Publications
Effect of Temperature on Laminar Flame Velocity for Hydrogen-air Mixtures at Reduced Pressures
Sep 2013
Publication
The work was done with respect to hydrogen safety of ITER vacuum vessel in cases of loss of cooling and loss of vacuum accidents. Experiments were conducted at sub-atmospheric pressures from 1 bar to 200 mbar and elevated temperatures up to 300 oC. Hydrogen concentration was changed from lower to upper flammability limits in all the range of pressures and temperatures. The experiments were performed in a spherical explosion bomb equipped with two quartz windows. The flame propagation velocity was measured using pressure method and high speed shadow cinematography. The theoretical flame velocities were calculated by Cantera code using Lutz and Mueller mechanisms. The influence of the initial temperature and pressure conditions on the laminar flame speed SL overall reaction order n and Markstein length LM are presented in this work and compared with the results of a theoretical model.
Real World Hydrogen Technology Validation
Sep 2011
Publication
The Department of Energy the Department of Defense's Defense Logistics Agency and the Department of Transportation's Federal Transit Administration have funded learning demonstrations and early market deployments to provide insight into applications of hydrogen technologies on the road in the warehouse and as stationary power. NREL's analyses validate the technology in real-world applications reveal the status of the technology and facilitate the development of hydrogen and fuel cell technologies manufacturing and operations. This paper presents the maintenance safety and operation data of fuel cells in multiple applications with the reported incidents near misses and frequencies. NREL has analyzed records of more than 225000 kilograms of hydrogen that have been dispensed through more than 108000 hydrogen fills with an excellent safety record.
Integration of Open Slag Bath Furnace with Direct Reduction Reactors for New‐Generation Steelmaking
Jan 2022
Publication
The present paper illustrates an innovative steel processing route developed by employing hydrogen direct reduced pellets and an open slag bath furnace. The paper illustrates the direct reduction reactor employing hydrogen as reductant on an industrial scale. The solution allows for the production of steel from blast furnace pellets transformed in the direct reduction reactor. The reduced pellets are then melted in open slag bath furnaces allowing carburization for further refining. The proposed solution is clean for the decarbonization of the steel industry. The kinetic chemical and thermodynamic issues are detailed with particular attention paid to the slag conditions. The proposed solution is also supported by the economic evaluation compared to traditional routes.
Thermal Hydrogen: An Emissions Free Hydrocarbon Economy
Apr 2017
Publication
Envisioned below is an energy system named Thermal Hydrogen developed to enable economy-wide decarbonization. Thermal Hydrogen is an energy system where electric and/or heat energy is used to split water (or CO2) for the utilization of both by-products: hydrogen as energy storage and pure oxygen as carbon abatement. Important advantages of chemical energy carriers are long term energy storage and extended range for electric vehicles. These minimize the need for the most capital intensive assets of a fully decarbonized energy economy: low carbon power plants and batteries. The pure oxygen pre-empts the gas separation process of “Carbon Capture and Sequestration” (CCS) and enables hydrocarbons to use simpler more efficient thermodynamic cycles. Thus the “externality” of water splitting pure oxygen is increasingly competitive hydrocarbons which happen to be emissions free. Methods for engineering economy-wide decarbonization are described below as well as the energy supply carrier and distribution options offered by the system.
A National Set of Hydrogen Codes and Standards for the US
Sep 2009
Publication
In 2003 the US Department of Energy (DOE) initiated a project to coordinate the development of a national template of hydrogen codes and standards for both vehicular and stationary applications. The process consisted of an initial evaluation to determine where there were gaps in the existing hydrogen codes and standards and the codes and standards required to fill these gaps. These codes and standards were to be developed by several Standards Development Organizations (SDOs). This effort to develop codes and standards has progressed from a position in 2003 when there were relatively few codes and standards that directly addressed hydrogen technology applications to the position at the end of 2008 where requirements to permit hydrogen technologies have been implemented in primary adopted codes- building and fire codes in hydrogen specific codes such as National Fire Protection Association (NFPA) 52 NFPA 55 and NFPA 853 and in many of the hydrogen specific component standards that are referenced primarily in the NFPA codes and standards. This paper describes the three levels of codes and standards that address hydrogen technologies for the built environment:<br/>Level 1. Primary adopted building and fire codes<br/>Level 2. Hydrogen specific codes and standards references in primary adopted code<br/>Level 3. Hydrogen specific component standards referenced in hydrogen specific codes<br/>This paper also describes the progress to date in populating these three levels with the required hydrogen codes and standards. The first two levels are essentially complete and are undergoing refinement and routine revision. Level 3 the hydrogen specific component standards is the furthest from having first edition documents that address requirements for a hydrogen system component.<br/>The DOE is focusing much of their codes and standards development efforts on these hydrogen specific component standards with the expectation that a first edition of most of these standards will be issued by 2010.
