Publications
Hydrogen Production from H2S-steam Reforming using Recycled Sour Water: Insights from Thermodynamic and Kinetic Modeling
Sep 2025
Publication
Given the rising interest in hydrogen economy alternative feedstocks are explored for their potential use for hydrogen production such as H2S a notable byproduct from oil and gas operations. This study presents a computational investigation on the thermodynamics kinetics and mechanisms of non-catalytic H2S-steam reforming (H2SSR) as a pathway for H2S-to-H2 benchmarked to H2S thermal decomposition (H2SPyrol) (as a limiting case without water). The mechanism integrates key elementary steps form different reaction pathways including H2S partial oxidation H2O reduction and H2S thermal decomposition. Results from the model are validated using available experimental data for H2SPyrol and H2SSR. Homogeneous gas-phase reactions are modelled at different H2O:H2S ratios reaction temperatures pressure and times. Thermodynamically the H2SSR reaction is unfavorable due to the presence of water and its role in increasing the reaction complexity and endothermicity; however kinetically water contributes to increasing the hydrogen yield at least 9 times that from H2SPyrol achieving 99.23 % H2S conversion at 1473 K with an excess H2O:H2S feed ratio of 200:1. The contribution of water during the H2SSR reaction is interpreted using reaction path and rate of production analyses demonstrating its role in producing an abundant pool of OH and H radicals. These radicals catalyze the cleavage of H2S-SH bonds accelerating hydrogen production at an optimal reaction time of 0.07–0.105 s. This study paves the path for future kinetic and catalytic research to optimize the technical viability of H2SSR as a promising H2S-to-H2 conversion pathway for sour wastewater reutilization.
A Review of Hydrogen Storage and Transport Technologies
Mar 2023
Publication
An important component of the deep decarbonization of the worldwide energy system is to build up the large-scale utilization of hydrogen to substitute for fossil fuels in all sectors including industry the electricity sector transportation and heating. Hence apart from reducing hydrogen production costs establishing an efficient and suitable infrastructure for the storage transportation and distribution of hydrogen becomes essential. This article provides a technically detailed overview of the state-of-the-art technologies for hydrogen infrastructure including the physical- and material-based hydrogen storage technologies. Physical-based storage means the storage of hydrogen in its compressed gaseous liquid or supercritical state. Hydrogen storage in the form of liquid-organic hydrogen carriers metal hydrides or power fuels is denoted as material-based storage. Furthermore primary ways to transport hydrogen such as land transportation via trailer and pipeline overseas shipping and some related commercial data are reviewed. As the key results of this article hydrogen storage and transportation technologies are compared with each other. This comparison provides recommendations for building appropriate hydrogen infrastructure systems according to different application scenarios.
Hydrogen Economy and Climate Change: Additive Manufacturing in Perspective
Oct 2025
Publication
The hydrogen economy stands at the forefront of the global energy transition and additive manufacturing (AM) is increasingly recognized as a critical enabler of this transformation. AM offers unique capabilities for improving the performance and durability of hydrogen energy components through rapid prototyping topology optimization functional integration of cooling channels and the fabrication of intricate hierarchical structured pores with precisely controlled connectivity. These features facilitate efficient heat and mass transfer thereby improving hydrogen production storage and utilization efficiency. Furthermore AM’s multi-material and functionally graded printing capability holds promise for producing components with tailored properties to mitigate hydrogen embrittlement significantly extending operational lifespan. Collectively these advances suggest that AM could lower manufacturing costs for hydrogen-related systems while improving performance and reliability. However the current literature provides limited evidence on the integrated techno-economic advantages of AM in hydrogen applications posing a significant barrier to large-scale industrial adoption. At present the technological readiness level (TRL) of AM-based hydrogen components is estimated to be 4–5 reflecting laboratory-scale progress but underscoring the need for further development validation and industrial-scale demonstration before commercialization can be realized.
