Publications
Off-Design Analysis of Power-to-Gas System Based on Solid-Oxide Electrolysis with Nominal Power of 25 kW
Mar 2025
Publication
The deployment of large installed power capacities from intermittent renewable energy sources requires balancing to ensure the steady and safe operation of the electrical grid. New methods of energy storage are essential to store excess electrical power when energy is not needed and later use it during high-demand periods both in the short and long term. Power-to-Gas (P2G) is an energy storage solution that uses electric power produced from renewables to generate gas fuels such as hydrogen which can be stored for later use. Hydrogen produced in this manner can be utilized in energy storage systems and in transportation as fuel for cars trams trains or buses. Currently most hydrogen is produced from fossil fuels. Solid-oxide electrolysis (SOE) offers a method to produce clean hydrogen without harmful emissions being the most efficient of all electrolysis methods. The objective of this work is to determine the optimal operational parameters of an SOE system such as lower heating value (LHV)-based efficiency and total input power based on calculations from a mathematical model. The results are provided for three different operating temperature levels and four different steam utilization ratios. The introductory chapter outlines the motivation and background of this work. The second chapter explains the basics of electrolysis and describes its different types. The third chapter focuses on solid-oxide electrolysis and electrolyzer systems. The fourth chapter details the methodology including the mathematical formulations and software used for simulations. The fifth chapter presents the results of the calculations with conclusions. The final chapter summarizes this work.
Enhancing Diesel Engine Performance Through Hydrogen Addition
May 2025
Publication
This study evaluates the potential of hydrogen as a clean additive to conventional diesel fuel. Experiments were carried out on a single-cylinder air-cooled diesel engine under half- and full-load conditions across engine speeds ranging from 1000 to 3000 rpm. Hydrogen produced on site via a proton exchange membrane electrolyser was supplied to the engine at a constant flow rate of 0.5 L/min. Compared to pure diesel the hydrogen–diesel blend reduced specific fuel consumption by 10% and increased brake thermal efficiency by 10% at full load. Emissions of carbon monoxide and carbon dioxide decreased by 13% and 17% respectively at half load. Additionally nitrogen oxide emissions dropped by 17%. These results highlight the potential of hydrogen to improve combustion efficiency while significantly mitigating emissions offering a viable transitional solution for cleaner power generation using existing diesel infrastructure.
Unlocking Sweden's Hydrogen Export Potential: A Techno-Economic Analysis of Compressed Hydrogen and Chemical Carriers
Jun 2025
Publication
Sweden with its abundant access to low-cost fossil-free electricity is well-positioned to become a significant hydrogen exporter. This study presents a techno-economic analysis of different hydrogen carriers—compressed hydrogen methanol ammonia and liquid organic hydrogen carriers (LOHC)—for export applications. Using the Northern Green Crane Project as a reference for scale the analysis focuses on cost optimization for hydrogen production storage and transportation. A linear programming model is developed to optimize capacities and operational strategies for each carrier ensuring a fair basis for comparison. Results indicate that LOHC and ammonia are competitive with compressed hydrogen showing particular promise for larger-scale long-distance deliveries. These findings offer valuable insights for policymakers and industry stakeholders developing Sweden’s hydrogen export strategies.
A Coordinated Control Strategy for a Coupled Wind Power and Energy Storage System for Hydrogen Production
Apr 2025
Publication
Hydrogen energy as a medium for long-term energy storage needs to ensure the continuous and stable operation of the electrolyzer during the production of green hydrogen using wind energy. In this paper based on the overall model of a wind power hydrogen production system an integrated control strategy aimed at improving the quality of wind power generation smoothing the hydrogen production process and enhancing the stability of the system is proposed. The strategy combines key measures such as the maximum power point tracking control of the wind turbine and the adaptive coordinated control of the electrochemical energy storage system which can not only efficiently utilize the wind resources but also effectively ensure the stability of the bus voltage and the smoothness of the hydrogen production process. The simulation results show that the electrolyzer can operate at full power to produce hydrogen while the energy storage device is charging when wind energy is sufficient; the electrolyzer continuously produces hydrogen according to the wind energy when the wind speed is normal; and the energy storage device will take on the task of maintaining the operation of the electrolyzer when the wind speed is insufficient to ensure the stability and reliability of the system.
