Publications
Research into the Kinetics of Hydrogen Desorption from the MNTZV-159 Metal Hydride Storage Tank in the Operating Conditions of a Low-Pressure Refuelling Station
Aug 2025
Publication
A form of long-term hydrogen storage with high volume efficiency is hydrogen absorption into the host lattice of a metal or an alloy. Unlike high-pressure hydrogen storage this form of storage is characterised by a low operating pressure. By employing metal hydride (MH) materials in a low-pressure refuelling station it is possible to significantly increase the safety of hydrogen storage and at the same time to facilitate the refuelling of external devices that use MH storage tanks without the necessity of using a compressor. In this article a methodology for the identification of the mathematical correlations among the hydrogen pressure in the storage tank the hydrogen concentration in the alloy and the volumetric flow rate of hydrogen is described. This methodology may be used to identify the kinetics of the process and to create simplified simulations of the hydrogen release from an absorption-based storage tank by applying a finite difference method. The mathematical correlations are based on measurements of hydrogen desorption during which hydrogen was released from the storage tank at stabilised pressure levels. The resulting mathematical description facilitates the identification of the approximate hydrogen pressure depending on its flow rate for a particular MH storage tank while respecting the complexity of its internal structure heat transfer and the hydrogen’s passage through a porous powder MH material. The identified mathematical dependence applies to the certified MNTZV-159 storage tank at pressures ranging from 7 to 29.82 bar with hydrogen concentrations ranging from 0.223 to 1.342% an input temperature of 59.5 ◦C and a cooling water flow rate of 4.36 L·min−1 . This methodology for the identification of a correlation between the flow rate pressure and hydrogen concentration applies to this particular type of storage tank and it depends not only on the alloy used and the quantity of this alloy but also on the internal structure of the heat exchanger.
Liquefied Hydrogen, Ammonia and Liquid Organic Hydrogen Carriers for Harbour-to-harbour Hydrogen Transport: A Sensitivity Study
Jul 2024
Publication
Hydrogen is commonly perceived as the key player in the transition towards a low-carbon future. Nevertheless H2 low energy density hinders its easy storage and transportation. To address this issue different alternatives (liquefied hydrogen ammonia and liquid organic hydrogen carriers) are explored as hydrogen vectors. The techno-economic assessment of H2 transport through these carriers is strongly dependent on the basis of design adopted such that it is difficult to draw general conclusions. In this respect this work is aimed at performing a sensitivity analysis on the hypotheses introduced in the layout of H2 value chains. Different scenarios are discussed depending on harbour-to-harbour distances cost of utilities and raw materials and H2 application to the industrial or mobility sector. The most cost-effective carrier is selected for each case-study: NH3 is the most advantageous for industrial sector while LH2 holds promises for mobility. Critical issues are pointed out for future large-scale applications.
Cost-optimized Replacement Strategies for Water Electrolysis Systems Affected by Degradation
Sep 2025
Publication
A key factor in reducing the cost of green hydrogen production projects using water electrolysis systems is to minimize the degradation of the electrolyzer stacks as this impacts the lifetime of the stacks and therefore the frequency of their replacement. To create a better understanding of the economics of stack degradation we present a linear optimization approach minimizing the costs of a green hydrogen supply chain including an electrolyzer with degradation modeling. By calculating the levelized cost of hydrogen depending on a variable degradation threshold the cost optimal time for stack replacement can be identified. We further study how this optimal time of replacement is affected by sensitivities such as the degradation scale the load-dependency of both degradation and energy demand and the costs of the electrolyzer. The variation of the identified major sensitivity degradation scale results in a difference of up to 9 years regarding the cost optimal time for stack replacement respectively lifetime of the stacks. Therefore a better understanding of the degradation impact is imperative for project cost reductions which in turn would support a proceeding hydrogen market ramp-up.
