Publications
Prospect of Green Hydrogen Generation from Hybrid Renewable Energy Sources: A Review
Feb 2023
Publication
Hydrogen is one of the prospective clean energies that could potentially address two pressing areas of global concern namely energy crises and environmental issues. Nowadays fossil‐ based technologies are widely used to produce hydrogen and release higher greenhouse gas emis‐ sions during the process. Decarbonizing the planet has been one of the major goals in the recent decades. To achieve this goal it is necessary to find clean sustainable and reliable hydrogen pro‐ duction technologies with low costs and zero emissions. Therefore this study aims to analyse the hydrogen generation from solar and wind energy sources and observe broad prospects with hybrid renewable energy sources in producing green hydrogen. The study mainly focuses on the critical assessment of solar wind and hybrid‐powered electrolysis technologies in producing hydrogen. Furthermore the key challenges and opportunities associated with commercial‐scale deployment are addressed. Finally the potential applications and their scopes are discussed to analyse the important barriers to the overall commercial development of solar‐wind‐based hydrogen production systems. The study found that the production of hydrogen appears to be the best candidate to be employed for multiple purposes blending the roles of fuel energy carrier and energy storage modality. Further studies are recommended to find technical and sustainable solutions to overcome the current issues that are identified in this study.
Fire Spread Scenarios Involving Hydrogen Vehicles
Sep 2021
Publication
Fire spread between vehicles provides a potential risk in parking areas with many vehicles. Several reported very large fires caused the loss of a great number of vehicles. These fires seem to be in contradiction to the European design rules for car parks assuming only a very limited number of vehicles may be on fire at the same time. The fire spread in a car park environment is dependent on many factors of both the vehicles and the structure e.g. the latter has an impact on the rate of fire spread due to reradiation of the vehicles heat release. Therefore a CFD model is established to develop a tool to assess vehicles and better understand fire scenarios in different structures. Further the model enables testing of building design to prevent and mitigate such fires scenarios involving hydrogen vehicles. In this study a real layout of a car park is modelled to investigate the effects of hydrogen emergency releases that have used different TPRD diameters. The results provide insight into the behaviour of hydrogen cars and the release pattern of the TPRD's as well as the temperature development of the concrete ceiling and concrete beams above the cars. It shows that the TPRD diameter has a little effect on the TPRD activation time of the no.1 vehicle when the amount of H2 in the tank is the same. For the surface temperature of the ceiling and beam the peak temperature for a 1mm diameter TPRD release is found highest.
Water Electrolysis: From Textbook Knowledge to the Latest Scientific Strategies and Industrial Developments
May 2022
Publication
Replacing fossil fuels with energy sources and carriers that are sustainable environmentally benign and affordable is amongst the most pressing challenges for future socio-economic development. To that goal hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting if driven by green electricity would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first principles calculations and machine learning. In addition a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the ‘junctions’ between the field’s physical chemists materials scientists and engineers as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Towards Electrochemical Hydrogen Storage in Liquid Organic Hydrogen Carriers via Proton-coupled Electron Transfers
Jun 2022
Publication
Green hydrogen is identified as one of the prime clean energy carriers due to its high energy density and a zero emission of CO2. A possible solution for the transport of H2 in a safe and low-cost way is in the form of liquid organic hydrogen carriers (LOHCs). As an alternative to loading LOHC with H2 via a two-step procedure involving preliminary electrolytic production of H2 and subsequent chemical hydrogenation of the LOHC we explore here the possibility of electrochemical hydrogen storage (EHS) via conversion of proton of a proton donor into a hydrogen atom involved in covalent bonds with the LOHC (R) via a proton-coupled electron transfer (PCET) reaction: . 2 + +2 ― + ox↔ 0 2red We chose 9-fluorenone/fluorenol (Fnone/Fnol) conversion as such a model PCET reaction. The electrochemical activation of Fnone via two sequential electron transfers was monitored with in-situ and operando spectroscopies in absence and in presence of different alcohols as proton donors of different reactivity which enabled us to both quantify and get the mechanistic insight on PCET. The possibility of hydrogen extraction from the loaded carrier molecule was illustrated by chemical activation.