Selection of a Green Hydrogen Production Facility Location with a Novel Heuristic Approach
Mar 2025
Publication
The production of green hydrogen the cleanest energy source plays a crucial role in enhancing the efficiency of renewable energy systems by utilizing surplus energy that would otherwise be wasted. With the global shift towards sustainability and the rising adoption of renewable energy sources green hydrogen is gaining significant importance as both an energy carrier and a storage solution. However determining the optimal locations for green hydrogen production facilities remains a complex challenge due to the interplay of technical economic logistical and environmental factors. This study introduces the City Location Evaluation Optimization for Green Hydrogen (CELO_GH) algorithm a novel heuristic approach designed to address this challenge. Unlike conventional multi-criteria decision-making (MCDM) models CELO_GH dynamically evaluates cities by considering renewable energy surplus proximity to industrial hydrogen demand port and pipeline accessibility and economic viability. A case study conducted in Turkey demonstrates the effectiveness of the approach by identifying optimal cities for green hydrogen production based on real-world energy and infrastructure data. The problem was also solved with the genetic algorithm and the results were compared and it was seen that the proposed heuristic provides the lowest cost location selection. A geographically flexible methodology as the proposed algorithm can be applied globally to regions with high renewable energy potential ensuring scalability and adaptability for future energy transition strategies. The results provide valuable insights for policy-makers energy investors and industrial planners aiming to optimize green hydrogen infrastructure while ensuring cost efficiency and sustainability.
Holding the Invisible: Advanced Materials for Hydrogen Storage
Aug 2025
Publication
Hydrogen storage remains the main barrier to the broader use of hydrogen as an energy carrier despite hydrogen’s high energy density and clean combustion. This study presents a comparative evaluation of conventional and emerging storage methods integrating thermodynamic kinetic economic and environmental metrics to assess capacity efficiency cost and reversibility. Physisorption analysis reveals that metal organic frameworks can achieve storage capacities up to 14.0 mmol/g. Chemical storage systems are evaluated including nanostructured MgH2 (7.6 wt%) catalyzed reversible complex hydrides liquid organic hydrogen carriers and clathrate hydrates. Techno-economic analysis shows storage costs from $500–700/kg H2 to $30–50/kg H2 with energy efficiencies of 50%–90%. Life cycle assessment identifies manufacturing as the primary source of emissions with carbon footprints varying from 150 to 2057 kg CO2 -eq/kg H2 . Cryo-compressed is the most practical transportation option while metal hydrides suit stationary use. This study provides a quantitative foundation to guide material selection and system design for next-generation hydrogen storage technologies.
Design and Simulation of an Integrated Process for the Co-Production of Power, Hydrogen, and DME by Using an Electrolyzer’s System
May 2025
Publication
The increasing global demand for clean energy and sustainable industrial processes necessitates innovative approaches to energy production and chemical synthesis. This study proposed and simulated an innovative integrated system for the co-production of power hydrogen and dimethyl ether (DME) combining the high-efficiency Allam– Fetvedt cycle with co-electrolysis and indirect DME synthesis. The Allam–Fetvedt cycle generated electricity while capturing CO2 which along with water was used in solid oxide electrolyzers (SOEs) to produce syngas via co-electrolysis. The resulting syngas was converted to methanol and subsequently to DME. Aspen HYSYS was used to model and simulate the process and heat/mass integration strategies were implemented to reduce energy demand and optimize resource utilization. The proposed integrated process enabled an annual production of 980021 metric tons of DME 189435 metric tons of hydrogen and 7698.27 metric tons of methanol. The energy efficiency of the Allam–Fetvedt cycle reached 55% and heat integration reduced the system’s net energy demand by 14.22%. Despite the high energy needs of the electrolyzer system (81.28% of net energy) the overall energy requirement remained competitive with conventional methods. Carbon emissions per kilogram of DME were reduced from 1.16 to 0.77 kg CO2 through heat integration and can be further minimized to 0.0308 kg CO2/kg DME (near zero) with renewable electrification. Results demonstrated that 96% of CO2 was recycled within the Allam–Fetvedt cycle and the rest (the 4% of CO2) was captured and converted to syngas achieving net-zero carbon emissions. This work presents a scalable and sustainable pathway for integrated clean energy and chemical production advancing toward industrial net-zero targets.