Anion-exchange Membrane Water Electrolyzers
Apr 2022
Publication
This Review provides an overview of the emerging concepts of catalystsmembranes and membrane electrode assemblies (MEAs) for water electrolyzers with anion-exchange membranes (AEMs) also known as zero-gap alkaline water electrolyzers. Much ofthe recent progress is due to improvements in materials chemistry MEA designs andoptimized operation conditions. Research on anion-exchange polymers (AEPs) has focusedon the cationic head/backbone/side-chain structures and key properties such as ionicconductivity and alkaline stability. Several approaches such as cross-linking microphase andorganic/inorganic composites have been proposed to improve the anion-exchangeperformance and the chemical and mechanical stability of AEMs. Numerous AEMs nowexceed values of 0.1 S/cm (at 60−80 °C) although the stability specifically at temperaturesexceeding 60 °C needs further enhancement. The oxygen evolution reaction (OER) is still alimiting factor. An analysis of thin-layer OER data suggests that NiFe-type catalysts have thehighest activity. There is debate on the active-site mechanism of the NiFe catalysts and their long-term stability needs to beunderstood. Addition of Co to NiFe increases the conductivity of these catalysts. The same analysis for the hydrogen evolutionreaction (HER) shows carbon-supported Pt to be dominating although PtNi alloys and clusters of Ni(OH) 2 on Pt show competitiveactivities. Recent advances in forming and embedding well-dispersed Ru nanoparticles on functionalized high-surface-area carbonsupports show promising HER activities. However the stability of these catalysts under actual AEMWE operating conditions needsto be proven. The field is advancing rapidly but could benefit through the adaptation of new in situ techniques standardizedevaluation protocols for AEMWE conditions and innovative catalyst-structure designs. Nevertheless single AEM water electrolyzercells have been operated for several thousand hours at temperatures and current densities as high as 60 °C and 1 A/cm 2 respectively.
Techno-economic Analysis of Green Hydrogen Supply for a Hydrogen Refueling Station in Germany
Feb 2025
Publication
Green hydrogen is a cornerstone in the global quest for a carbon-neutral future offering transformative potential for decarbonizing transportation. This study investigates its role by assessing the feasibility of a large-scale hydrogen refueling station in Germany focusing on integrating renewable energy sources. A hydrogen demand model with a 10-min time resolution to refuel 30 trucks and 20 vans (1019 kg/day) is combined with a techno-economic optimization model to evaluate a hybrid energy system utilizing wind solar and grid electricity. Scenario-based analysis reveals that Levelized Cost of Hydrogen ranges from 13.92 to 18.12 €/kg primarily influenced by electricity costs. Excess electricity sales can reduce this cost to 13.34–16.92 €/kg. On-site wind energy reduces storage and grid reliance achieving the lowest hydrogen cost. Unlike prior studies this work combines temporally resolved hydrogen demand profiles with comprehensive techno-economic modeling offering unprecedented insights into decentralized green hydrogen systems for heavy-duty transport. By bridging critical gaps in the scalability and economic feasibility of Power-to-Hydrogen systems it provides viable strategies for advancing green hydrogen infrastructure.
Research on DC Power Supply for Electrolytic Water to Hydrogen Based on Renewable Energy
Nov 2022
Publication
Hydrogen production from electrolytic water based on Renewable Energy has been found as a vital method for the local consumption of new energy and the utilization of hydrogen energy. In this paper the hydrogen production power supply matching the working characteristics of electrolytic water production was investigated. Through the analysis of the correlation between the electrolysis current and temperature of the proton exchange membrane electrolyzer and the electrolyzer port voltage energy efficiency and hydrogen production speed it was concluded that the hydrogen production power supply should be characterized by low output current ripple high output current and wide range voltage output. To meet the requirements of the system of hydrogen production from electrolytic water based on new energy a hydrogen production power supply scheme was proposed based on Y which is the type three is the phase staggered parallel LLC topology. In the proposed scheme the cavity with three is the phase staggered parallel output is resonated to meet the operating characteristics (high current and low ripple) of the electrolyzer and pulse frequency control is adopted to achieve resonant soft in the switching operation and increase conversion efficiency. Lastly a simulation model and a 6kW experimental prototype were built to verify the rationality and feasibility of the proposed scheme.