Experimental Study on the Cycle Variation Characteristics of Direct Injection Hydrogen Engine
Jun 2022
Publication
Hydrogen energy is an important technical route to achieve carbon peak and carbon neutrality. Direct injection hydrogen engine is one of the ways of hydrogen energy application. It has the advantages of high thermal efficiency and limit/reduce abnormal combustion phenomena. In order to explore the cycle characteristics of direct injection hydrogen engine based on a 2.0L direct injection hydrogen engine an experimental study on the cycle characteristics of direct injection hydrogen engine was carried out. The experimental results show that cycle variation increases from 0.67% to 1.02% with the increasing of engine speed. The cycle variation decreases from 1.52% to 0.64% with the increasing of engine load. As the equivalence ratio increases the cycle variation first decreases significantly from 2.52% to 0.35% and then stabilizes. The ignition advance angle has a better angle to minimize the cycle variation. An experimental study on the influence of the start of injection on the cycle variation was carried out. As the engine speed/engine load is 2000rpm/4bar the cycle variation increases from 0.72% to 2.42% with the start of injection changing from -280°CA to -180°CA; then rapidly decreases to 0.99% and then increases to 2.26% with the start of injection changing from -180°CA to -100°CA. The experimental results show that SOI could cause significant influence on cycle variation because of intake valve closing and shortening mixing time and both the process of intake valve closing and lagging the SOI could cause the cycle variation to increase. The SOI remarkably affects the cycle variation at low engine load/equivalence ratio and high engine speed. This study lays the foundation for the follow-up research of hydrogen engine performance matching of the cycle variation.
Hydrogen Production from the Air
Sep 2022
Publication
Green hydrogen produced by water splitting using renewable energy is the most promising energy carrier of the low-carbon economy. However the geographic mismatch between renewables distribution and freshwater availability poses a significant challenge to its production. Here we demonstrate a method of direct hydrogen production from the air namely in situ capture of freshwater from the atmosphere using hygroscopic electrolyte and electrolysis powered by solar or wind with a current density up to 574 mA cm−2 . A prototype of such has been established and operated for 12 consecutive days with a stable performance at a Faradaic efficiency around 95%. This so-called direct air electrolysis (DAE) module can work under a bone-dry environment with a relative humidity of 4% overcoming water supply issues and producing green hydrogen sustainably with minimal impact to the environment. The DAE modules can be easily scaled to provide hydrogen to remote (semi-) arid and scattered areas.
Hybrid Renewable Hydrogen Energy Solution for Application in Remote Mines
Dec 2020
Publication
Mining operations in remote locations rely heavily on diesel fuel for the electricity haulage and heating demands. Such significant diesel dependency imposes large carbon footprints to these mines. Consequently mining companies are looking for better energy strategies to lower their carbon footprints. Renewable energies can relieve this over-reliance on fossil fuels. Yet in spite of their many advantages renewable systems deployment on a large scale has been very limited mainly due to the high battery storage system. Using hydrogen for energy storage purposes due to its relatively cheaper technology can facilitate the application of renewable energies in the mining industry. Such cost-prohibitive issues prevent achieving 100% penetration rate of renewables in mining applications. This paper offers a novel integrated renewable–multi-storage (wind turbine/battery/fuel cell/thermal storage) solution with six different configurations to secure 100% off-grid mining power supply as a stand-alone system. A detailed comparison between the proposed configurations is presented with recommendations for implementation. A parametric study is also performed identifying the effect of different parameters (i.e. wind speed battery market price and fuel cell market price) on economics of the system. The result of the present study reveals that standalone renewable energy deployment in mine settings is technically and economically feasible with the current market prices depending on the average wind speed at the mine location.