Optimising Green Hydrogen Production across Europe: How Renewable Energy Sources Shape Plant Design and Costs
Sep 2025
Publication
Green hydrogen is widely recognised as a key enabler for decarbonising heavy industry and long-haul transport. However producing it cost-competitively from variable renewable energy sources presents design challenges. In this study a mixed-integer linear programming (MILP) optimisation framework is developed to minimise the levelised cost of hydrogen (LCOH) from renewable-powered electrolysers. The analysis covers all European countries and explores how wind and solar resource availability influences the optimal sizing of renewable generators electrolysers hydrogen storage and batteries under both current and future scenarios. Results show that renewable resource quality strongly affects system design and hydrogen costs. At present solar-only systems yield LCOH values of 7.4–24.7 €/kg whereas wind-only systems achieve lower costs (5.1–17.1 €/kg) due to higher capacity factors and reduced storage requirements. Hybrid systems combining solar and wind emerge as the most cost-effective solution reducing average LCOH by 57 % compared to solar-only systems and 25 % compared to wind-only systems effectively narrowing geographical cost disparities. In the future scenario LCOH declines to 3–4 €/kg confirming renewable hydrogen’s potential to become economically competitive throughout Europe. A key contribution of this work is the derivation of design guidelines by correlating renewable resource quality with technical energy and economic indicators.
Comparison of Hydro-pumped and Green Hydrogen as Energy Storage Process: A Case Study on Kefalonia Island, Greece
Sep 2025
Publication
The present research work investigates the performance of two large-scale energy storage technologies: hydro-pumped storage (HPS) and green hydrogen production within a hybrid renewable energy system (HRES) developed for Kefalonia Island Greece. Given the island’s seasonal water and electricity shortages driven by summer demand and limited infrastructure the goal is to identify which storage option better supports local autonomy. Two scenarios differing only in storage method were simulated using identical wind input and desalination setup. Performance was evaluated based on climate and demand data focusing on water and electricity needs. Both scenarios achieved 99.9 % potable water coverage. The HPS system exhibited notably higher energy efficiency (67 %) compared to hydrogen (33 %) and produced slightly more desalinated water reaching 18157791 m3 versus 17986544 m3 respectively. Electricity demand coverage reached 77.8 % with HPS and 76.0 % with hydrogen while irrigation demand was met by 80.2 % and 79.4 % respectively. Seasonal storage analysis revealed pronounced summer depletion in both cases due to high demand and low wind availability with HPS recovering faster and maintaining higher storage levels owing to lower energy losses. The comparison underscores the need for storage strategies adapted to island-specific water and energy dynamics. HPS is more efficient for short-to-medium-term needs while green hydrogen offers potential for long-duration storage and deeper decarbonization.
Numerical Analysis of Hydrogen Fingering in Underground Hydrogen Storage
Apr 2025
Publication
Underground hydrogen storage has gained interest in recent years due to the enormous demand for clean energy. Hydrogen is more diffusive than air with a smaller density and lower viscosity. These unique properties introduce distinctive hydrodynamic phenomena in hydrogen storage one of which is fingering. Fingering could induce the fluid trapped in small clusters of pores leading to a dramatic decrease in hydrogen saturation and a lower recovery rate. In this study numerical simulations are performed at the microscopic scale to understand the evolution of hydrogen saturation and the impacts of injection and withdrawal cycles. Two sets of micromodels with different porosity (0.362 and 0.426) and minimum sizes of pore throats (0.362 mm and 0.181 mm) are developed in the numerical model. A parameter analysis is then conducted to understand the influence of injection velocity (in the range of 10-2 m/s to 10-5 m/s) and porous structure on the fingering pattern followed by an image analysis to capture the evolution of the fingering pattern. Viscous fingering capillary fingering and crossover fingering are observed and identified under different boundary conditions. The fractal dimension specific area mean angle and entropy of fingers are proposed as geometric descriptors to characterize the shape of the fingering pattern. When porosity increases from 0.362 to 0.426 the saturation of hydrogen increases by 26.2%. Narrower pore throats elevate capillary resistance which hinders fluid invasion. These results underscore the importance of pore structures and the interaction between viscous and capillary forces for hydrogen recovery efficiency. This work illuminates the influence of the pore structures and the fluid properties on the immiscible displacement of hydrogen and can be further extended to optimize the injection strategy of hydrogen in underground hydrogen storage.