Prospective LCA of Alkaline and PEM Electrolyser Systems
Nov 2023
Publication
This prospective life cycle assessment (LCA) compares the environmental impacts of alkaline electrolyser (AE) and proton exchange membrane (PEM) electrolyser systems for green hydrogen production with a special focus on the stack components. The study evaluates both baseline and near-future advanced designs considering cradle-to-gate life cycle from material production to operation. The electricity source followed by the stacks are identified as major contributors to environmental impacts. No clear winner emerges between AE and PEM in relation to environmental impacts. The advanced designs show a reduced impact in most categories compared to baseline designs which can mainly be attributed to the increased current density. Advanced green hydrogen production technologies outperform grey and blue hydrogen production technologies in all impact categories except for minerals and metals resource use due to rare earth metals in the stacks. Next to increasing current density decreasing minimal load requirements. improving sustainable mining practices (including waste treatment) and low carbon intensity steel production routes can enhance the environmental performance of electrolyser systems aiding the transition to sustainable hydrogen production.
Renewable Hydrogen Production from Biomass Derivatives or Water on Trimetallic Based Catalysts
Oct 2023
Publication
Hydrogen has emerged as a promising new energy source that can be produced in renewable mode for example from biomass derivatives reforming or water splitting. However the conventional catalysts used for hydrogen production in renewable mode suffer from limitations in activity selectivity and/or stability. To overcome these limitations nanostructured catalysts with multicomponent active phases particularly trimetallic catalysts are being explored. This catalyst formulation significantly enhances catalyst activity and effectively suppresses the undesired production of CO CH4 or coke during the reforming of biomass derivatives for hydrogen formation. Moreover the success of this approach extends to water splitting catalysis where trimetallic based catalysts have demonstrated good performance in hydrogen production. Notably trimetallic catalysts composed of Ni Fe and a third metal prove to be highly efficient in water splitting bypassing the problems associated with traditional catalysts. That is the high material costs of state-of-the-art catalysts as well as the limited activity and stability of alternative ones. Furthermore theoretical methods play a vital role in understanding catalyst activity and/or selectivity as well as in the design of catalysts with improved characteristics. These enable a comprehensive study of the complete reaction mechanism on a target catalyst and help in identifying potential reaction descriptors allowing for efficient screening and selection of catalysts for enhanced hydrogen production. Overall this critical review shows how the exploration of trimetallic catalysts combined with the insights from theoretical methods holds great promise in advancing hydrogen production through renewable means paving the way for sustainable and efficient energy solutions.
A Review of Analogue Case Studies Relevant to Large-scale Underground Hydrogen Storage
Feb 2024
Publication
Underground Hydrogen Storage (UHS) has gathered interest over the past decade as an efficient means of storing energy. Although a significant number of research and demonstration projects have sought to understand the associated technical challenges it is yet to be achieved on commercial scales. We highlight case studies from town gas and blended hydrogen storage focusing on leakage pathways and hydrogen reactivity. Experience from helium storage serves as an analogue for the containment security of hydrogen as the two gases share physiochemical similarities including small molecular size and high diffusivity. Natural gas storage case studies are also investigated to highlight well integrity and safety challenges. Technical parameters identified as having adverse effects on storage containment security efficiency and hydrogen reactivity were then used to develop high-level and site-specific screening criteria. Thirty-two depleted offshore hydrocarbon reservoirs in the UK Continental Shelf (UKCS) are identified as potential storage formations based on the application of our high-level criteria. The screened fields reflect large hydrogen energy capacities low cushion gas requirements and proximity to offshore wind farms thereby highlighting the widespread geographic availability and potential for efficient UHS in the UKCS. Following the initial screening we propose that analysis of existing helium concentrations and investigation of local tectonic settings are key site-specific criteria for identifying containment security of depleted fields for stored hydrogen.
Energy Transition Outlook - UK 2025
Feb 2025
Publication
In the wake of unprecedented global weather events and the ever-pressing urgency of climate change the discourse around energy transition has become more critical than ever.<br/>The United Kingdom once at the forefront of the energy transition movement finds itself at a crossroads. The initial rapid progress towards a low-carbon future is now facing hurdles threatening the achievement of the 'net zero by 2050' target.<br/>This revelation comes from the third edition of our UK Energy Transition Outlook (ETO) which leverages an independent model incorporating the UK's energy system's extensive connections with Europe and beyond.<br/>This report has a comprehensive analysis of:<br/>♦ Renewable energy technology scaling and costs<br/>♦ The continuing dependence on fossil fuel and need to decarbonize<br/>♦ Energy demand by sector and source<br/>♦ Energy efficiency<br/>♦ Energy supply<br/>♦ Electricity and infrastructure<br/>♦ Hydrogen<br/>♦ Energy expenditure<br/>♦ Policies driving the transition<br/>♦ Digitalization.