Steam Condensation Effect in Hydrogen Venting from a BWR Reactor Building
Oct 2015
Publication
In the accident of Fukushima Daiichi nuclear power plants hydrogen was accumulated in the reactor buildings and exploded. To prevent such explosions hydrogen venting from reactor buildings is considered. When the gas mixture is released to a reactor building through a reactor containment together with the hydrogen some amount of steam might also be released. The steam condenses if the building atmosphere is below the saturation temperature and it affects the hydrogen behaviour. In this study the condensation effect to the hydrogen venting is evaluated using CFD analyses by comparing the case where a hydrogen-nitrogen mixture is released and the case where a hydrogen-steam mixture is released.
Reversible Ammonia-based and Liquid Organic Hydrogen Carriers for High-density Hydrogen Storage: Recent Progress
Feb 2019
Publication
Liquid hydrogen carriers are considered to be attractive hydrogen storage options because of their ease of integration into existing chemical transportation infrastructures when compared with liquid or compressed hydrogen. The development of such carriers forms part of the work of the International Energy Agency Task 32: Hydrogen-Based Energy Storage. Here we report the state-of-the-art for ammonia-based and liquid organic hydrogen carriers with a particular focus on the challenge of ensuring easily regenerable high-density hydrogen storage.
Testing, Evaluation and Development of Hydrogen Sensors for an Underground Mining Ventilation Test Facility
Sep 2019
Publication
An underground mining ventilation testing facility (VTF) was designed and constructed at the HySA facility at the North-West University South Africa. The purpose was to evaluate risks associated with different hydrogen storage technologies in a confined environment. The work included initial calculations of hydrogen movement in specific spaces and the development of simulation tools to compare these modelled results with experimental work. For this purpose hydrogen sensors that could accurately measure hydrogen concentrations during a controlled hydrogen leak at the VTF were required. Hazardous hydrogen sensors capable of measuring >4% hydrogen are not readily available commercially. Typically hydrogen sensors rated for hazardous environments are designed for safety actions (e.g. activating emergency measures when hydrogen is detected) at concentrations of 8%. (Measuring concentrations higher than this is not required for commercial use hence there is no market for such sensors.) At the VTF it is necessary to be able to measure hydrogen concentrations >4% in order to obtain information on the flammable hydrogen concentrations at specified distances and orientations around a controlled hydrogen leak. Initial experimental work was conducted at low pressures resulting in very low hydrogen concentrations. Commercial available original equipment manufacturer (OEM) hydrogen sensors were capable of measuring 0.2% hydrogen which for the low pressures and gas flows here proved sufficient to enable us to make sensible conclusions. However higher pressures and gas flows are essential in practical use hence higher concentrations of hydrogen need to be measured. A custom sensor was developed by HySA while commercial sensors (OEM) were investigated. This work reports on the testing and evaluation of several hydrogen sensors. Results of initial ventilation tests are presented.
Modeling of the Flame Acceleration in Flat Layer for Hydrogen-air Mixtures
Sep 2011
Publication
The flame propagation regimes for the stoichiometric hydrogen-air mixtures in an obstructed semiconfined flat layer have been numerically investigated in this paper. Conditions defining fast or sonic propagation regime were established as a function of the main dimensions characterizing the system and the layout of the obstacles. It was found that the major dependencies were the following: the thickness of the layer of H2-air mixture the blockage ratio and the distance between obstacles and the obstacle size. A parametric study was performed to determine the combination of the above variables prone to produce strong combustions. Finally a criterion that separates experiments resulting in slow subsonic from fast sonic propagations regimes was proposed.