A Cation-exchange Membrane Direct Formate-CO2 Fuel Cell: Enabling Simultaneous Hydrogen Production and CO2 Utilization
Sep 2025
Publication
The carbon-neutral and carbon-negative energy utilization technologies have long been people pursued to realize the strategic objective of carbon neutrality. Herein we propose a cation-exchange membrane (CEM) direct formate-CO2 fuel cell that possesses the capability of simultaneously generating electricity and producing hydrogen as well as continuously transforming carbon dioxide into pure sodium bicarbonate. Using the CO2- derived formate fuel the roof-of-concept CEM direct formate-CO2 fuel cell exhibits a peak power density of 38 mW cm− 2 at 80 ◦C without the assistance of additional electrolyte. The fairly stable constant-current discharge curve along with the detected hydrogen and pure sodium bicarbonate prove the conceptual feasibility of this electricity‑hydrogen-bicarbonate co-production device. By adding alkaline electrolyte to the anode we achieved a higher peak power density of 63 mW cm− 2 at the corresponding hydrogen production rate of 0.57 mL min− 1 cm− 2 . More interestingly the concentrations of pure NaHCO3 solution can be controlled by adjusting the cathode water flow rate and fuel cell discharge current density. This work presents a theoretically feasible avenue for coupling hydrogen production and CO2 utilization.
Predicting Hydrogen Production from Formic Acid Dehydrogenation Using Smart Connectionist Models
Feb 2025
Publication
Hydrogen is a promising clean energy source that can be a promising alternative to fossil fuels without toxic emissions. It can be generated from formic acid (FA) through an FA dehydrogenation reaction using an active catalyst. Activated carbon-supported palladium (Pd/C) catalyst has superior activity properties for FA dehydrogenation and can be reused after deactivation. This study focuses on predicting the FA conversion to H2 (%) in the presence of Pd/C using machine learning techniques and experimental data (1544 data points). Six different machine learning algorithms are employed including random forest (RF) extremely randomized trees (ET) decision tree (DT) K nearest neighbors (KNN) support vector machine (SVM) and linear regression (LR). Temperature time FA concentration catalyst size catalyst weight sodium formate (SF) concentration and solution volume are considered as the input data while the FA conversion to H2 (%) is the target value. Based on the train and test outcomes the ET is the most accurate model for the prediction of FA conversion to H2 (%) and its accuracy is assessed by root mean squared error (RMSE) R-squared (R2 ) and mean absolute error (MAE) which are 3.16 0.97 and 0.75 respectively. In addition the results reveal that solution volume is the most significant feature in the model development process that affects the amount of FA conversion to H2 (%). These techniques can be used to assess the efficiency of other catalysts in terms of type size weight percentage and their effects on the amount of FA conversion to H2 (%). Moreover the results of this study can be used to optimize the energy cost and environmental aspects of the FA dehydrogenation process.
Fuel Cell Technology Review: Types, Economy, Applications, and Vehicle-to-grid Scheme
Feb 2025
Publication
This study conducts a thorough review of fuel cell technology including types economy applications and V2G scheme. Fuel cells have been considered for diverse applications namely electric vehicles specialty vehicles such as warehouse forklifts public transportation including buses trains and ferries. Other applications include grid-related stationary and portable applications. Among available five types of fuel cells PEMFC is presently the optimal choice for electric vehicle usage due to its low operating temperature and durability. Meanwhile high temperature fuel cells such as MCFC and SOFC currently remain the best choice for utility and grid related applications. The economy of fuel cells has been continuously improving and has been illustrated to only grow into a potential main source of sustainable energy soon. With the transportation sector as fuel cell electric ve hicles evolve V2G technology is beneficial towards energy efficiency and fuel cell economy. There is evidence for V2G using FCEV being more advantageous in comparison to conventional BEVs. The costs of the five types of fuel cell vary from US$1784 to US$4500 per kW capacity. The findings are beneficial for researchers and industry professionals who wish to gain comprehensive understanding of fuel cells for adoption and development of the emerging low-emission energy solutions.
Performance and Durability of a 50-kW Proton Exchange Membrane Water Electrolyzer using Various Fluctuating Power Sources
Sep 2025
Publication
Scaling up water electrolyzers for green hydrogen production poses challenges in predicting megawatt-to gigawatt (MW/GW)-class system behavior under renewable energy power fluctuations. A fundamental evaluation is warranted to connect the characteristics of W- to kW-class laboratory electrolyzers with those of MW- to GW-class systems in practical applications. This study evaluates a 50 kW-class proton exchange membrane water electrolyzer with 30 cells using an accelerated degradation test protocol a simulated renewable energy power and a constant current of 800 A (1.33 A cm− 2 ) and the results show average degradation rates per cell of 40.4 27.2 and 5.6 μV h− 1 respectively. Evidently a voltage as approximate indicator exists for each cell to effectively suppress degradation. Durability tests reveal reductions in anode catalyst loading on the membrane electrode assemblies and inhomogeneous oxidation of the anode current collector. The findings contribute to predicting the stacking performance of electrolyzers for practical applications.
