Publications
Decarbonizing Arctic Mining Operations with Wind-Hydrogen Systems: Case Study of Raglan Mine
Oct 2025
Publication
This study evaluates the techno-economic feasibility of integrating wind power with hydrogen-based storage to decarbonize the Raglan Mine in northern Canada. Using HOMER simulations with real 2021 operational data six progressive scenarios were modeled ranging from partial substitution of diesel generators to complete site-wide electrification including heating transport and mining equipment. Results show that complete decarbonization (Scenario 6) is technically achievable and could avoid up to 143000 tCO2eq annually (~2.15 Mt over 15 years) but remains economically prohibitive under current technology costs. In contrast Scenario 2 Case 2 which combines solid oxide fuel cells with thermal charge controllers emerges as the most viable near-term pathway avoiding ~61000 tCO2eq annually (~0.91 Mt over 15 years) while achieving improved return on investment. A qualitative multi-criteria framework highlights this configuration as the best trade-off between technical feasibility environmental performance and economic viability. At the same time complete decarbonization remains a longer-term target contingent on cost reductions and policy support. Overall the findings provide clear evidence that hydrogen storage when coupled with wind power can deliver substantial and measurable decarbonization benefits for Arctic mining operations.
Innovative Applications of Single-atom Catalysts in MgH2/Mg System to Build High-efficiency Hydrogen Storage
Aug 2025
Publication
MgH2 shows significant potential for a solid-state hydrogen storage medium due to the advantages of high hydrogen capacity excellent reversibility and low cost. However its large-scale application still requires overcoming significant thermodynamic and kinetic hurdles. Catalyst design and optimization enhancements are crucial for the hydrogen storage properties of MgH2 wherein single-atom catalysts characterized by their small size and high proportion of unsaturated coordination sites have recently demonstrated a significant advance and considerable promise in this regard. This review presents recent progress on state-of-the-art single-atom catalysts for enhancing MgH2 hydrogen storage examining both supported and unsupported catalyst types i.e. transition metal @ N-modified carbon materials and transition metal @ transition metal compounds and metallene-derived compounds and single-atom alloys respectively. We systematically discussed the single-atom catalysts in MgH2 hydrogen storage systems focusing on synthesis strategies characterization techniques catalytic mechanisms as well as existing challenges and future perspectives. We aimed to provide a comprehensive and cohesive understanding for researchers in the field and promote the development of single-atom catalysts and their significant optimization of the hydrogen storage performance of MgH2.
Effect of Electrochemical Hydrogen Charging on the Notch Tensile Properties of Natural Gas Transportation Pipeline Steel with Electroless-Plated Coatings and Their Adhesiveness Characterization
Sep 2025
Publication
Traditional natural gas transportation pipeline steels such as API 5L X42 grade and the higher grades are currently receiving a lot of attention in terms of their potential implementation in hydrogen transmission infrastructure. However the microstructural constitution of steels with a ferrite phase and the presence of welds with their non-polyhedral “sharp” microstructures acting as structural notches make these steels prone to hydrogen embrittlement (HE). In this work the notch tensile properties of copper- or nickel–phosphoruscoated API 5L X42 grade pipeline steel were studied in both the non-hydrogenated and electrochemically hydrogen-charged conditions in order to estimate anticipated protective effects of the coatings against HE. Both the Cu and Ni–P coatings were produced using conventional coating solutions for electroless plating. To study the material systems’ HE sensitivity electrochemical hydrogenation of cylindrical circumferentially V-notched tensile specimens was performed in a solution of hydrochloric acid with the addition of hydrazine sulfate. Notch tensile tests were carried out for the uncoated steel Cu-coated steel and Ni–P-coated steel at room temperature. The HE resistance was evaluated by determination of the hydrogen embrittlement index (HEI) in terms of relative changes in notch tensile properties related to the non-hydrogenated and hydrogen-charged material conditions. The results showed that pure electroless deposition of both coatings induced some degree of HE likely due to the presence of hydrogen ions in the coating solutions used and the lower surface quality of the coatings. However after the electrochemical hydrogen charging the coated systems showed improved HE resistance (lower HEIRA values) compared with the uncoated material. This behavior was accompanied by the hydrogen-induced coatings’ deterioration including the occurrence of superficial defects such as bubbling flocks and spallation. Thus further continuing research is needed to improve the coatings’ surface quality and long-term durability including examination of their performance under pressurized hydrogen gas charging conditions.