Everything About Hydrogen Podcast: Using the Law and Regulation to Facilitate Hydrogen Development
Jun 2022
Publication
Burges Salmon’s energy lawyers are known for ground-breaking work in the energy power and utilities sector. They understand the opportunities the technologies and the challenges which the sector presents. Their reputation has been built upon first-of-a-kind projects and deals and an intimate knowledge of energy regulation. Burges Salmon specialists provide expert advice throughout the project/plant life cycle. Over the years this has in turn led to investors and funders requesting their services in the knowledge that they understand the key issues technologies face. They have a team of over 80 lawyers who focus on helping developers investors and funders achieve their aims in the sector. The team has won or been shortlisted for all the key industry awards in energy over the last decade.
The podcast can be found on their website
The podcast can be found on their website
Novel Ways for Hydrogen Production Based on Methane Steam and Dry Reforming Integrated with Carbon Capture
Sep 2022
Publication
The combination of methane steam reforming technology and CCS (Carbon Capture and Storage) technology has great potential to reduce carbon emissions in the process of hydrogen production. Different from the traditional idea of capturing CO2 (Carbon Dioxide) in the exhaust gas with high work consumption this study simultaneously focuses on CO2 separation from fuel gas and recycling. A new hydrogen production system is developed by methane steam reforming coupled with carbon capture. Separated and captured high-purity carbon dioxide could be recycled for methane dry reforming; on this basis a new methane-dry-reforming-driven hydrogen production system with a carbon dioxide reinjection unit is innovatively proposed. In this study the energy flow and irreversible loss in the two newly developed systems are analyzed in detail through energy and exergy balance analysis. The advantages are explored from the perspective of hydrogen production rate natural gas consumption and work consumption. In addition in consideration of the integrated performance an optimal design analysis was conducted. In terms of hydrogen production the new system based on dry reforming is better with an advantage of 2.41%; however it is worth noting that the comprehensive thermal performance of the new steam reforming system is better reaching 10.95%. This study provides new ideas for hydrogen production from a low carbon emission perspective and also offers a new direction for future distributed energy system integration.
Time‐Decoupling Layered Optimization for Energy and Transportation Systems under Dynamic Hydrogen Pricing
Jul 2022
Publication
The growing popularity of renewable energy and hydrogen‐powered vehicles (HVs) will facilitate the coordinated optimization of energy and transportation systems for economic and en‐ vironmental benefits. However little research attention has been paid to dynamic hydrogen pricing and its impact on the optimal performance of energy and transportation systems. To reduce the dependency on centralized controllers and protect information privacy a time‐decoupling layered optimization strategy is put forward to realize the low‐carbon and economic operation of energy and transportation systems under dynamic hydrogen pricing. First a dynamic hydrogen pricing mechanism was formulated on the basis of the share of renewable power in the energy supply and introduced into the optimization of distributed energy stations (DESs) which will promote hydro‐ gen production using renewable power and minimize the DES construction and operation cost. On the basis of the dynamic hydrogen price optimized by DESs and the traffic conditions on roads the raised user‐centric routing optimization method can select a minimum cost route for HVs to purchase fuels from a DES with low‐cost and/or low‐carbon hydrogen. Finally the effectiveness of the proposed optimization strategy was verified by simulations.
Modelling and Performance Analysis of an Autonomous Marine Vehicle Powered by a Fuel Cell Hybrid Powertrain
Sep 2022
Publication
This paper describes the implementation of a hydrogen-based system for an autonomous surface vehicle in an effort to reduce environmental impact and increase driving range. In a suitable computational environment the dynamic electrical model of the entire hybrid powertrain consisting of a proton exchange membrane fuel cell a hydrogen metal hydride storage system a lithium battery two brushless DC motors and two control subsystems is implemented. The developed calculation tool is used to perform the dynamic analysis of the hybrid propulsion system during four different operating journeys investigating the performance achieved to examine the obtained performance determine the feasibility of the work runs and highlight the critical points. During the trips the engine shows fluctuating performance trends while the energy consumption reaches 1087 Wh for the fuel cell (corresponding to 71 g of hydrogen) and 370 Wh for the battery consuming almost all the energy stored on board.