A Review on Machine Learning Applications in Hydrogen Energy Systems
Feb 2025
Publication
Adopting machine learning (ML) in hydrogen systems is a promising approach that enhances the efficiency reliability and sustainability of hydrogen power systems and revolutionizes the hydrogen energy sector to optimize energy usage/management and promote sustainability. This study explores hydrogen energy systems including production storage and applications while establishing a connection between machine learning solutions and the challenges these systems face. The paper provides an in-depth review of the literature examining not only ML techniques but also optimization algorithms evaluation methods explainability techniques and emerging technologies. By addressing these aspects we highlight the key factors of new technologies and their potential benefits across the three stages of the hydrogen value chain. We also present the advantages and limitations of applying ML models in this field offering recommendations for their optimal use. This comprehensive and precise work serves as the most current and complete examination of ML applications within the hydrogen value chain providing a solid foundation for future research across all stages of the hydrogen industry.
Evaluating Cost and Emission Reduction Potentials with Stochastic PPA Portfolio Optimization for Green Hydrogen Production in a Decarbonized Glassworks
Sep 2025
Publication
The decarbonization of heavy industries demands large volumes of green hydrogen. To produce green hydrogen via electrolysis the EU’s Renewable Energy Directive II imposes rules to ensure the use of renewable electricity. Hydrogen producers can use portfolios of power purchase agreements (PPAs) to buy renewable electricity. These portfolios must meet hydrogen demand cost-effectively and battery storage can help by shifting excess renewable generation. However high uncertainty around future electricity prices and demand complicates optimal portfolio design. Current literature lacks comprehensive models that evaluate such portfolio optimization under uncertainty for real-world case studies including battery storage. This work addresses the gap by introducing a stochastic mixed-integer linear programming model tailored to industrial applications. We demonstrate the model using a real-world glass manufacturing site in Germany. Our findings show that portfolio optimization alone can reduce the levelized cost of hydrogen (LCOH) by 6.24% under EU rules. Adding a battery further cuts costs achieving an LCOH of 11.8 e2024 kg−1 . Exploring different temporal matching schemes reveals that weekly matching reduces LCOH by 2 e2024kg−1 while maintaining a high share of renewable energy. The model offers a flexible tool for optimizing PPA portfolios in various industrial settings.
Numerical Modelling Assessment of the Impact of Hydrogen on the Energy and Environmental Performance of a Car Using Dual Fuel (Gasoline–Hydrogen)
Feb 2025
Publication
The utilization of “green” hydrogen in transportation areas gives rise to production- and supply infrastructure-related challenges; therefore its wider application in automotive transport would lead to higher demand with cost reduction and a faster expansion of the hydrogen refuelling network. This study presents energy and environmental performance indicators analyses of a Nissan Qashqai J10 engine during the Worldwide Harmonised Light Vehicles Test Cycle (WLTC) replacing conventional fossil gasoline with dual-fuel (D-F) gasoline and hydrogen. Numerical modelling was conducted using AVL Cruise™ (Version R2022.2) software utilizing the torque fuel consumption and environmental performance data of the HR16DE engine obtained through experimental testing across a wide range of loads and speeds on an engine test bench. The experimental investigation was carried out in two stages: using pure gasoline (G100); injecting a hydrogen additive into the intake air constituting 5% of the gasoline mass (G95H5). Following similar stages numerical modelling was conducted using the vehicle’s technical specifications to calculate engine load and speed throughout the WLTC range. Instant fuel consumption and pollutant emissions (CO CH NOx) were determined for various driving modes using experimental data maps. CO2 emissions were calculated considering fuel composition and consumption. By integrating the instant values the total and specific fuel consumption and emissions were calculated. As a result this study identified the effect of a 5% hydrogen additive in improving engine energy efficiency reducing incomplete combustion products and lowering greenhouse gas (CO2) emissions under various driving modes. Finally the results were compared with the requirements of EU standards.