Fuel Cells: A Technical, Environmental, and Economic Outlook
Dec 2024
Publication
In the pursuit of establishing a sustainable fuel cell (FC) energy system this review highlights the necessity of examining the operational principles technical details environmental consequences and economic concerns collectively. By adopting an integrated approach the review research into various fuel cells types extending their applications beyond transportation and evaluating their potential for seamless integration into sustainable practices. A detailed analysis of the technical aspects including FC membranes performance and applications is presented. The environmental impact of hydrogen generation through fuel cell/electrolyzer is quantitatively assessed emphasizing a comparative emission footprint against traditional hydrogen generation methods. Economic considerations of fuel cell technology adoption are explored through an extensive examination of market growth and forecasts and investments into the FC systems. Some flagship commercial projects of FC technology are also discussed along with their future prospective. The article concludes with a thorough analysis of challenges associated with FC adoption encompassing membrane research performance hurdles infrastructure development and application-specific challenges. This all-round review serves as an indispensable tool for academicians and policymakers providing a directed and comprehensive FC perspective.
Green Hydrogen Potential Assessment in Ghana: Application of PEM Electrolysis Process and Geospatial-multi-criteria Approach
Sep 2023
Publication
With green hydrogen gaining traction as a viable sustainable energyoption the present study explores the potential of producing greenhydrogen from wind and solar energy in Ghana. The study combinedthe use of geospatial multi-criteria approach and PEM electrolysisprocess to estimate the geographical and technical potential of theselected two renewable resources. The study also included anassessment of potential areas for grid integration. Technologyspecifications of a monocrystalline solar PV module and 1 MW windturbine module were applied. Results of the assessment show thatabout 85% of the total land area in the country is available for greenhydrogen projects. Technically capacities of ∼14196.21 Mt of greenhydrogen using solar and ∼10123.36 Mt/year from wind energy can beproduced annually in the country. It was also observed that someregions especially regions in the northern part of the country eventhough showed the most favourable locations for solar-based greenhydrogen projects with technical potential of over 1500 Mt/year theseregions may not qualify for a grid connected system based on thecurrent electrification policy of the country due to the regions’ lowpopulation density and distance from the power grid network threshold.
Technoeconomic Optimisation and Sentivity Analysis of Off-grid Hybrid Renewable Energy Systems: A Case Study for Sustainable Energy Solutions in Rural India
Dec 2024
Publication
In the twenty-first century global energy consumption is rapidly increasing particularly in emerging nations hastening the depletion of fossil fuel reserves and emphasizing the vital need for sustainable and renewable energy sources. This study aims to analyze hybrid renewable energy systems (HRESs) that use solid waste to generate power focusing on difficulties linked to intermittent renewable sources using a techno-economic framework. Employing the HOMER Pro software prefeasibility analysis is performed to meet the energy needs of an Indian community. System architecture optimization depends on factors like minimizing net present cost (NPC) achieving the lowest cost of energy (COE) and maximizing renewable source utilization. This study evaluates the technical economic and environmental feasibility of a hybrid renewable energy system (HRES) comprising a 400-kW solar photovoltaic (PV) array a 100-kW wind turbine (WT) a 100-kW electrolyzer 918 number of 12V batteries a 200-kW converter a 200-kW reformer and a 15-kg hydrogen tank (H-tank). This optimal configuration has the lowest NPC of $26.8 million and COE of $4.32 per kilowatt-hour and a Renewable Fraction (RF) of 100%. It can provide a dependable power supply and satisfy 94% of the daily onsite load demand which is 1080 kilowatt-hours per day. The required electricity is sourced to load demand entirely from renewable energy at the given location. Additionally the study highlights the benefits of HRES in solid waste management considering technological advancements and regulatory frameworks. Furthermore sensitivity analysis is conducted to measure economic factors that influence HRES accounting for fluctuations in load demand project lifespan diesel fuel costs and interest rates. Installing an HRES custom-made to the local environmental conditions would provide a long-lasting reliable and cost-effective energy source. The results show that the optimal HRES system performs well and is a viable option for sustainable electrification in rural communities.
