Publications
Anion Exchange Membrane Water Electrolysis from Catalyst Design to the Membrane Electrode Assembly
Jul 2022
Publication
Anion exchange membrane (AEM) electrolysis aims to combine the benefits of alkaline electrolysis such as stability of the cheap catalyst and advantages of proton-exchange membrane systems like the ability to operate at differential pressure fast dynamic response low energy losses and higher current density. However as of today AEM electrolysis is limited by AEMs exhibiting insufficient ionic conductivity as well as lower catalyst activity and stability. Herein recent developments and outlook of AEM electrolysis such as cost-efficient transition metal catalysts for hydrogen evolution reaction and oxygen evolution reaction AEMs ionomer electrolytes ionomer catalyst–electrolyte interaction and membrane-electrode assembly performance and stability are described.
Everything About Hydrogen Podcast: Reaching for the Stars
Mar 2023
Publication
Today Everything About Hydrogen had a chance to speak with Paul Barrett the CEO of Hysata and dig into what makes this electrolysis company different.
The podcast can be found on their website.
The podcast can be found on their website.
Green Hydrogen for Heating and its Impact on the Power System
Jun 2021
Publication
With a relatively high energy density hydrogen is attracting increasing attention in research commercial and political spheres specifically as a fuel for residential heating which is proving to be a difficult sector to decarbonise in some circumstances. Hydrogen production is dependent on the power system so any scale use of hydrogen for residential heating will impact various aspects of the power system including electricity prices and renewable generation curtailment (i.e. wind solar). Using a linearised optimal power flow model and the power infrastructure on the island of Ireland this paper examines least cost optimal investment in electrolysers in the presence of Ireland's 70% renewable electricity target by 2030. The introduction of electrolysers in the power system leads to an increase in emissions from power generation which is inconsistent with some definitions of green hydrogen. Electricity prices are marginally higher with electrolysers whereas the optimal location of electrolysers is driven by a combination of residential heating demand and potential surplus power supplies at electricity nodes.
Methane Pyrolysis in a Liquid Metal Bubble Column Reactor for CO2-Free Production of Hydrogen
Oct 2023
Publication
In light of the growing interest in hydrogen as an energy carrier and reducing agent various industries including the iron and steel sector are considering the increased adoption of hydrogen. To meet the rising demand in energy-intensive industries the production of hydrogen must be significantly expanded and further developed. However current hydrogen production heavily relies on fossil-fuel-based methods resulting in a considerable environmental burden with approximately 10 tons of CO2 emissions per ton of hydrogen. To address this challenge methane pyrolysis offers a promising approach for producing clean hydrogen with reduced CO2 emissions. This process involves converting methane (CH4 ) into hydrogen and solid carbon significantly lowering the carbon footprint. This work aims to enhance and broaden the understanding of methane pyrolysis in a liquid metal bubble column reactor (LMBCR) by utilizing an expanded and improved experimental setup based on the reactor concept previously proposed by authors from Montanuniversitaet in 2022 and 2023. The focus is on investigating the process parameters’ temperature and methane input rate with regard to their impact on methane conversion. The liquid metal temperature exhibits a strong influence increasing methane conversion from 35% at 1150 ◦C to 74% at 1250 ◦C. In contrast the effect of the methane flow rate remains relatively small in the investigated range. Moreover an investigation is conducted to assess the impact of carbon layers covering the surface of the liquid metal column. Additionally a comparative analysis between the LMBCR and a blank tube reactor (BTR) is presented.
Can Hydrogen Production Be Economically Viable on the Existing Gas-Fired Power Plant Location? New Empirical Evidence
Apr 2023
Publication
The paper provides an economic model for the assessment of hydrogen production at the site of an existing thermal power plant which is then integrated into the existing gas grid. The model uses projections of electricity prices natural gas prices and CO2 prices as well as estimates of the cost of building a power-to-gas system for a 25-year period. The objective of this research is to calculate the yellow hydrogen production price for each lifetime year of the Power-to-gas system to evaluate yellow hydrogen competitiveness compared to the fossil alternatives. We test if an incentive scheme is needed to make this technology economically viable. The research also provides several sensitivity scenarios of electricity natural gas and CO2 price changes. Our research results clearly prove that yellow hydrogen is not yet competitive with fossil alternatives and needs incentive mechanisms for the time being. At given natural gas and CO2 prices the incentive for hydrogen production needs to be 52.90 EUR/MWh in 2025 and 36.18 EUR/MWh in 2050. However the role of hydrogen in the green transition could be very important as it provides ancillary services and balances energy sources in the power system.