Large-scale Experimental Study of Open, Impinging and Confined Hydrogen Jet Fires
Mar 2025
Publication
Hydrogen tanks used in transportation are equipped with thermal pressure relief devices to prevent a tank rapture in case of fire exposure. The opening of the pressure relief valve in such a scenario would likely result in an impinging and (semi-) confined hydrogen jet fire. Therefore twelve largescale experiments of hydrogen jet fires and one large-scale propane reference experiment have been conducted with various degrees of confinement orientations of the jet and distances from the nozzle to the impinging surface. Infrared and visible light videos temperatures heat fluxes and mass flow rate of hydrogen or propane were recorded in each experiment. It was found that the hydrogen flame can be visible under certain conditions. The main difference between an open impinging jet and an enclosed impinging jet fire is the extent of the high-temperature region in the steel target. During the impinging jet fire test 51% of the exposed target area exceeded 400C while 80% of the comparable area exceeded 400C during the confined jet fire test. A comparison was also made to an enclosed propane jet fire. The temperature distribution during the propane fire was more uniform than during the hydrogen jet fire and the localized hot spot in the impact region as seen in the hydrogen jet fires was not recorded.
Comparative Life Cycle Assessment of Hydrogen Production via Biogas Reforming and Agricultural Residue Gasification
Apr 2025
Publication
Hydrogen (H2) production from biomass has emerged as a promising alternative to fossil-based pathways addressing the global demand for low-carbon energy solutions. This study compares the environmental impacts of two biomass-based H2 production processes biogas reforming and agricultural residue gasification through a life cycle assessment (LCA). Using real-world data from the literature the analysis considered key system boundaries for each process including biogas production reforming and infrastructure for the former and biomass cultivation syngas generation and offgas management for the latter. Environmental impacts were evaluated using SimaPro software (Version 9.4) and the ReCiPe midpoint (H) method. The results revealed that biogas reforming emits approximately 5.047 kg CO2-eq per kg of H2 which is 4.89 times higher than the emissions from agricultural residue gasification (1.30 kg CO2-eq/kg H2) demonstrating the latter’s superior environmental performance. Gasification consumes fewer fossil resources (3.20 vs. 10.42 kg oil-eq) and poses significantly lower risks to human health (1.51 vs. 23.28 kg 14-DCB-eq). Gasification water consumption is markedly higher (5.37 compared to biogas reforming (0.041 m3/kg H2)) which is an important factor to consider for sustainability. These findings highlight gasification as a more sustainable H2 production method and emphasize its potential as an eco-friendly solution. To advance sustainability in energy systems integrating socio-economic studies with LCA is recommended alongside prioritizing agricultural residue gasification for hydrogen production.
Study of the Hydrogen Influence on the Combustion Parameters of Diesel Engine
Apr 2025
Publication
The article presents the results of an experimental study on the influence of hydrogen as gaseous fuel on the combustion process parameters of a single-cylinder diesel engine operating in dual-fuel mode. The study is conducted at an average engine speed of n = 2000 min⁻ 1 four engine load levels and two different diesel fuel injection timing angles. Indicator diagrams are recorded for each operating mode at varying hydrogen mass fractions in the total fuel supplied to the engine. The data from the indicator diagrams are processed using a developed software that enables the determination of combustion process parameters. The analysis of the experimental results focuses on changes in cylinder temperature the coefficients of total and active heat release the rate of heat release the duration of the combustion process phases and other parameters as a function of the hydrogen mass fraction in the total fuel mixture.