Low-carbon Economic Dispatch of Integrated Energy system with Carbon Capture Power Plant and Multiple Utilization of Hydrogen Energy
Jan 2025
Publication
In the context of “dual carbon” in order to promote the consumption of renewable energy and improve energy utilization efficiency a low-carbon economic dispatch model of an integrated energy system containing carbon capture power plants and multiple utilization of hydrogen energy is proposed. First introduce liquid storage tanks to transform traditional carbon capture power plants and at the same time build a multi-functional hydrogen utilization structure including two-stage power-to-gas hydrogen fuel cells hydrogen storage tanks and hydrogen-doped cogeneration to fully exploit hydrogen. It can utilize the potential of collaborative operation with carbon capture power plants; on this basis consider the transferability and substitutability characteristics of electric heating gas load and construct an electric heating gas comprehensive demand response model; secondly consider the mutual recognition relationship between carbon quotas and green certificates Propose a green certificate-carbon trading mechanism; finally establish an integrated energy system with the optimization goal of minimizing the sum of energy purchase cost demand response compensation cost wind curtailment cost carbon storage cost carbon purchase cost carbon trading cost and green certificate trading compensation. Optimize scheduling model. The results show that the proposed model can effectively reduce the total system cost and carbon emissions improve clean energy consumption and energy utilization and has significant economical and low-carbon properties.
Development of a Novel Biomass-Wind Energy System for Clean Hydrogen Production along with Other Useful Products for a Residential Community
Jan 2025
Publication
The study presents the development of a novel integrated wind-biomass energy system designed for sustainable urban development leveraging municipality waste and wind power energy sources. This innovative system is capable of producing multiple forms of energy including electricity cooling heat and hydrogen addressing the diverse energy needs of urban communities. It integrates advanced thermodynamic cycles like Kalina and water electrolysis via an alkaline electrolyzer. In addition the system uniquely combines power and refrigeration while utilizing landfills as an energy source. The designed system is thermodynamically modeled using the Engineering Equation Solver and process wise simulated by the Aspen Plus software to ensure better performance. By integrating advanced thermodynamic cycles such as the Kalina and combined power and refrigeration system the overall system is designed to maximize the utilization of biomass energy content and enhances overall performance. The thermodynamic analysis results reveal that the system achieved remarkable results with an energy efficiency of 67.60% and an exergy efficiency of 59.7% demonstrating its tangible performance compared to other standalone energy systems. The refrigeration system itself achieves an energetic COP of 5.41 and an exergetic COP of 1.7. Additionally the system's hydrogen production facilitated by an alkaline electrolyzer reaches a rate of 5.38 kg/h highlighting its potential to contribute to clean hydrogen energy solutions. Moreover the exergo-environmental assessment shows that the system is environmentally friendly. The cost assessment shows that the system reaches profitability in 7 years and demonstrates growth achieving a substantial NPV of 192.39 million by 30 years highlighting its long-term financial viability.