Thermal Management of Fuel Cells in Hydrogen-Powered Unmanned Aerial Vehicles
Oct 2025
Publication
Hydrogen-powered unmanned aerial vehicles (UAVs) offer significant advantages such as environmental sustainability and extended endurance demonstrating broad application prospects. However the hydrogen fuel cells face prominent thermal management challenges during flight operations. This study established a numerical model of the fuel cell thermal management system (TMS) for a hydrogen-powered UAV. Computational fluid dynamics (CFD) simulations were subsequently performed to investigate the impact of various design parameters on cooling performance. First the cooling performance of different fan density configurations was investigated. It was found that dispersed fan placement ensures substantial airflow through the peripheral flow channels significantly enhancing temperature uniformity. Specifically the nine-fan configuration achieves an 18.5% reduction in the temperature difference compared to the four-fan layout. Additionally inlets were integrated with the fan-based cooling system. While increased external airflow lowers the minimum fuel cell temperature its impact on high-temperature zones remains limited with a temperature difference increase of more than 19% compared to configurations without inlets. Furthermore the middle inlet exhibits minimal vortex interference delivering superior thermal performance. This configuration reduces the maximum temperature and average temperature by 9.1% and 22.2% compared to the back configuration.
Aromatic Liquid Organic Hydrogen Carriers for Hydrogen Storage and Release
Apr 2023
Publication
Hydrogen production from renewable energy sources has the potential to significantly reduce the carbon footprint of critical economic sectors that rely heavily on fossil fuels. Liquid organic hydrogen carrier (LOHC) technology has the capability to overcome the limitations associated with conventional hydrogen storage technologies. To date dibenzyltoluene and benzyltoluene are the benchmark LOHC molecules due to the unique hydrogen storage properties. However the reaction temperature for dehydrogenation reaction is high and catalysts need to be further developed so that efficient release of hydrogen can be realized. Exploration of various catalyst preparation methods such as supercritical carbon-dioxide deposition the selection on support material with relevant textural and chemical properties and optimization of catalyst modifiers are rewarding approaches of improving the catalyst performance. In addition to this the lowering of the dehydrogenation temperature by employing electrochemical methods and reactive distillation approaches are strategies that will make the LOHC technology competitive.
Betting vs. Trading: Learning a Linear Decision Policy for Selling Wind Power and Hydrogen
Jul 2025
Publication
We develop a bidding strategy for a hybrid power plant combining co-located wind turbines and an electrolyzer constructing a price-quantity bidding curve for the day-ahead electricity market while optimally scheduling hydrogen production. Without risk management single imbalance pricing leads to an all-or-nothing trading strategy which we term “betting”. To address this we propose a data-driven pragmatic approach that leverages contextual information to train linear decision policies for both power bidding and hydrogen scheduling. By introducing explicit risk constraints to limit imbalances we move from the all-or-nothing approach to a “trading” strategy where the plant diversifies its power trading decisions. We evaluate the model under three scenarios: when the plant is either conditionally allowed always allowed or not allowed to buy power from the grid which impacts the green certification of the hydrogen produced. Comparing our data-driven strategy with an oracle model that has perfect foresight we show that the risk-constrained data-driven approach delivers satisfactory performance.
Theoretical Thermal Management Concepts of Recovery Heat Waste in Solid Oxide Fuel Cell System
Oct 2025
Publication
Solid oxide electrolysis cells (SOEC) system has potential to offer an efficient green hydrogen production technology. However the significant cost of this technology is related to the high operating temperatures materials and thermal management including the waste heat. Recovering the waste heat can be conducted through techniques to reduce the overall energy consumption. This approach aims to improve accuracy and efficiency by recovering and reusing the heat that would otherwise be lost. In this paper thermal energy models are proposed based on waste heat recovery methodologies to utilize the heat from outlet fluids within the SOEC system. The mathematical methods for calculating thermal energy and energy transfer in SOEC systems have involved the principles of heat transfer. To address this different simplified thermal models are developed in Simulink Matlab R2025b. The obtained results for estimating proper thermal energy for heating incoming fluids and recycled heat are discussed and compared to determine the efficient and potential thermal model for improvement the waste heat recovery.