A Physics Constrained Methodology for the Life Cycle Assessment of Sustainable Aviation Fuel Production
May 2024
Publication
Feedstock-to-fuel conversion or “Fuel Production” is a major contributor to greenhouse gas (GHG) emissions in life cycle assessment (LCA) of sustainable aviation fuels (SAF) from wastes. Here we construct and demonstrate an original mass and energy conserved chemically rigorous LCA methodology for the production of Hydroprocessed Esters and Fatty Acids-Synthetic Paraffinic Kerosene (HEFA-SPK) from Used Cooking Oil (UCO). This study proposes and demonstrates the use of; (i) the chemical composition of the UCO (ii) the ASTM properties of HEFA-SPK and (iii) the elemental mass and energy conserved reaction mechanism which converts one to the other as physical constraints for the specific LCA of any UCO derived HEFA-SPK. With application of these constraints the emissions embodied in UCO HEFA-SPK Fuel Production is found to range from 4.2 to 15.7 gCO2e/MJSAF depending on the renewability of the energy and hydrogen utilized. Imposition of (i)-(iii) as modelling constraints derives a HEFA-SPK yield of 49 mass% a priori. This finding aligns with experimental literature but brings attention to the higher yield estimations of 70–81% observed in current LCA tools. We show that this impacts the end LCA significantly as it adjusts allocation of emissions. A replication study of CORSIA’s (10.5 gCO2e/MJSAF) default core LCA value for Fuel Production quantifies the increase at +5.3 gCO2e/MJSAF or 15.8 gCO2e/MJSAF as total for Fuel Production. As the embodied emissions are significantly dependent on the specifics of the scenario assessed we highlight reporting a definitive GHG intensity for any UCO derived HEFA-SPK as generic will be inaccurate to an extent.
Optimal Capacity Configuration of Wind–Solar Hydrogen Storage Microgrid Based on IDW-PSO
Aug 2023
Publication
Because the new energy is intermittent and uncertain it has an influence on the system’s output power stability. A hydrogen energy storage system is added to the system to create a wind light and hydrogen integrated energy system which increases the utilization rate of renewable energy while encouraging the consumption of renewable energy and lowering the rate of abandoning wind and light. Considering the system’s comprehensive operation cost economy power fluctuation and power shortage as the goal considering the relationship between power generation and load assigning charging and discharging commands to storage batteries and hydrogen energy storage and constructing a model for optimal capacity allocation of wind–hydrogen microgrid system. The optimal configuration model of the wind solar and hydrogen microgrid system capacity is constructed. A particle swarm optimization with dynamic adjustment of inertial weight (IDW-PSO) is proposed to solve the optimal allocation scheme of the model in order to achieve the optimal allocation of energy storage capacity in a wind–hydrogen storage microgrid. Finally a microgrid system in Beijing is taken as an example for simulation and solution and the results demonstrate that the proposed approach has the characteristics to optimize the economy and improve the capacity of renewable energy consumption realize the inhibition of the fluctuations of power reduce system power shortage and accelerate the convergence speed.
Assessing the Sustainability of Liquid Hydrogen for Future Hypersonic Aerospace Flight
Dec 2022
Publication
This study explored the applications of liquid hydrogen (LH2 ) in aerospace projects followed by an investigation into the efficiency of ramjets scramjets and turbojets for hypersonic flight and the impact of grey blue and green hydrogen as an alternative to JP-7 and JP-8 (kerosene fuel). The advantage of LH2 as a propellant in the space sector has emerged from the relatively high energy density of hydrogen per unit volume enabling it to store more energy compared to conventional fuels. Hydrogen also has the potential to decarbonise space flight as combustion of LH2 fuel produces zero carbon emissions. However hydrogen is commonly found in hydrocarbons and water and thus it needs to be extracted from these molecular compounds before use. Only by considering the entire lifecycle of LH2 including the production phase can its sustainability be understood. The results of this study compared the predicted Life Cycle Assessment (LCA) emissions of the production of LH2 using grey blue and green hydrogen for 2030 with conventional fuel (JP-7 and JP-8) and revealed that the total carbon emissions over the lifecycle of LH2 were greater than kerosene-derived fuels.