Workshop with Hydrogen Cells: A Pedagogical and Motivating Experience for the Study of Unconventional Forms of Energy Generation in Pre-School Students in Panama City
May 2025
Publication
It is essential to promote the study of non-conventional forms of electrical energy generation to create a resilient society with awareness of and the capacity for development and experimentation to face environmental conservation challenges especially from secondary education. From a mixed methodological approach this study presents workshops with hydrogen cells to strengthen educational skills and boost the interest of 44 high school students. The methodology followed five main points: carrying out a pre-evaluation to measure prior knowledge an induction related to concepts of electronics and hydrogen cells tests with a hydrogen kit the presentation of final projects post-evaluation of knowledge and the application of a survey of motivation. Observation experimentation analysis and dissemination of results helped strengthen students’ theoretical practical and scientific knowledge. These activities awakened their interest in this type of technology as evidenced in the results of the evaluations surveys and project quality. This demonstrates the validity of hydrogen cell workshops as a valuable technique to enhance learning and motivate students to study unconventional forms of electrical energy generation.
Assessing Uninstalled Hydrogen-Fuelled Retrofitted Turbofan Engine Performance
Mar 2025
Publication
Hydrogen as fuel in civil aviation gas turbines is promising due to its no-carbon content and higher net specific energy. For an entry-level market and cost-saving strategy it is advisable to consider reusing existing engine components whenever possible and retrofitting existing engines with hydrogen. Feasible strategies of retrofitting state-of-theart Jet A-1 fuelled turbofan engines with hydrogen while applying minimum changes to hardware are considered in the present study. The findings demonstrate that hydrogen retrofitted engines can deliver advantages in terms of core temperature levels and efficiency. However the engine operability assessment showed that retrofitting with minimum changes leads to a ~5% increase in the HP spool rotational speed for the same thrust at take-off which poses an issue in terms of certification for the HP spool rotational speed overspeed margin.
Review of Electrochemical Systems for Grid Scale Power Generation and Conversion: Low- and High-Temperature Fuel Cells and Electrolysis Processes
May 2025
Publication
This review paper presents an overview of fuel cell electrochemical systems that can be used for clean large-scale power generation and energy storage as global energy concerns regarding emissions and greenhouse gases escalate. The fundamental thermochemical and operational principles of fuel cell power generation and electrolyzer technologies are discussed with a focus on high-temperature solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs) that are best suited for grid scale energy generation. SOFCs and SOECs share similar promising characteristics and have the potential to revolutionize energy conversion and storage due to improved energy efficiency and reduced carbon emissions. Electrochemical and thermodynamic foundations are presented while exploring energy conversion mechanisms electric parameters and efficiency in comparison with conventional power generation systems. Methods of converting hydrocarbon fuels to chemicals that can serve as fuel cell fuels are also presented. Key fuel cell challenges are also discussed including degradation thermal cycling and long-term stability. The latest advancements including in materials selection research design and manufacturing methods are also presented as they are essential for unlocking the full potential of these technologies and achieving a sustainable near zero-emission energy future.
Comprehensive Review of Hydrogen and Tyre Pyrolysis Oil as Sustainable Fuels for HCCI Engines
Aug 2025
Publication
This review article provides an overview of the use of hydrogen and tyre pyrolysis oil as fuels for homogeneous charge compression ignition (HCCI) engines. It discusses their properties the ways they are produced and their sustainability which is of particular importance in the present moment. Both fuels have certain advantages but also throw up many challenges which complicate their application in HCCI engines. The paper scrutinises engine performance with hydrogen and tyre pyrolysis oil respectively and compares the fuels’ emissions a crucial focus from an environmental perspective. It also surveys related technologies that have recently emerged their effects and environmental impacts and the rules and regulations that are starting to become established in these areas. Furthermore it provides a comparative discussion of various engine performance data in terms of combustion behaviour emission levels fuel economy and potential costs or savings in real terms. The analysis reveals significant research gaps and recommendations are provided as to areas for future study. The paper argues that hydrogen and tyre pyrolysis oil might sometimes be used together or in complementary ways to benefit HCCI engine performance. The importance of life-cycle assessment is noted acknowledging also the requirements of the circular economy. The major findings are summarised with some comments on future perspectives for the use of sustainable fuels in HCCI engines. This review article provides a helpful reference for researchers working in this area and for policymakers concerned with establishing relevant legal frameworks as well as for companies in the sustainable transport sector.