Economic Study of Hybrid Power System Using Boil-off Hydrogen for Liquid Hydrogen Carriers
Mar 2024
Publication
This study presents a hybrid power system comprising a fuel cell (FC) and a lithium-ion battery (LIB) for liquid hydrogen (LH2) carriers which is expected to increase globally due to the production cost gap of green hydrogen between renewable-rich and renewable-poor countries. The LH2 carrier has a key challenge in handling the inevitably considerable boil-off hydrogen (BOH). As a target ship of a 50000 m3 LH2 carrier with a boil-off rate (BOR) of 0.4% per day this study employs an optimization tool to determine the economic power dispatch between the FC and LIB aimed at minimizing the lifetime cost of the ship. The BOH is used as fuel for FC during the voyage. Moreover when the ship is under cargo loading and unloading operations at the port the considerable surplus BOH is utilized to generate electricity and then sold to the shore grid (StG). The results indicate that 45.2% of the BOH can be utilized as fuel for the FC and the StG system can effectively reduce the total lifetime cost by 32.0%. Further the paper presents the outcomes of a sensitivity analysis conducted on critical parameters. This study provides new insights into the BOH issue of LH2 carriers and helps to increase the international green hydrogen market.
Experimental Evaluation of Ammonium Formate as a Potential Hydrogen Storage Option
Sep 2025
Publication
Electrochemical energy conversion systems are recognized as sustainable options for clean power generation. In conjunction with this the current hydrogen storage methods often suffer from limited storage density stability or high cost which motivate the search for alternative fuels with improved performance. This study is designed to investigate ammonium formate as an effective hydrogen storage medium and an efficient electrochemical fuel in electrochemical energy conversion systems. In order to perform the experimental tests stainless steel-stainless steel and aluminum-stainless steel electrode pairs are selected and examined under varying concentrations of potassium hydroxide sodium chloride and hydrogen peroxide at 80 ◦C and the system responses are then evaluated through voltage–time monitoring and polarization curve analysis. The aluminum-stainless steel configuration achieves the highest performance under 0.1 M potassium hydroxide and 10 % hydrogen peroxide reaching the voltages near ~ 900 mV and current densities of ~ 340 mA cm− 2 ; and the sodium chloride systems produce up to ~ 820 mV and ~ 310 mA cm− 2 while higher additive levels result in decreasing the voltages below 500 mV due to losses and side reactions. These findings confirm that moderate additive concentrations and optimized electrode pairing significantly enhance efficiency positioning ammonium formate as a low-cost energy-dense fuel suitable for decentralized and portable applications.
Tempering-induced Modulation of Hydrogen Embrittlement in Additvely Manufactured AISI 4340 Steel
Sep 2025
Publication
Recent studies on additive manufacturing (AM) have indicated the necessity of understanding the hydrogen embrittlement (HE) of high-strength steels fabricated by AM due to the different microstructure obtained compared to their conventionally processed counterparts. This study investigated the influence of post-AM tempering (at 205 ◦C 315 ◦C and 425 ◦C) on the HE resistance of AM-fabricated AISI 4340 steel a representative ultrahigh-strength medium-carbon low-alloy steel. The present results show that tempering effectively reduced the HE sensitivity of the steel. When tested in air tempering at a low temperature of 205 ◦C slightly increased both the yield strength (YS) and ultimate tensile strength (UTS) accompanied by a reduction in elongation (EL). This behaviour is attributed to the precipitation of carbides. In contrast higher tempering temperatures of 315 ◦C and 425 ◦C resulted in a progressive decrease in both YS and UTS as anticipated. However when tested in a hydrogen-rich environment although the HE dramatically reduced the ductility and YS could not even be determined for the samples tempered at 205 ◦C and 315 ◦C the tempered samples retained higher UTS and EL compared to the as-AM-fabricated samples because of the increased HE resistance by tempering. Microstructural examination indicated that tempering at 205 ◦C and 315 ◦C retained the bainitic microstructure while promoting the formation of fine carbide precipitates which softened the bainitic ferrite matrix enhancing the hydrogen trapping capacity. Tempering at 425 ◦C promoted recovery of the AM-fabricated steel reducing dislocation density producing a lower subsurface hydrogen concentration and higher hydrogen diffusivity which led to an enhanced HE resistance. As a result testing of the samples tempered at 425 ◦C in hydrogen resulted in a high YS (~1200 MPa) and only a ~5 % reduction in UTS and a 64 % reduction in EL compared with the untempered samples of which the reductions were 31 % in UTS and 79 % in EL. Furthermore this study underscores the critical role of the trap character in governing the HE behaviour offering a pathway toward optimised heat treatment strategies for improved HE resistance of additively manufactured high-strength steels.