Blue Hydrogen can be Low-Carbon, A Techno-Economic-Environmental Analysis
Oct 2025
Publication
Hydrogen produced through natural gas reforming with carbon capture and storage (blue H2) is expected to supply up to 30 % of global low-carbon hydrogen by 2030. However wide variability in reported findings creates uncertainty about its future role. To address this the present techno-economic-environmental study from a lifecycle perspective evaluates whether blue hydrogen can meet carbon footprint thresholds (3 and 3.4 kg CO2 eq./ kg H2) required to qualify as low-carbon hydrogen. Several configurations of either chemical absorption or lowtemperature CO2 separation techniques integrated with auto-thermal reforming are modeled. Results show that low-temperature separation can achieve comparable or even superior energetic performance to conventional capture methods with cold gas and overall efficiencies reaching up to 80 % and 78 % respectively. The economic analysis estimates the levelized cost of blue hydrogen at 3.5–4 €/kg under 2024 EU average nonhousehold consumer natural gas and electricity prices and 2.4–2.8 €/kg under Italy’s 2024 wholesale prices. From an environmental standpoint life-cycle assessment indicates an average carbon footprint of 2.5 kg CO2 eq./ kg H2 assuming photovoltaic electricity for auxiliary power and excluding more carbon-intensive natural gas supply chains. The findings highlight that partial electrification of the CO2 separation unit use of renewable electricity and maximizing capture rates are key factors essential for producing compliant blue H2. Furthermore adopting ultra-low-emission natural gas supply chains could reduce blue H2′s carbon footprint to the level of green H2 suggesting that the introduction of certificate-of-origin schemes for natural gas can guarantee blue H2 with minimal emissions.
Differentiating Hydrogen-driven Hazards from Conventional Failure Modes in Hydrogen Infrastructure
Oct 2025
Publication
Hydrogen is a promising carbon-free energy carrier for large-scale applications yet its adoption faces unique safety challenges. Microscopic physicochemical properties such as high diffusivity low ignition energy and distinct chemical pathways alter the safety of hydrogen systems. Analyzing the HIAD 2.0 incident database an occurrence-based review of past hydrogen incidents shows that 59% arise from general industrial failures common to other hydrocarbon carrier systems. Of the remaining 41% only 15% are unequivocally linked to the fuel’s unique properties. This study systematically isolates hazards driven by hydrogen’s intrinsic properties by filtering out confounding factors and provides an original clear characterization of the different failure mechanisms of hydrogen systems. These hydrogen-specific cases are often poorly described limiting their contribution to safety strategies and regulations improvement. A case study on pipeline failures illustrates how distinguishing hydrogen-specific hazards supports targeted risk mitigation. The findings highlight the need for evidence-based regulation over broadly precautionary approaches.
Advancing the Hydrogen Production Economy: A Comprehensive Review of Technologies, Sustainability, and Future Prospects
Jun 2024
Publication
The transition to a hydrogen-based economy presents a promising solution to the challenges posed by unsus tainable energy systems and reliance on fossil fuels. This comprehensive review explores various hydrogen production methods emphasizing their technological advancements sustainability implications and future prospects. Beginning with an overview of hydrogen’s significance as a clean energy carrier the review examines key production methods such as Steam Methane Reforming Electrolysis (Proton Exchange Membrane alkaline solid oxide) Biomass Gasification Photoelectrochemical Water Splitting and Thermochemical Processes. Each method is scrutinized for its efficiency environmental impact and scalability providing valuable insights into their roles in advancing the hydrogen economy. The review highlights the transformative potential of hydrogen production to replace fossil fuels due to its ability to store renewable energy long-term and its zero emissions. It also discusses potential technological advancements including high-efficiency solid-state electrolysis and advanced catalysts for water splitting highlighting avenues for innovation in hydrogen production. Additionally policy recommendations aimed at promoting the hydrogen economy and fostering collaboration between academia industry and governments are elucidated. Through a detailed analysis of hydrogen production technologies and future prospects this review contributes to shaping the trajectory of sustainable energy sys tems advancing the adoption of hydrogen as a key energy vector and underscoring the importance of alternative and sustainable energy sources.