Optimization of Green Ammonia Distribution Systems for Intercontinental Energy Transport
Aug 2021
Publication
Green ammonia is a promising hydrogen derivative which enables intercontinental transport of dispatchable renewable energy. This research describes the development of a model which optimizes a global green ammonia network considering the costs of production storage and transport. In generating the model we show economies of scale for green ammonia production are small beyond 1 million tonnes per annum (MMTPA) although benefits accrue up to a production rate of 10 MMTPA if a production facility is serviced by a new port or requires a long pipeline. The model demonstrates that optimal sites for ammonia production require not only an excellent renewable resource but also ample land from which energy can be harvested. Land limitations constrain project size in otherwise optimal locations and force production to more expensive sites. Comparison of current crude oil markets to future ammonia markets reveals a trend away from global supply hubs and toward demand centers serviced by regional production.
Explosion Characteristics and Overpressure Prediction of Hydrogen-doped Natural Gas under Ambient Turbulence Conditions
Jul 2025
Publication
Explosions of combustible gases under ambient turbulence exhibit complex flame propagation and overpressure evolution characteristics posing challenges to explosion safety assessments. In this study explosion behaviors of hydrogen-doped natural gas under various wind speeds were investigated using a small-scale experimental system. The results show that when the wind speed does not exceed 2 m/s ambient turbulence promotes flame acceleration and overpressure enhancement with the maximum overpressure increased by 20.7% compared to the no-wind condition. However when the wind speed exceeds 2 m/s turbulence suppresses flame propagation leading to a reduction in maximum overpressure by up to 50.5%. Under early-stage turbulent disturbances the flame front exhibits instability from the ignition stage resulting in a continuous transition from laminar to turbulent combustion without a distinct critical instability radius. Furthermore a modified overpressure prediction model is proposed by incorporating a flame wrinkling factor into the Thomas model and adopting a dimensionless distance treatment from the TNO multi-energy model. The proposed model achieves a root mean square error of 0.140 kPa under various wind speed conditions demonstrating good predictive accuracy.
Probabilistic Assessment of Solar-Based Hydrogen Production Using PVGIS, Metalog Distributions, and LCOH Modeling
Sep 2025
Publication
The transition toward low-carbon energy systems requires reliable tools for assessing renewable-based hydrogen production under real-world climatic and economic conditions. This study presents a novel probabilistic framework integrating the following three complementary elements: (1) a Photovoltaic Geographical Information System (PVGIS) for high-resolution location-specific solar energy data; (2) Metalog probability distributions for advanced modeling of variability and uncertainty in photovoltaic (PV) energy generation; and (3) Levelized Cost of Hydrogen (LCOH) calculations to evaluate the economic viability of hydrogen production systems. The methodology is applied to three diverse European locations—Lublin (Poland) Budapest (Hungary) and Malaga (Spain)—to demonstrate regional differences in hydrogen production potential. The results indicate annual PV energy yields of 108.3 MWh 124.6 MWh and 170.95 MWh respectively which translate into LCOH values of EUR 9.67/kg (Poland) EUR 8.40/kg (Hungary) and EUR 6.13/kg (Spain). The probabilistic analysis reveals seasonal production risks and quantifies the probability of achieving specific monthly energy thresholds providing critical insights for designing systems with continuous hydrogen output. This combined use of a PVGIS Metalog and LCOH calculations offers a unique decision-support tool for investors policymakers and SMEs planning green hydrogen projects. The proposed methodology is scalable and adaptable to other renewable energy systems enabling informed investment decisions and improved regional energy transition strategies.