The German Scramble for Green Hydrogen in Namibia: Colonial Legacies Revisited?
Feb 2025
Publication
Namibia is positioning itself as a green hydrogen superpower to supply the German market with the muchneeded energy carrier. While the hydrogen hype is marketed as a pathway facilitating the German and Euro pean green transition that is mutually beneficial for African interests social movements and affected commu nities have been denouncing green colonialist tendencies of the hydrogen rush. This paper is centring these claims. Applying a heuristic of green colonialism along the lines of externalisation enactment expansion exclusion and empowerment we highlight colonial tendencies of the hydrogen rush in Namibia. While still in a nascent stadium current developments indicate patterns to transform Southern economies according to Euro pean interest which can then uphold their allegedly superior image as renewable energy pioneers. Our study indicates that the green hydrogen rush resembles a longue dur´ee of (neo)colonial violence: while clinging to old colonial patterns it takes advantage of the post-colonial state and at the same time uses narratives of contemporary multiple crises to advance and legitimise a supposedly green but intrinsically violent transition.
A Hydrogen Supply System Utilizing PEMFC Exhaust Heat and Modular Metal Hydride Tanks for Hydrogen-powered Bicycles
Sep 2025
Publication
A compact hydrogen supply system for thermally integrating metal hydride (MH) tanks with a proton exchange membrane fuel cell (PEMFC) for a hydrogen-powered electric-assist bicycle (H-bike) is proposed. The system recovers the exhaust heat generated by the PEMFC to sustain hydrogen desorption and improve the system’s energy efficiency. The results demonstrate that the split-tank strategy decreases thermal and pressure gradients and enhances heat transfer and hydrogen release. The honeycomb tank configuration further improves hydrogen desorption by promoting uniform airflow distribution around each tank thereby improving exhaust heat utilization from the PEMFC. It employs a layer-adjustable configuration facilitating the flexible adaptation of MH cartridge quantities to meet hydrogen demand and prevailing road conditions in urban areas. Under a PEMFC power output of 215 W the system maintains a stable hydrogen flow rate for over 30 min with a heat recovery efficiency of 22.62 %. Furthermore increasing the number of MH cartridge layers significantly improves the thermal utilization of the system achieving a utilization efficiency of 39.90 % with two layers. These findings confirm the feasibility and scalability of the proposed system for H-bike highlighting its potential as a decentralized hydrogen supply solution for lightweight mobility and urban transportation applications.
A Novel Design Approach: Increase in Storage and Transport Efficiency for Liquid Hydrogen by Using a Dual Concept Involving a Steel-fiber Composite Tank and Thermal Sprayed Insulating Coatings
Nov 2024
Publication
Wind power-to-gas concepts have a high potential to sustainably cover the increasing demand for hydrogen as an energy carrier and raw material as it has been shown in the past that there is an enormous potential in energy overproduction which currently remains unused due to the shutdown of wind turbines. Thus there is barely experience in maritime production offshore storage and transport of large quantities of liquid hydrogen (LH2) due to the developing market. Instead tank designs refer to heavy standard onshore storage and transport applications with vacuum insulated double wall hulls made from austenitic stainless steel and comparatively high thermal diffusivity and conductivity. This reduces cost effectiveness due to inevitable boil-off and disregards some other requirements such as mechanical and cyclic strength and high corrosion resistance. Hence new concepts for LH2 tanks are required for addressing these issues. Two innovative technical concepts from space travel and high-temperature applications were adopted combined and qualified for use in the wind-power-to-gas scenario. The focus was particularly on the high requirements for transport weight insulation and cryogenic durability. The first concept part consisted of the implementation of FRP (fiber-reinforced plastics)–steel hybrid tanks which have a high potential as a hull for LH2 tanks. However these hybrid tanks are currently only used in the space sector. Questions still arise regarding interactions with coatings production material temperature resilience and design for commercial use. Thermally sprayed thermal barrier coatings (TBC) in turn show promising potential for surfaces subject to high thermal and mechanical stress. However the application is currently limited to use at high temperatures and needed to be extended to the cryogenic temperature range. The research on this second part of the concept thus focused on the validation of standard MCrAlY alloys and innovative (partially) amorphous metal coatings with regard to mechanical-technological and insulating properties in the low temperature range. This article gives an overview regarding the achieved results including manufacturing and measurements on a small tank demonstrator.
No more items...