Everything About Hydrogen Podcast: Sustainable Shipping
Nov 2023
Publication
The teams sits down with Johannah Christensen to discuss regulatory policies and risk mitigation for vessel owners switching to green fuels and what we can do to encourage that jump as well as ensure a Just Transition.
The podcast can be found on their website.
The podcast can be found on their website.
Lessons Learned from HIAD 2.0: Inspection and Maintenance to Avoid Hydrogen-induced Material Failures
Feb 2023
Publication
Hydrogen has the potential to make countries energetically self-sufficient and independent in the long term. Nevertheless its extreme combustion properties and its capability of permeating and embrittling most metallic materials produce significant safety concerns. The Hydrogen Incidents and Accidents Database 2.0 (HIAD 2.0) is a public repository that collects data on hydrogen-related undesired events mainly occurred in chemical and process industry. This study conducts an analysis of the HIAD 2.0 database mining information systematically through a computer science approach known as Business Analytics. Moreover several hydrogen-induced ma terial failures are investigated to understand their root causes. As a result a deficiency in planning effective inspection and maintenance activities is highlighted as the common cause of the most severe accidents. The lessons learned from HIAD 2.0 could help to promote a safety culture to improve the abnormal and normal events management and to stimulate a widespread rollout of hydrogen technologies.
Modelling Thermodiffusive Instabilities in Hydrogen Flames and their Impact on the Combustion Process in a Direct-injection Hydrogen Engine
Sep 2025
Publication
Hydrogen-fueled Internal Combustion Engines (H2-ICEs) are typically operated with lean mixtures to minimize NOx emissions and reduce the risk of abnormal combustion events. Due to hydrogen’s low Lewis number premixed hydrogen-air flames in lean conditions exhibit strong thermodiffusive instabilities which make the numerical simulation of the combustion process particularly challenging. Indeed the intensity of these instabilities is significantly influenced by thermodynamic parameters – such as mixture temperature pressure and dilution rate – resulting in substantial variations in combustion behaviour across different operating conditions. Therefore they have to be properly considered not only to ensure model robustness but also to improve model accuracy over a wider range of operations. In this study the combustion process in a Direct Injection H2-ICE was analyzed using 3D-CFD simulations relying on a flamelet-based combustion model. Two sets of lookup flame speed maps were defined: laminar flame speed (SL) maps derived from standard 1D-CFD simulations in homogeneous reactor and freely propagating flame speed (SM) maps which account for the effects of thermodiffusive instabilities. The model that uses SL maps required the recalibration of some combustion model parameters when changing the dilution rate to ensure consistency with experimental data. Instead the model relying on SM maps featured a noticeable accuracy across different air-to-fuel ratios without the need for recalibration any combustion model parameter highlighting the key role of thermodiffusive flame instabilities on the combustion process. Based on these findings the impact of such instabilities was evaluated throughout the entire combustion process from both global and local perspectives. The relevance of thermodiffusive instabilities was observed to increase with the air-to-fuel ratio thereby enhancing combustion speed in leaner mixtures. Additionally the implementation of thermodiffusive instabilities was found to affect also preferred direction of flame propagation as stronger instabilities were identified in the leanest and low-temperature portions of the flame front. Novelty and significance This study addresses a critical knowledge gap regarding the role of thermodiffusive flame instabilities in accurately replicating the combustion process of a direct-injection internal combustion engine within a RANS simulation framework. Indeed while these instabilities have been shown to significantly enhance the mixture consumption rate in quiescent environments at low to moderate pressures and temperatures particularly in lean mixtures their impact on the burn rate under engine-like conditions has not yet been systematically investigated to the best of the authors’ knowledge. This work provides a comprehensive analysis of the significance of these instabilities in the combustion process of a direct-injection hydrogen internal combustion engine. The analysis is conducted from both a global perspective assessing their overall influence on the combustion process and a local perspective examining how they alter flame front characteristics when incorporated into the model.