Impacts of Low-Carbon Targets and Hydrogen Production Alternatives on Energy Supply System Transition: An Infrastructure-Based Optimization Approach and a Case Study of China
Jan 2021
Publication
Low-carbon transition pathways oriented from different transition targets would result in a huge variation of energy system deployment and transition costs. Hydrogen is widely considered as an imperative energy carrier to reach carbon neutral targets. However hydrogen production either from non-fossil power or fossil fuels with carbon capture is closely linked with an energy supply system and has great impacts on its structure. Identifying an economically affordable transition pathway is attractive and energy infrastructure is critical due to massive investment and long life-span. In this paper a multi-regional multi-period and infrastructure-based model is proposed to quantify energy supply system transition costs with different low-carbon targets and hydrogen production alternatives and China is taken as a case study. Results show that fulfilling 2-degree and 1.5-degree temperature increase targets would result in 84% and 151% increases in system transition costs 114% and 246% increases in infrastructure investment and 211% and 339% increases in stranded investment compared to fulfilling stated policy targets. Producing hydrogen from coal would be economical when carbon capture and sequestration cost is lower than 437 yuan per tonne and reduce infrastructure investment and stranded coal investment by 16% and 35% respectively than producing hydrogen from renewable power.
Hydrogen Leakage Simulation and Risk Analysis of Hydrogen Fueling Station in China
Sep 2022
Publication
Hydrogen is a renewable energy source with various features clean carbon-free high energy density which is being recognized internationally as a “future energy.” The US the EU Japan South Korea China and other countries or regions are gradually clarifying the development position of hydrogen. The rapid development of the hydrogen energy industry requires more hydrogenation infrastructure to meet the hydrogenation need of hydrogen fuel cell vehicles. Nevertheless due to the frequent occurrence of hydrogen infrastructure accidents their safety has become an obstacle to large-scale construction. This paper analyzed five sizes (diameters of 0.068 mm 0.215 mm 0.68 mm 2.15 mm and 6.8 mm) of hydrogen leakage in the hydrogen fueling station using Quantitative Risk Assessment (QRA) and HyRAM software. The results show that unignited leaks occur most frequently; leaks caused by flanges valves instruments compressors and filters occur more frequently; and the risk indicator of thermal radiation accident and structure collapse accident caused by over-pressure exceeds the Chinese individual acceptable risk standard and the risk indicator of a thermal radiation accident and head impact accident caused by overpressure is below the Chinese standard. On the other hand we simulated the consequences of hydrogen leak from the 45 MPa hydrogen storage vessels by the physic module of HyRAM and obtained the ranges of plume dispersion jet fire radiative heat flux and unconfined overpressure. We suggest targeted preventive measures and safety distance to provide references for hydrogen fueling stations’ safe construction and operation.
Ultra-Cheap Renewable Energy as an Enabling Technology for Deep Industrial Decarbonization via Capture and Utilization of Process CO2 Emissions
Jul 2022
Publication
Rapidly declining costs of renewable energy technologies have made solar and wind the cheapest sources of energy in many parts of the world. This has been seen primarily as enabling the rapid decarbonization of the electricity sector but low-cost low-carbon energy can have a great secondary impact by reducing the costs of energy-intensive decarbonization efforts in other areas. In this study we consider by way of an exemplary carbon capture and utilization cycle based on mature technologies the energy requirements of the “industrial carbon cycle” an emerging paradigm in which industrial CO2 emissions are captured and reprocessed into chemicals and fuels and we assess the impact of declining renewable energy costs on overall economics of these processes. In our exemplary process CO2 is captured from a cement production facility via an amine scrubbing process and combined with hydrogen produced by a solar-powered polymer electrolyte membrane using electrolysis to produce methanol. We show that solar heat and electricity generation costs currently realized in the Middle East lead to a large reduction in the cost of this process relative to baseline assumptions found in published literature and extrapolation of current energy price trends into the near future would bring costs down to the level of current fossil-fuel-based processes.