Environmental Assessment of Hydrogen Utilization in Various Applications and Alternative Renewable Sources for Hydrogen Production: A Review
May 2023
Publication
Rapid industrialization is consuming too much energy and non-renewable energy resources are currently supplying the world’s majority of energy requirements. As a result the global energy mix is being pushed towards renewable and sustainable energy sources by the world’s future energy plan and climate change. Thus hydrogen has been suggested as a potential energy source for sustainable development. Currently the production of hydrogen from fossil fuels is dominant in the world and its utilization is increasing daily. As discussed in the paper a large amount of hydrogen is used in rocket engines oil refining ammonia production and many other processes. This paper also analyzes the environmental impacts of hydrogen utilization in various applications such as iron and steel production rocket engines ammonia production and hydrogenation. It is predicted that all of our fossil fuels will run out soon if we continue to consume them at our current pace of consumption. Hydrogen is only ecologically friendly when it is produced from renewable energy. Therefore a transition towards hydrogen production from renewable energy resources such as solar geothermal and wind is necessary. However many things need to be achieved before we can transition from a fossil-fuel-driven economy to one based on renewable energy
CO2 Effect on the Fatigue Crack Growth of X80 Pipeline Steel in Hydrogen-Enriched Natural Gas: Experiment vs Density Functional Theory Calculation
Sep 2023
Publication
The influence of hydrogen-enriched natural gas (HENG) and CO2 on the mechanical property of X80 pipeline steel were investigated via fatigue crack growth rate (FCGR) tests and density functional theory (DFT) calculations. The results show that the FCGR in H2 was slightly faster than that in HENG while it was slower than that in the N2/CO2/H2 mixtures. The enhanced FCGR by CO2 further increased with the increasing CO2 content. DFT calculation results show that the adsorbed CO2 on the iron surface significantly increased the migration rate of H atoms from surface to subsurface. This promotes the entry of hydrogen into the steel.
Risk Assessment of Explosion Accidents in Hydrogen Fuel-Cell Rooms Using Experimental Investigations and Computational Fluid Dynamics Simulations
Oct 2023
Publication
For the safe utilization and management of hydrogen energy within a fuel-cell room in a hydrogen-fueled house an explosion test was conducted to evaluate the potential hazards associated with hydrogen accident scenarios. The overpressure and heat radiation were measured for an explosion accident at distances of 1 2 3 5 and 10 m for hydrogen–air mixing ratios of 10% 25% 40% and 60%. When the hydrogen–air mixture ratio was 40% the greatest overpressure was 24.35 kPa at a distance of 1 m from the fuel-cell room. Additionally the thermal radiation was more than 1.5 kW/m2 which could cause burns at a distance of 5 m from the hydrogen fuel-cell room. Moreover a thermal radiation in excess of 1.5 kW/m2 was computed at a distance of 3 m from the hydrogen fuel-cell room when the hydrogen–air mixing ratio was 25% and 60%. Consequently an explosion in the hydrogen fuel-cell room did not considerably affect fatality levels but could affect the injury levels and temporary threshold shifts. Furthermore the degree of physical damage did not reach major structural damage levels causing only minor structural damage.
The Role of Negative Emissions Technologies in the UK's Net-zero Strategy
Jun 2024
Publication
The role of negative emissions technologies (NETs) in climate change mitigation remains contentious. Although numerous studies indicate significant carbon dioxide removal (CDR) requirements for Paris Agreement mitigation goals to be achieved others point out challenges and risks associated with high CDR strategies. Using a multiscale modeling approach we explore NETs’ potential for a single country the United Kingdom (UK). Here we report that the UK has cost-effective potential to remove 79 MtCO2 per year by 2050 rising to 126–134 MtCO2 per year with well-integrated NETs in industrial clusters. Results highlight that biomass gasification for hydrogen generation with CCS is emerging as a key NET despite biomass availability being a limiting factor. Moreover solid DACCS systems utilizing industrial waste heat integration offer a solution to offsetting increases in demand from transportation and industrial sectors. These results emphasize the importance of a multiscale whole-systems assessment for integrating NETs into industrial strategies.