Optimizing Hydrogen Production from Wastewater-derived Sewage Sludge via Alkali-catalyzed Supercritical Water Gasification
Sep 2025
Publication
The increasing global wastewater generation and reliance on fossil fuels for energy production necessitate sustainable treatment and energy recovery solutions. This study explores supercritical water gasification (SCWG) of sewage sludge from municipal wastewater as a hydrogen production pathway focusing on the role of alkali catalysts (KOH K₂CO₃ Na₂CO₃). The effects of temperature (450–550◦C) reaction time (5–30 min) and catalyst type on gas yield and efficiency were analyzed. At 550◦C the highest carbon efficiency (61 %) gas efficiency (69 %) and hydrogen yield (41 mol/kg) were observed. After 30 min the gas composition reached H₂ (58 %) CO₂ (26 %) CH₄ (11.7 %) and CO (4 %). Among catalysts Na₂CO₃ exhibited superior H₂ yield (29 mol/kg) carbon efficiency (58 %) and gas efficiency (51 %). This study highlights SCWG as a viable technology for hydrogen-rich gas production contributing to sustainable energy solutions and wastewater valorization.
Production of Green Hydrogen from Sewage Sludge/Algae in Agriculture Diesel Engine: Performance Evaluation
Jan 2024
Publication
Alternative fuel opportunities can satisfy energy security and reduce carbon emissions. In this regard the hydrogen fuel is derived from the source of environmental pollutants like sewage and algae wastewater through hydrothermal gasification technique using a KOH catalyst with varied gasification process parameters of duration and temperature of 6–30 min and 500-800 ◦C. The novelty of the work is to identify the optimum gasification process parameter for obtaining the maximum hydrogen yield using a KOH catalyst as an alternative fuel for agricultural engine applications. Influences of gasification processing time and temperature on H2 selectivity Carbon gasification efficiency (CE) Lower heating value (LHV) Hydrogen yield potential (HYP) and gasification efficiency (GE) were studied. Its results showed that the gasifier operated at 800 ◦C for 30 min offering maximum hydrogen yield (26 mol/kg) and gasification efficiency (58 %). The synthesized H2 was an alternative fuel blended with diesel fuel/TiO2 nanoparticles. It was experimentally studied using an internal combustion engine. Influences of H2 on engine perfor mance like brake-specific fuel consumption brake thermal efficiency and emission performances were measured and compared with diesel fuel. The results showed that DH20T has the least (420g/kWh) brake-specific fuel consumption (BSFC) and superior brake thermal efficiency of about 25.2 %. The emission results revealed that the DH20T blend showed the NOX value increased by almost 10.97 % compared to diesel fuel whereas the CO UHC and smoke values reduced by roughly 31.25 28.34 and 42.35 %. The optimum fuel blend (DH20T) result is rec ommended for agricultural engine applications.
Experimental Investigation of Using Coffee WasteDerived Activated Carbon Effectively as Sustainable Material for Hydrogen Storage
Sep 2025
Publication
This study presents the synthesis and evaluation of activated carbon derived from spent coffee grounds using three distinct activation methods namely chemical ultrasound-assisted and surface magnetized. The characterization studies of materials are used to evaluate hydrogen storage performance under varying pressure and temperature conditions. The gravimetric measurements are employed to assess the physisorption capacities while electrochemical techniques such as LSV CV and GCD evaluate hydrogen related charge storage behavior. The activation methods affect surface morphology and elemental composition of the activated carbon samples as confirmed by SEM and EDS analyses. Among the three chemically activated carbon exhibits the highest hydrogen uptake achieving 0.362 wt% at 0 ◦C and 4 kPa which is attributed to its highly porous structure. The ultrasound-assisted and surface magnetized samples exhibitmaximum capacities of 0.357 wt% and 0.339 wt% respectively. This study underlines the potential of coffee waste as a sustainable carbon precursor and introduces a dual-characterization approach.