On the Feasibility of Direct Hydrogen Utilisation in a Fossil-free Europe
Oct 2022
Publication
Hydrogen is often suggested as a universal fuel that can replace fossil fuels. This paper analyses the feasibility of direct hydrogen utilisation in all energy sectors in a 100% renewable energy system for Europe in 2050 using hour-by-hour energy system analysis. Our results show that using hydrogen for heating purposes has high costs and low energy efficiency. Hydrogen for electricity production is beneficial only in limited quantities to restrict biomass consumption but increases the system costs due to losses. The transport sector results show that hydrogen is an expensive alternative to liquid e-fuels and electrified transport due to high infrastructure costs and respectively low energy efficiency. The industry sector may benefit from hydrogen to reduce biomass at a lower cost than in the other energy sectors but electrification and e-methane may be more feasible. Seen from a systems perspective hydrogen will play a key role in future renewable energy systems but primarily as e-fuel feedstock rather than direct end-fuel in the hard-to-abate sectors.
Combustion Characteristics of Hydrogen Direct Injection in a Helium–oxygen Compression Ignition Engine
Jul 2022
Publication
The ignition of hydrogen in compression ignition (CI) engines by adding noble gas as a working gas can yield excellent thermal efficiency due to its high specific heat ratio. This paper emphasizes the potential of helium–oxygen atmosphere for hydrogen combustion in CI engines and provides data on the engine configuration. A simulation was conducted using Converge CFD software based on the Yanmar NF19SK engine parameters. Helium–oxygen atmosphere compression show promising hydrogen autoignition results with the in-cylinder temperature was significantly higher than that of air during the compression stroke. In a compression ignition engine with a low compression ratio (CR) and intake temperature helium–oxygen atmosphere is recognized as the best working gas for hydrogen combustion. The ambient intake temperature was sufficient for hydrogen ignition in low CR with minimal heat flux effect. The best intake temperature for optimum engine efficiency in a low CR engine is 340 K and the engine compression ratio for optimum engine efficiency at ambient intake temperature is CR12 with an acceptable cylinder wall heat flux value. The helium–oxygen atmosphere as a working gas for hydrogen combustion in CI engines should be consider based on the parameter provided for clean energy transition with higher thermal efficiency.
Experiment and Numerical Study of the Combustion Behavior of Hydrogen-blended Natural Gas in Swirl Burners
Oct 2022
Publication
Hydrogen production from renewable energy is gaining increasing attention to enhance energy consumption structure and foster a more eco-friendly and sustainable society. At the same time mixing hydrogen with natural gas and supplying it to civilians is one of the best ways to reduce carbon emissions and increase the reliability of technology while reducing the costs of storing and transporting hydrogen. Even though numerous researchers have conducted experimental and simulation studies on hydrogen-doped natural gas most of these studies have focused on the effects of hydrogen-doped ratio equivalence ratio and fuel combustion mode. The impact of burner structure on hydrogen-enriched natural gas has not received much attention. Compared with conventional direct-flow combustion swirl combustion can improve the mixing effect of the fuel mixture during combustion and the use of regions of reversed flow due to swirl can make the fuel burn more fully to achieve the reduction of pollutant emissions. Swirling flames are widely used in gas turbines and industrial furnaces because of their high stability. However the application of swirl combustion in domestic equipment is still in its infancy which deserves more researchers to explore and enhance the working conditions of domestic combustion equipment. In this paper a three-dimensional swirl burner model is utilized to examine the effect of swirl angle θ and swirl length L of the swirler on the combustion behavior of hydrogen-enriched natural gas in a swirl burner. The results indicate that the swirl angle θ and swirl length L play an essential role in the combustion of natural gas containing hydrogen. As the swirl angle θ increases the flame temperature decreases more slowly the combustion becomes more stable and the length of the flame is slightly increased. Simultaneously CO and NO emissions will gradually decrease and the combustion effect is enhanced when the swirl angle is 45◦. With increased swirl length L the flame length grows the high-temperature region expands and CO and NO emissions decrease. Meanwhile the change in swirl length has little effect on the increase of flame peak temperature when the fuel is thoroughly mixed. When the swirl length is 12 mm CO and NO emissions are lower and NO emissions are reduced by 36.11% compared to a swirl length of 6 mm. This work is a reference point for applying hydrogen-mixed natural gas in the swirl burner but it must be studied and optimized further in future research.