Profitability of Hydrogen-Based Microgrids: A Novel Economic Analysis in Terms of Electricity Price and Equipment Costs
Oct 2023
Publication
The current need to reduce carbon emissions makes hydrogen use essential for selfconsumption in microgrids. To make a profitability analysis of a microgrid the influence of equipment costs and the electricity price must be known. This paper studies the cost-effective electricity price (EUR/kWh) for a microgrid located at ‘’La Rábida Campus” (University of Huelva south of Spain) for two different energy-management systems (EMSs): hydrogen-priority strategy and batterypriority strategy. The profitability analysis is based on one hand on the hydrogen-systems’ cost reduction (%) and on the other hand considering renewable energy sources (RESs) and energy storage systems (ESSs) on cost reduction (%). Due to technological advances microgrid-element costs are expected to decrease over time; therefore future profitable electricity prices will be even lower. Results show a cost-effective electricity price ranging from 0.61 EUR/kWh to 0.16 EUR/kWh for hydrogen-priority EMSs and from 0.4 EUR/kWh to 0.17 EUR/kWh for battery-priority EMSs (0 and 100% hydrogen-system cost reduction respectively). These figures still decrease sharply if RES and ESS cost reductions are considered. In the current scenario of uncertainty in electricity prices the microgrid studied may become economically competitive in the near future
Carbon-negative Hydrogen: Exploring the Techno-economic Potential of Biomass Co-gasification with CO2 Capture
Sep 2021
Publication
The hydrogen economy is receiving increasing attention as a complement to electrification in the global energy transition. Clean hydrogen production is often viewed as a competition between natural gas reforming with CO2 capture and electrolysis using renewable electricity. However solid fuel gasification with CO2 capture presents another viable alternative especially when considering the potential of biomass to achieve negative CO2 emissions. This study investigates the techno-economic potential of hydrogen production from large-scale coal/ biomass co-gasification plants with CO2 capture. With a CO2 price of 50 €/ton the benchmark plant using commercially available technologies achieved an attractive hydrogen production cost of 1.78 €/kg with higher CO2 prices leading to considerable cost reductions. Advanced configurations employing hot gas clean-up membrane-assisted water-gas shift and more efficient gasification with slurry vaporization and a chemical quench reduced the hydrogen production cost to 1.50–1.62 €/kg with up to 100% CO2 capture. Without contingencies added to the pre-commercial technologies the lowest cost reduces to 1.43 €/kg. It was also possible to recover waste heat in the form of hot water at 120 ◦C for district heating potentially unlocking further cost reductions to 1.24 €/kg. In conclusion gasification of locally available solid fuels should be seriously considered next to natural gas and electrolysis for supplying the emerging hydrogen economy.
Distributional Trends in the Generation and End-Use Sector of Low-Carbon Hydrogen Plants
Mar 2023
Publication
This paper uses established and recently introduced methods from the applied mathematics and statistics literature to study trends in the end-use sector and the capacity of low-carbon hydrogen projects in recent and upcoming decades. First we examine distributions in plants over time for various end-use sectors and classify them according to metric discrepancy observing clear similarity across all industry sectors. Next we compare the distribution of usage sectors between different continents and examine the changes in sector distribution over time. Finally we judiciously apply several regression models to analyse the association between various predictors and the capacity of global hydrogen projects. Across our experiments we see a welcome exponential growth in the capacity of zero-carbon hydrogen plants and significant growth of new and planned hydrogen plants in the 2020’s across every sector.
Technological Pathways for Decarbonizing Petroleum Refining
Sep 2021
Publication
This paper discusses the technical specifications of how U.S. petroleum refineries can reduce facility emissions and shift to produce low-carbon fuels for hard to abate sectors by utilizing existing innovative technologies.
Techno-Economic Analysis of a Hydrogen-Based Power Supply Backup System for Tertiary Sector Buildings: A Case Study in Greece
May 2023
Publication
In view of the European Union’s strategy on hydrogen for decarbonization and buildings’ decarbonization targets the use of hydrogen in buildings is expected in the future. Backup power in buildings is usually provided with diesel generators (DGs). In this study the use of a hydrogen fuel cell (HFC) power supply backup system is studied. Its operation is compared to a DG and a techno-economic analysis of the latter’s replacement with an HFC is conducted by calculating relevant key performance indicators (KPIs). The developed approach is presented in a case study on a school building in Greece. Based on the school’s electricity loads which are calculated with a dynamic energy simulation and power shortages scenarios the backup system’s characteristics are defined and the relevant KPIs are calculated. It was found that the HFC system can reduce the annual CO2 emissions by up to 400 kg and has a lower annual operation cost than a DG. However due to its high investment cost its levelized cost of electricity is higher and the replacement of an existing DG is unviable in the current market situation. The techno-economic study reveals that subsidies of around 58–89% are required to foster the deployment of HFC backup systems in buildings.