Systematic Framework for Deep Learning-based Predictive Injection Control with Bayesian Hyperparameter Optimization for a Hydrogen/Diesel Dual-fuel Engine
Aug 2025
Publication
Climate change and global warming concerns promote interest in alternative fuels especially zero-carbon fuels like hydrogen. Modifying existing combustion engines for dual-fuel operation can decrease emissions of vehicles that are already on the road. The procedure of a deep learning-based model predictive control as a machine learning implementation practical for complex nonlinear systems with input and state constraints has been developed and tested on a hydrogen/diesel dual-fuel (HDDF) engine application. A nonlinear model predictive controller (NMPC) utilizing a deep neural network (DNN) process model is proposed to control the injected hydrogen and diesel. This DNN model has eight inputs and four outputs and has a short computational time compared to the physics-based model. The architecture and hyperparameters of the DNN model of the HDDF process are optimized through a two-stage Bayesian optimization to achieve high accuracy while minimizing the complexity of the model described. The final DNN architecture has two hidden layers with 31 and 23 neurons. A modified engine capable of HDDF operation is compared to standard diesel operation to evaluate the engine performance and emissions. During experimental engine testing the controller required an average computational time of 2 ms per cycle on a low-cost processor satisfying the real-time requirements and was faster than recurrent networks. The control performance of the DNN-NMPC for the HDDF engine showed a mean absolute error of 0.19 bar in load tracking while maximizing average hydrogen energy share (68%) and reducing emissions. Specifically the particulate matter emissions decrease by 87% compared to diesel operation.
Energy Management and Sizing of a Stand-alone Hybrid Renewable Energy System for Community Electricity, Fresh Water, and Cooking Gas Demands of a Remote Island
Nov 2023
Publication
Research into the off-grid hybrid energy system to provide reliable electricity to a remote community has extensively been done. However simultaneous meeting electric freshwater and gas demands from the off-grid hybrid energy sources are very scarce in literature. Power- to-X (PtX) is gaining attention in recent days in the energy transition scenarios to generate green hydrogen the primary product of the process as an energy carrier which is deemed to replace conventional fuels to reach absolute carbon neutrality. In this study renew able–based hybrid energy is developed to simultaneously meet the electricity freshwater and gas (cooking gas via methanation process) demands for a remote Island in Bangladesh. In this process an energy management strategy has been developed to use the excess energy to generate both freshwater and the hydrogen where hydrogen is then converted to natural gas via methanation process. The PV wind turbine diesel generator battery and fuel cell have been optimized using non-dominating sorting algorithm-II (NSGA-II) to offer reliable cost-effective solutions of electricity freshwater and cooking gas for the end users. Results reported that the PV/ WT/DG/Batt configuration has been found the most economic configuration with the lowest COE (0.1724 $/kWh) which is 9 % lower than PV/WT/Batt configuration which has the second lowest COE. The cost of water (COW) and cost of gas (COG) of the PV/WT/DG/Batt system are also the lowest among all the four configurations and have been found 1.185 $/m3 and 3.978 $/m3 respectively.
Nanomaterials and Hydrogen Production: A Comprehensive Review of Clean Energy Strategies, Costs, and Environmental Implications
Aug 2025
Publication
An increasing demand for energy coupled with rising pollution levels is driving the search for environmentally clean alternative energy resources to replace fossil fuels. Hydrogen has emerged as a promising clean energy carrier and raw material for various applications. However its environmental benefits depend on sustainable production methods. The rapid development of nanomaterials (NMs) has opened new avenues for the conversion and utilization of renewable energy (RE). NMs are becoming increasingly important in addressing challenges related to hydrogen (H₂) generation. This review provides an overview of current advancements in H₂ production from biomass via thermochemical (TC) and biological (BL) processes including associated costs and explores the applications of nanomaterials in these methods. Research indicates that biological hydrogen (BL-H₂) production remains costly. The challenges associated with the TC conversion process are examined along with potential strategies for improvement. Finally the technical and economic obstacles that must be overcome before hydrogen can be widely adopted as a fuel are discussed.
No more items...