Thermo-economic Analysis of a Novel P2X Polygeneration System for Hydrogen, Ammonia, and Methanol Production with Near-zero Emissions
Jun 2025
Publication
This paper presents a comprehensive thermo-economic analysis of a novel Power-to-X (P2X) polygeneration system designed for the production of hydrogen ammonia and methanol with near-zero CO2 emissions. The system integrates an air separation unit (ASU) a direct oxy-combustor (DOC) powered by natural gas combined with a supercritical carbon dioxide (sCO2) power cycle water electrolyzer (WE) a Haber-Bosch process (HBP) and a methanol production unit (MPU). The system is investigated in four configurations: ASU + DOC-sCO2 (S1) ASU + DOC-sCO2 + WE (S2) ASU + DOC-sCO2 + WE + HBP (S3) and ASU + DOC-sCO2 + WE + HBP + MPU (S4) each contributing to improve energy efficiency and reduced emissions. Simulation results show that the overall system efficiency reaches 56 % improving from 45 % to 56 % across different configurations. The system’s levelized cost of hydrogen (LCOH) decreases significantly from $1.70/kg to $0.80/kg and the levelized cost of electricity (LCOE) decreases from 4.30 ¢/kWh to 3.30 ¢/kWh. CO2 emissions are reduced from 200 gCO2/ MWe to 145 gCO2/MWe with the CO2 reduction rate improving from 89 % to 94 %. These results demonstrate the economic viability and environmental sustainability of the proposed P2X system paving the way for industrial decarbonization and large-scale deployment in future energy infrastructures.
Hydrogen Production in Integration with CCUS: A Realistic Strategy towards Net Zero
Jan 2025
Publication
It is believed that hydrogen will play an essential role in energy transition and achieving the net-zero target by 2050. Currently global hydrogen production mostly relies on processing fossil fuels such as coal and natural gas commonly referred to as grey hydrogen production while releasing substantial amounts of carbon dioxide (CO2). Developing economically and technologically viable pathways for hydrogen production while eliminating CO2 emissions becomes paramount. In this critical review we examine the common grey hydrogen production techniques by analyzing their technical characteristics production efficiency and costs. We further analyze the integration of carbon capture utilization and storage (CCUS) technology establishing the zero-carbon strategy transiting from grey to blue hydrogen production with CO2 capture and either utilized or permanently stored. Today grey hydrogen production exhibits technological diversities with various commercial maturities. Most methods rely on the effectiveness of catalysts necessitating a solution to address catalyst fouling and sintering in practice. Although CCUS captures utilizes or stores CO2 during grey hydrogen production its wide application faces multiple challenges regarding the technological complexity cost and environmental benefits. It is urgent to develop technologically mature low-cost and low-energy-consumption CCUS technology implementing extensive large-scale integrated pilot projects.
Upskilling Plumber Gasfitters for Hydrogen: An Empirical Study using the Theory of Planned Behavior
Dec 2023
Publication
Hydrogen has become an important component of the global transition to zero-carbon economies. Low-carbon and green hydrogen gas and fuel cell technology for domestic household use will depend on skilled practi tioners particularly gasfitters to convert install and maintain hydrogen-based appliances. Upskilling gasfitters to work with hydrogen is critical to transitioning from natural gas to hydrogen for heating and cooking. Yet limited research exists on training and upskilling trade practitioners in the context of renewable energy and lowcarbon technologies. This paper makes a novel contribution to research on upskilling for renewable and lowcarbon technologies by drawing on the findings from a survey of 1001 plumbers in Australia. The survey designed using the Theory of Planned Behavior aimed to predict behaviors regarding hydrogen training and ascertain social and structural enablers for such behavior. The results show that plumbers have limited awareness of hydrogen yet have positive attitudes towards upskilling to work with the low-carbon fuel. Perceived benefits to business sustainability customer service and safety underpin the positive attitudes. The research shows that while plumbers are enthusiastic about upskilling for hydrogen upskilling policies and programs must ensure key stakeholders who inform plumbers’ ongoing practice are on board and informed about hydrogen training opportunities.
