and reactor blockages are two fundamental challenges for developing this technology on an industrial scale (Mahdi Yousefi and Donne 2021). A regenerative reactor could be a part of a solution to overcome these obstacles. This study conducted an experimental study in a regenerative reactor environment between 850 and 1170°C to collect the conversion data and investigate the reactor efficiency for TMC processes. The results revealed that the storage medium was a bed for carbon deposition and successfully supplied the reaction’s heat with more than 99.7% hydrogen yield (at more than 1150°C). Results also indicated that the reaction rate at the beginning of the reactor is much higher and the temperature dependence in the early stages of the reaction is considerably higher. However after reaching a particular concentration of Hydrogen at each temperature the influence of temperature on the reaction rate decreases and is almost constant. The type of produced carbon in the storage medium and its auto-catalytic effect on the reactions were also investigated. Results showed that carbon black had been mostly formed but in different sizes from 100 to 2000 nm. Increasing the reactor temperature decreased the size of the generated carbon. Pre-produced carbon in the reactor did not affect the production rate and is almost negligible at more than 850°C.
Prospective Roles for Green Hydrogen as Part of Ireland's Decarbonisation Strategy
Mar 2023
Publication
In recent decades governments and society have been making increasing efforts to address and mitigate climate change by reducing emissions and decarbonising energy generation. Ireland has invested greatly in renewable electricity installing 4 GW of wind capacity since 2002 and has set assertive energy targets such as the aim to reduce overall emissions by 51% by 2030. Nonetheless considerable acceleration is needed in the decarbonisation of the country’s energy sector. This paper investigates the potential role hydrogen can play in Ireland’s energy transition proposing hydrogen as an energy vector and storage medium that may help the country achieve its targets and reduce greenhouse gas emissions. Through literature review research and from industry insights the current state of the Irish energy sector is analysed and recommendations are made as to how where and when hydrogen can be integrated into the decarbonisation of Ireland’s electricity heating and transport. It is concluded that; with significant effort from the government policymakers industry and organisations; the effective deployment of hydrogen technologies in Ireland could avoid up to 6.1 MtCO2eq of emissions annually reflecting a trend observed in many other developed countries in which hydrogen plays an important part in the path to a low-carbon future. Prospective roles for hydrogen in Ireland include renewable energy storage and grid balancing through the deployment of Power-to-Gas systems a replacement for fossil natural gas in the gas grid for backup electricity production as well as industry and heating requirements and the use of hydrogen as a fuel for heavy transport.
Review and Survey of Methods for Analysis of Impurities in Hydrogen for Fuel Cell Vehicles According to ISO 14687:2019
Feb 2021
Publication
Gaseous hydrogen for fuel cell electric vehicles must meet quality standards such as ISO 14687:2019 which contains maximal control thresholds for several impurities which could damage the fuel cells or the infrastructure. A review of analytical techniques for impurities analysis has already been carried out by Murugan et al. in 2014. Similarly this document intends to review the sampling of hydrogen and the available analytical methods together with a survey of laboratories performing the analysis of hydrogen about the techniques being used. Most impurities are addressed however some of them are challenging especially the halogenated compounds since only some halogenated compounds are covered not all of them. The analysis of impurities following ISO 14687:2019 remains expensive and complex enhancing the need for further research in this area. Novel and promising analyzers have been developed which need to be validated according to ISO 21087:2019 requirements.
How to Power the Energy–Water Nexus: Coupling Desalination and Hydrogen Energy Storage in Mini-Grids with Reversible Solid Oxide Cells
Nov 2020
Publication
Sustainable Development Goals establish the main challenges humankind is called to tackle to assure equal comfort of living worldwide. Among these the access to affordable renewable energy and clean water are overriding especially in the context of developing economies. Reversible Solid Oxide Cells (rSOC) are a pivotal technology for their sector-coupling potential. This paper aims at studying the implementation of such a technology in new concept PV-hybrid energy storage mini-grids with close access to seawater. In such assets rSOCs have a double useful effect: charge/discharge of the bulk energy storage combined with seawater desalination. Based on the outcomes of an experimental proof-of-concept on a single cell operated with salty water the operation of the novel mini-grid is simulated throughout a solar year. Simulation results identify the fittest mini-grid configuration in order to achieve energy and environmental optimization hence scoring a renewable penetration of more than 95% marginal CO2 emissions (13 g/kWh) and almost complete coverage of load demand. Sector-coupling co-production rate (desalinated water versus electricity issued from the rSOC) is 0.29 L/kWh.
Gas Goes Green: Hydrogen Blending Capacity Maps
Jan 2022
Publication
Britain's gas networks are ready for hydrogen blending. Learn more about Britain's hydrogen blending capacity in the National Transmission System and Distribution Networks.
Low Carbon Economic Dispatch of Integrated Energy Systems Considering Utilization of Hydrogen and Oxygen Energy
Mar 2024
Publication
Power-to-gas (P2G) facilities use surplus electricity to convert to natural gas in integrated energy systems (IES) increasing the capacity of wind power to be consumed. However the capacity limitation of P2G and the antipeaking characteristic of wind power make the wind abandonment problem still exist. Meanwhile the oxygen generated by P2G electrolysis is not fully utilized. Therefore this study proposes a low-carbon economic dispatch model considering the utilization of hydrogen and oxygen energy. First the two-stage reaction model of P2G is established and the energy utilization paths of hydrogen blending and oxygen-rich deep peaking are proposed. Specifically hydrogen energy is blended into the gas grid to supply gas-fired units and oxygen assists oxygenrich units into deep peaking. Subsequently the stochastic optimization is used to deal with the uncertainty of the system and the objective function and constraints of the IES are given to establish a low-carbon dispatch model under the energy utilization model. Finally the effectiveness of the proposed method is verified based on the modified IEEE 39-node electric network 20-node gas network and 6-node heat network models.
No more items...