Grid Frequency Fluctuation Compensation by Using Electrolysis: Literature Survey
Aug 2025
Publication
This paper presents a novel literature survey on leveraging electrolysis for grid frequency stabilization in power systems with high penetration of renewable energy sources (RESs) uniquely integrating global research findings with specific insights into the Polish energy context—a region facing acute grid challenges due to rapid RES growth and infrastructure limitations. The intermittent nature of wind and solar power exacerbates frequency fluctuations necessitating dynamic demand-side management solutions like hydrogen production via electrolysis. By synthesizing over 30 studies the survey reveals key results: electrolysis systems particularly PEM and alkaline electrolyzers can reduce frequency deviations by up to 50% through fast frequency response (FFR) and primary reserve provision as demonstrated in simulations and real-world pilots (e.g. in France and the Netherlands); however economic viability requires enhanced compensation schemes with current models showing unprofitability without subsidies. Technological advancements such as transistor-based rectifiers improve efficiency under partial loads while integration with RES farms mitigates overproduction issues as evidenced by Polish cases where 44 GWh of solar energy was curtailed in March 2024. The survey contributes actionable insights for policymakers and engineers including recommendations for deploying electrolyzers to enhance grid resilience support hydrogen-based transportation and facilitate Poland’s target of 50.1% RESs by 2030 thereby advancing the green energy transition amid rising instability risks like blackouts in RES-heavy systems.
Strategic Hydrogen Management: Driving a Sustainable Energy Future
Mar 2025
Publication
The concept of sustainability and green energy has become increasingly relevant in our lives especially in the face of climate change and the growing demand for sustainable solutions in the energy sector. Driven by renewable energies there is a continuous effort to research and develop alternative energy sources and fuels. In this context the European Union (EU) Strategy for Hydrogen (H) has emerged placing this source as one of the central pillars in the fight against climate change. Hydrogen is seen as a potential fuel and energy source of the future. However in addition to political and structural challenges this new approach also faces significant technical obstacles. With the increase in population and human needs the need for energy continues to grow. The world population is projected to reach ten billion people by the year 2050 (Tarhan and Çil 2021). To meet this growing demand and promote a transition to clean energies many countries are incorporating renewable energy sources into their energy mix while still relying on fossil fuels. Developed countries are gradually reducing their use of fossil fuels in energy production. Considering that 80 per cent of our daily energy needs are still met by these sources the complete transition is complex and not immediate but it is an achievable goal.
Catalyst, Reactor, and Purification Technology in Methanol Steam Reforming for Hydrogen Production: A Review
Aug 2025
Publication
Methanol steam reforming (MSR) represents a highly promising pathway for sustainable hydrogen production due to its favorable hydrogen-to-carbon ratio and relatively low operating temperatures. The performance of the MSR process is strongly dependent on the selection and rational design of catalysts which govern methanol conversion hydrogen selectivity and the suppression of undesired side reactions such as carbon monoxide formation. Moreover advancements in reactor configuration and thermal management strategies play a vital role in minimizing heat loss and enhancing heat and mass transfer efficiency. Effective carbon monoxide removal technologies are indispensable for obtaining high-purity hydrogen particularly for applications sensitive to CO contamination. This review systematically summarizes recent progress in catalyst development reactor design and gas purification technologies for MSR. In addition the key technical challenges and potential future directions of the MSR process are critically discussed. The insights provided herein are expected to contribute to the development of more efficient stable and scalable MSR-based hydrogen production systems.
Frequency Support from PEM Hydrogen Electrolysers Using Power-Hardware-in-the-Loop Validation
Sep 2025
Publication
Maintaining frequency stability is one of the biggest challenges facing future power systems due to the increasing penetration levels of inverter-based renewable resources. This investigation experimentally validates the frequency provision capabilities of a real Polymer Electrolyte Membrane (PEM) hydrogen electrolyser (HE) using a power hardware-in-the-loop (PHIL) setup. The PHIL consists of a custom 3-level interleaved buck converter and a hardware platform for real-time control of the converter and conducting grid simulation associated with the modelling of the future Iberian Peninsula (IP) and Continental Europe (CE) systems. The investigation had the aim of validating earlier simulation work and testing new responses from the electrolyser when providing different frequency services at different provision volumes. The experimental results corroborate earlier simulation results and capture extra electrolyser dynamics as the double-layer capacitance effect which was absent in the simulations. Frequency Containment Reserve (FCR) and Fast Frequency Response (FFR) were provided successfully from the HE at different provision percentages enhancing the nadir and the rate of change of frequency (RoCoF) in the power system when facing a large disturbance compared to conventional support only. The results verify that HE can surely contribute to frequency services paving the way for future grid support studies beyond simulations.
No more items...