Risk-based Approach for Safe Terminal Operation and Route Planning of On-road Hydrogen Distribution Network
Dec 2024
Publication
Hydrogen is a critical energy carrier in the transition to sustainable energy but its properties such as high diffusivity wide flammability range and low ignition energy present unique safety challenges during transportation. This study aims to improve on-road hydrogen transport safety by developing a dynamic traffic-dependent risk assessment framework for both Compressed Gaseous Hydrogen (CGH₂) tube trailers and Liquid Hydrogen (LH₂). A key advancement in this study is the use of dynamic occupancy data capturing variations in traffic density throughout the day instead of relying on average traffic density to estimate ignition source distribution. Additionally a qualitative Hazard and Operability (HAZOP) study was conducted for a potential central distribution terminal in Fort Saskatchewan Alberta Canada to systematically identify process hazards during the loading of hydrogen on-road carriers. Results reveal that the ignition probability for minor CGH2 leaks significantly increases with road occupancy rising from 0.003 at 0.1% to 0.149 at 5% emphasizing the importance of scheduling transport during off-peak hours Vapor Cloud Explosions (VCE) from LH2 extend up to 257 meters compared to 122.42 meters for CGH₂ underscoring the need for stricter land-use planning in densely populated areas. The analysis suggests prioritizing lower-traffic rural routes which exhibit lower release frequencies (e.g. 1.80E-05 per year) over high-traffic urban routes with higher release frequencies (e.g. 6.47E-05 per year).
Long Duration Energy Storage Usin gHydrogen in Metal−Organic Frameworks: Opportunities and Challenges
May 2024
Publication
Materials-based H2 storage plays a critical role infacilitating H2 as a low-carbon energy carrier but there remainslimited guidance on the technical performance necessary for specificapplications. Metal−organic framework (MOF) adsorbents haveshown potential in power applications but need to demonstrateeconomic promises against incumbent compressed H2 storage.Herein we evaluate the potential impact of material propertiescharge/discharge patterns and propose targets for MOFs’ deploy-ment in long-duration energy storage applications including backupload optimization and hybrid power. We find that state-of-the-artMOF could outperform cryogenic storage and 350 bar compressedstorage in applications requiring ≤8 cycles per year but need ≥5 g/Lincrease in uptake to be cost-competitive for applications thatrequire ≥30 cycles per year. Existing challenges include manufacturing at scale and quantifying the economic value of lower-pressure storage. Lastly future research needs are identified including integrating thermodynamic effects and degradation mechanisms.
Strategies for Decarbonizing the Aviation Sector: Evaluating Economic Competitiveness of Green Hydrogen Value Chains - A Case Study in France
Dec 2024
Publication
Even if the aviation sector only accounts for 2% of global energy-related CO2 emissions and is the most challenging sector to decarbonize. As aviation demand grows and the need for sustainable jet fuels becomes urgent green hydrogen could substitute conventional fossil fuels thereby enabling carbon-free flights. This study investigates a techno-economic analysis of onsite versus off-site green hydrogen supply chains. A case study at the Toulouse-Blagnac airport (Europe’s first station for the production and distribution of renewable hydrogen) in France is developed to meet commercial aviation's hydrogen fuel demand between 2025 and 2050. Demand of hydrogen is projected based on the trend of jet fuel consumption. First the cost of solar-based renewable electricity is estimated at the two green hydrogen production sites using levelized cost of electricity production. Second levelized cost of hydrogen (LCOH) is evaluated for three value chain scenarios: one on-site (Toulouse airport) and two off-site (Marseille) for gaseous and cryogenic transportation of liquid hydrogen (LH2). A relative cost advantage is shown for the off-site case with cryogenic truck transportation at LCOH of €9.43/kg.LH2. This study also reveals the importance of electricity price investment costs operation costs economies of scale and transportation distance in different scenarios.
No more items...