Designing Optimal Integrated Electricity Supply Configurations for Renewable hydrogen Generation in Australia
Jun 2021
Publication
The high variability and intermittency of wind and solar farms raise questions of how to operate electrolyzers reliably economically and sustainably using pre-dominantly or exclusively variable renewables. To address these questions we develop a comprehensive cost framework that extends to include factors such as performance degradation efficiency financing rates and indirect costs to assess the economics of 10 MW scale alkaline and proton-exchange membrane electrolyzers to generate hydrogen. Our scenario analysis explores a range of operational configurations considering (i) current and projected wholesale electricity market data from the Australian National Electricity Market (ii) existing so-lar/wind farm generation curves and (iii) electrolyzer capital costs/performance to determine costs of H2production in the near (2020–2040) and long term(2030–2050). Furthermore we analyze dedicated off-grid integrated electro-lyzer plants as an alternate operating scenario suggesting oversizing renewable nameplate capacity with respect to the electrolyzer to enhance operational capacity factors and achieving more economical electrolyzer operation.
OIES Podcast – Hydrogen: Current Challenges in Creating Viable Business Cases
Apr 2022
Publication
In this podcast David Ledesma talks to Martin Lambert Head of OIES Hydrogen Research about the key messages from the recent European Hydrogen Conference and how they fit with the ongoing research in OIES. In particular they cover the heightened energy security concerns following the Russian invasion of Ukraine and hydrogen ambitions in the REPowerEU document published by the European Commission in early March 2002. They then go on to talk about the growing realism about where hydrogen is more likely to play a role and some of the key challenges to be overcome. Addressing the challenges of creating business cases for use of hydrogen in specific sectors and for transporting it to customers the conversation also addresses the importance of hydrogen storage and the recognition that this area needs more focus both technically and commercially. Finally they talk about the geopolitics of hydrogen and how energy security concerns may influence future development pathways.
The podcast can be found on their website
The podcast can be found on their website
Ignition Experiments of Hydrogen Mixtures by Different Methods and Description of the DRDC Test Facilities
Sep 2009
Publication
The paper will present results of hydrogen/oxygen mixtures ignited by using electric sparks electrostatic discharges a heating element and a flame. Measurements of the lower flammability limit (LFL) was done for each ignition method. The hydrogen mixtures of different concentrations were ignited at the bottom of a combustion chamber leading to an upward propagation of the resulting flame. At some level of concentration the combustion was partial due to the limited upward propagation. The complete combustion of the whole mixture was observed at concentration limits higher than the known LFL of 4% vol. for hydrogen in air. The paper will describe the test facilities and the resulting ignition probabilities for different ignition methods.
Hydrogenation and Dehydrogenation of Liquid Organic Hydrogen Carriers: A New Opportunity for Carbon-Based Catalysts
Jan 2022
Publication
The development of a hydrogen-based economy is the perfect nexus between the need of discontinuing the use of fossil fuels (trying to mitigate climate change) the development of a system based on renewable energy (with the use of hydrogen allowing us to buffer the discontinuities produced in this generation) and the achievement of a local-based robust energy supply system. However extending the use of hydrogen as an energy vector must still overcome challenging issues with the key issues being related to its storage. Cryogenic or pressurized storage is relatively expensive technically complex and presents important safety concerns. As a promising alternative the use of organic hydrogen carriers has been suggested in recent years. The ideal carrier will be an organic compound with a low melting point and low viscosity with a significant number of unsaturated carbon–carbon bonds in addition to being easy to hydrogenate and dehydrogenate. These properties allow us to store and transport hydrogen in infrastructures designed for liquid fuels thus facilitating the replacement of fossil fuels by hydrogen
On the Use of Hydrogen in Confined Spaces: Results from the Internal Project InsHyde
Sep 2009