NewGasMet - Flow Metering of Renewable Gases (Biogas, Biomethane, Hydrogen, Syngas and Mixtures with Natural Gas): Criteria and Proposals for EMC Tests on Ultrasonic Meters with Non-conventional Gases
Oct 2022
Publication
The NEWGASMET project has the overall objective to increase knowledge about the accuracy and durability of commercially available gas meters after exposure to renewable gases. This should lead to the improvement of existing meter designs and flow calibration standards. One of the recently released results is a proposal for a set of test gases to represent the range of non-conventional gases in the scope of the revision of the gas meter standards. In details these were proposed to be used in the CEN/TC237 standards and the OIML-R137:2014. During the project meetings concerns have been raised regarding the applicability of such test gases to EMC tests for static meters. Today such tests are performed in air but there is a clear agreement that the behaviour of the meter during EMC tests can be influenced by the renewable gas type. At least this agreement exists for the ultrasonic measurement technology while further discussion might be needed for the mass flow. However it is not simply possible to redesign the current EMC tests by replacing air with the defined gas mixtures as this would be quite impractical especially considering the explosive nature of the test gases.
The Role of New Energy in Carbon Neutral
Mar 2021
Publication
Carbon dioxide is an important medium of the global carbon cycle and has the dual properties of realizing the conversion of organic matter in the ecosystem and causing the greenhouse effect. The fixed or available carbon dioxide in the atmosphere is defined as “gray carbon” while the carbon dioxide that cannot be fixed or used and remains in the atmosphere is called “black carbon”. Carbon neutral is the consensus of human development but its implementation still faces many challenges in politics resources technology market and energy structure etc. It is proposed that carbon replacement carbon emission reduction carbon sequestration and carbon cycle are the four main approaches to achieve carbon neutral among which carbon replacement is the backbone. New energy has become the leading role of the third energy conversion and will dominate carbon neutral in the future. Nowadays solar energy wind energy hydropower nuclear energy and hydrogen energy are the main forces of new energy helping the power sector to achieve low carbon emissions. “Green hydrogen” is the reserve force of new energy helping further reduce carbon emissions in industrial and transportation fields. Artificial carbon conversion technology is a bridge connecting new energy and fossil energy effectively reducing the carbon emissions of fossil energy. It is predicted that the peak value of China’s carbon dioxide emissions will reach 110108 t in 2030. The study predicts that China's carbon emissions will drop to 22108 t 33108 t and 44108 t respectively in 2060 according to three scenarios of high medium and low levels. To realize carbon neutral in China seven implementation suggestions have been put forward to build a new “three small and one large” energy structure in China and promote the realization of China's energy independence strategy.
NewGasMet - Flow Metering of Renewable Gases (Biogas, Biomethane, Hydrogen, Syngas and Mixtures with Natural Gas): Effect of Hydrogen Admixture on the Accuracy of a Rotary Flow Meter
Aug 2021
Publication
With the rise of hydrogen use in the natural gas grid a need exists for reliable measurements of the amount of energy being transported and traded for hydrogen admixtures. Using VSL’s high-pressure Gas Oil Piston Prover (GOPP) primary standard the effect of mixing hydrogen with natural gas on the performance of a high-pressure gas flow meter was investigated. The error of a rotary flow meter was determined using the best possible uncertainty by calibration with the primary standard for high-pressure natural gas flow. The rotary flow meter was calibrated using both natural gas and hydrogen enriched natural gas (nominally 15% hydrogen) at two different pressures: 9 and 16 bar. Results indicate that for the rotary flow meter and hydrogen admixtures used the differences in the meter errors between high-pressure hydrogen-enriched natural gas calibration and high-pressure natural gas calibration are smaller than the corresponding differences between atmospheric pressure air calibration and high-pressure natural gas calibration.
No more items...