Just Trade-offs in a Net-zero Transition and Social Impact Assessment
Apr 2024
Publication
Countries around the world are prioritising net zero emissions to meet their Paris Agreement goals. The demand for social impact assessment (SIA) is likely to grow as this transition will require investments in decarbonisation projects with speed and at scale. There will be winners and losers of these projects because not everyone benefits the same; and hence trade-offs are inevitable. SIAs therefore should focus on understanding how the risks and benefits will be distributed among and within stakeholders and sectors and enable the identification of trade-offs that are just and fair. In this study we used a hypothetical case of large-scale hydrogen production in regional Australia and engaged with multi-disciplinary experts to identify justice issues in transitioning to such an industry. Using Rawlsian theory of justice as fairness we identified several tensions between different groups (national regional local inter and intra-communities) and sectors (environmental and economic) concerning the establishment of a hydrogen industry. These stakeholders and sectors will be disproportionately affected by this establishment. We argue that Rawlsian principles of justice would enable the practice of SIA to identify justice trade-offs. Further we conceptualise that a systems approach will be critical to facilitate a wider participation and an agile process for achieving just trade-offs in SIA.
Study Progress on the Pipeline Transportation Safety of Hydrogen-blended Natural Gas
Oct 2023
Publication
The core of carbon neutrality is the energy structure adjustment and economic structure transformation. Hydrogen energy as a kind of clean energy with great potential has provided important support for the implementation of the carbon peaking and carbon neutrality goals of China. How to achieve the large-range safe and reliable transportation of hydrogen energy with good economic benefits remains the key to limiting the development of hydrogen energy. Using the existing natural gas pipeline network can save many infrastructure construction costs to transport hydrogen-blended natural gas. However due to great differences in the physical and chemical properties of hydrogen and natural gas the transportation of hydrogen-blended natural gas will bring safety risks to the pipeline network operation to a certain extent. In this paper the influences of pipeline transportation of hydrogen-blended natural gas on existing pipelines and parts along the pipelines are analyzed from two aspects of pipe compatibility and hydrogen blending ratio and the safety of pipeline transportation of hydrogen-blended natural gas is summarized from two aspects of leakage and accumulation as well as combustion and explosion. In addition the integrity management of hydrogen-blended natural gas pipelines and the existing relevant standards and specifications are reviewed. This paper points out the shortcomings of current hydrogen-blended natural gas pipeline transportation and gives some relevant suggestions. Hopefully this work can provide a useful reference for developing a hydrogen-blended natural gas pipeline transportation system.
A Priority-based Failure Mode and Effects Analysis (FMEA) Method for Risk Assessment of Hydrogen Applications Onboard Maritime Vessels
Sep 2023
Publication
The maritime industry is gaining momentum towards a more decarbonized and sustainable path. However most of the worldwide fleet still relies on fossil fuels for power producing harmful environmental emissions. Hydrogen as a clean fuel is a promising alternative but its unique properties pose significant safety challenges. For instance hydrogen has a wide flammability range inherently increasing the risk of ignition. Moreover its comparatively low volumetric energy density necessitates faster filling rates and larger volumes for bunkering and onboard storage leading to higher risk rates. Therefore the use of hydrogen for maritime applications requires the development of specialized riskbased approaches according to safety engineering principles and techniques. The key safety implications are discussed and reviewed with focus on onboard hydrogen storage handling and refueling while a priority-based Failure Mode and Effects Analysis (FMEA) method for risk assessment is proposed based on the revised guidelines of Automotive Industry Action Group (AIAG) and German Association of the Automotive Industry (VDA). The revised AIAG-VDA FMEA method replaces the conventional Risk Priority Number (RPN) with a new Action Priority (AP) rating enabling the prioritization of recommended actions for risk reduction. The paper aims to a more profound understanding of the safety risks associated with hydrogen as a maritime fuel and to provide an effective risk assessment method for hydrogen applications onboard maritime vessels.
No more items...