Publication
Alexandros G. Venetsanos,
Paul Adams,
Inaki Azkarate,
A. Bengaouer,
Marco Carcassi,
Angunn Engebø,
E. Gallego,
Olav Roald Hansen,
Stuart J. Hawksworth,
Thomas Jordan,
Armin Keßler,
Sanjay Kumar,
Vladimir V. Molkov,
Sandra Nilsen,
Ernst Arndt Reinecke,
M. Stöcklin,
Ulrich Schmidtchen,
Andrzej Teodorczyk,
D. Tigreat,
N. H. A. Versloot and
L. Boon-Brett
The paper presents an overview of the main achievements of the internal project InsHyde of the HySafe NoE. The scope of InsHyde was to investigate realistic small-medium indoor hydrogen leaks and provide recommendations for the safe use/storage of indoor hydrogen systems. Additionally InsHyde served to integrate proposals from HySafe work packages and existing external research projects towards a common effort. Following a state of the art review InsHyde activities expanded into experimental and simulation work. Dispersion experiments were performed using hydrogen and helium at the INERIS gallery facility to evaluate short and long term dispersion patterns in garage like settings. A new facility (GARAGE) was built at CEA and dispersion experiments were performed there using helium to evaluate hydrogen dispersion under highly controlled conditions. In parallel combustion experiments were performed by FZK to evaluate the maximum amount of hydrogen that could be safely ignited indoors. The combustion experiments were extended later on by KI at their test site by considering the ignition of larger amounts of hydrogen in obstructed environments outdoors. An evaluation of the performance of commercial hydrogen detectors as well as inter-lab calibration work was jointly performed by JRC INERIS and BAM. Simulation work was as intensive as the experimental work with participation from most of the partners. It included pre-test simulations validation of the available CFD codes against previously performed experiments with significant CFD code inter-comparisons as well as CFD application to investigate specific realistic scenarios. Additionally an evaluation of permeation issues was performed by VOLVO CEA NCSRD and UU by combining theoretical computational and experimental approaches with the results being presented to key automotive regulations and standards groups. Finally the InsHyde project concluded with a public document providing initial guidance on the use of hydrogen in confined spaces.
High CO2 Absorption Capacity of Metal-Based Ionic Liquids: A Molecular Dynamics Study
Apr 2020
Publication
The absorption of CO2 is of importance in carbon capture utilization and storage technology for greenhouse gas control. In the present work we clarified the mechanism of how metal-based ionic liquids (MBILs) Bmim[XCln]m (X is the metal atom) enhance the CO2 absorption capacity of ILs via performing molecular dynamics simulations. The sparse hydrogen bond interaction network constructed by CO2 and MBILs was identified through the radial distribution function and interaction energy of CO2-ion pairs which increase the absorption capacity of CO2 in MBILs. Then the dynamical properties including residence time and self-diffusion coefficient confirmed that MBILs could also promote the diffusion process of CO2 in ILs. That's to say the MBILs can enhance the CO2 absorption capacity and the diffusive ability simultaneously. Based on the analysis of structural energetic and dynamical properties the CO2 absorption capacity of MBILs increases in the order Cl− → [ZnCl4]2-→ [CuCl4]2-→ [CrCl4]- → [FeCl4]- revealing the fact that the short metal–Cl bond length and small anion volume could facilitate the performance of CO2 absorbing process. These findings show that the metal–Cl bond length and effective volume of the anion can be the effective factors to regulate the CO2 absorption process which can also shed light on the rational molecular design of MBILs for CO2 capture and other key chemical engineering processes such as IL-based gas sensors nano-electrical devices and so on.
Licensing a Fuel Cell Bus and a Hydrogen Fueling Station in Brazil
Sep 2011
Publication
The Brazilian Fuel Cell Bus Project is being developed by a consortium comprising 14 national and international partners. The project was initially supported by the GEF/UNDP and MME/FINEP Brazil. The national coordination is under responsibility of MME and EMTU/SP the São Paulo Metropolitan Urban Transport Company that also controls the bus operation and bus routes. This work reports the efforts done in order to obtain the necessary licenses to operate the first fuel cell buses for regular service in Brazil as well as the first commercial hydrogen fueling station to attend the vehicles.
Real-gas Equations-of-State for the GASFLOW CFD Code
Sep 2011
Publication
GASFLOW is a finite-volume computer code that solves the time-dependent two-phase homogeneous equilibrium model compressible Navier–Stokes equations for multiple gas species with turbulence. The fluid-dynamics algorithm is coupled with conjugate heat and mass transfer models to represent walls floors ceilings and other internal structures to describe complex geometries such as those found in nuclear containments and facilities. Recent applications involve simulations of cryogenic hydrogen tanks at elevated pressures. These applications which often have thermodynamic conditions near the critical point require more accurate real-gas Equations-of-State (EoS) and transport properties than the standard ideal gas EoS and classical kinetic-theory transport properties. This paper describes the rigorous implementation of the generalized real-gas EoS into the GASFLOW CFD code as well as the specific implementation of respective real-gas models (Leachman's NIST hydrogen EoS a modified van der Waals EoS and a modified Nobel-Abel EoS); it also includes a logical testing procedure based upon a numerically exact benchmark problem. An example of GASFLOW simulations is presented for an ideal cryo-compressed hydrogen tank of the type utilized in fuel cell vehicles.
Full Suppression of Hydrogen Explosion Using Phlegmatization Additives- Experimental Results
Sep 2011
Publication
The paper presents results of experimental investigations of different phlegmatizator substances and its binary compounds used for full hydrogen combustion suppression. The work was performed in experimental facilities of three different scales (small medium and large) at normal initial pressure and temperature range 20 ⎯ 120 °С. Ten individual substances and six binary compounds were tested in a small scale experiments. Three individual halogen containing substances capable of full suppression of hydrogen combustion were found in a series of small scale experiments (tube length – 1 m ID – 66 mm). The minimum concentration of the most effective substance was 11% at 20°С and 14% at 120°С in a small scale experiments. Medium scale confined and large scale unconfined experiments confirmed the possibility of full combustion suppression. The minimum concentration of the most effective binary mixture was found to be 12 % at 20°С in a large scale experiments.
Hydrogen Transport and Trapping: From Quantum Effects to Alloy Design
Jun 2017
Publication
This discussion session concerned experimental and theoretical investigations of the atomistic properties underlying the energetics and kinetics of hydrogen trapping and diffusion in metallic systems.
This article is a transcription of the recorded discussion of ‘Hydrogen transport and trapping: from quantum effects to alloy design.‘ at the Royal Society Scientific Discussion Meeting Challenges of Hydrogen and Metals 16–18 January 2017. The text is approved by the contributors. Y.-S.C. transcribed the session. H.L. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
This article is a transcription of the recorded discussion of ‘Hydrogen transport and trapping: from quantum effects to alloy design.‘ at the Royal Society Scientific Discussion Meeting Challenges of Hydrogen and Metals 16–18 January 2017. The text is approved by the contributors. Y.-S.C. transcribed the session. H.L. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
Advances and Challenges of MOF Derived Carbon-based Electrocatalysts and Photocatalyst for Water Splitting: A Review
Apr 2022
Publication
Environmental pollution and energy shortage are substantial fears to the modern world's long-term sustainability. Water splitting is an essential technique for eco - friendly and sustainable energy storage as well as a pollution-free method to produce hydrogen. In this regards Metal–organic frameworks have emerged as the most competent multifunctional materials in recent times due to its large surface areas adjustable permeability easy compositional alteration and capability for usage as precursors with a wide range of morphological forms. Further MOF-derived carbon-based nanomaterials also offer significant benefits in terms of tunable morphological features and hierarchical permeability as well as ease of functionalization making them extremely effective as catalysts or catalysts supports for a wide variety of important reactions. Recent developments in carbon-based MOFs as catalysts for overall water splitting are discussed in this review. We explore how MOFs and carbon-based MOFs might well be beneficial as well as which methods should be explored for future development. We divided our review into two sections: photocatalytic and electrocatalytic water splitting and we gathered published literature on carbon-based MOFs materials for their outstanding activity offers helpful methods for catalysts design and analysis as well as difficulties This study highlights the developments in MOF derived materials as photo and electro catalysts by explaining respective approaches for their use in overall water splitting.
No more items...