Publications
Effect of the Position and the Area of the Vent on the Hydrogen Dispersion in a Naturally Ventilated Cubiod Space with One Vent on the Side Wall
Dec 2021
Publication
The design of ventilation system has implications for the safety of life and property and the development of regulations and standards in the space with the hydrogen storage equipment. The impact of both the position and the area of a single vent on the dispersion of hydrogen in a cuboid space (with dimensions L x W x H ¼ 2.90 0.74 1.22 m) is investigated with Computational Fluid Dynamics (CFD) in this study. Nine positions of the vent were compared for the leakage taking place at the floor to understand the gas dispersion. It was shown a cloud of 1% mole fraction has been formed near the ceiling of the space in less than 40 s for different positions of the vent which can activate hydrogen sensors. The models show that the hydrogen is removed more effectively when the vent is closer to the leakage position in the horizontal direction. The study demonstrates that the vent height of 1.00 m is safer for the particular scenario considered. The area of the vent has little effect on the hydrogen concentration for all vent positions when the area of the vent is less than 0.045 m2 and the height of the vent is less than 0.61 m.
Hydrogen Storage: Recent Improvements and Industrial Perspectives
Sep 2019
Publication
Efficient storage of hydrogen is crucial for the success of hydrogen energy markets (early markets as well as transportation market). Hydrogen can be stored either as a compressed gas a refrigerated liquefied gas a cryo-compressed gas or in hydrides. This paper gives an overview of hydrogen storage technologies and details the specific issues and constraints related to the materials behaviour in hydrogen and conditions representative of hydrogen energy uses. It is indeed essential for the development of applications requiring long-term performance to have good understanding of long-term behaviour of the materials of the storage device and its components under operational loads.
Risk Analysis on Mobile Hydrogen Refueling Stations in the World Expo Shanghai
Sep 2013
Publication
During the World Expo Shanghai there were one hundred fuel-cell sight-seeing cars in operation at the Expo Site. The sight-seeing cars were not allowed to drive out of the Expo Site and the stationary hydrogen refuelling station was not permitted to build at the Expo Site for the sake of safety. A flexible solution to refuel the cars was the application of mobile hydrogen refuelling stations. To better understand the hazards and risks associated with the mobile hydrogen refueling stations a risk analysis was preformed to improve the safety of the operations. The risks to the station personnel and to the public were discussed separately. Results show that the stationary risks of the mobile stations to the personnel and refueling customers are lower than the risk acceptance criteria over an order of magnitude so occupational risks and risks to customers are completely acceptable. The third party risks can be acceptable as long as the appropriate mitigation measures are implemented especially well designed parking area and operation time. Leak from boosters is the main risk contributor to the stationary risks because of its highest failure rates according to the generic data and its worst harm effects based on the consequence evaluations. As for the road risks of the mobile stations they can be acceptable as long as the appropriate mitigation measures are implemented especially well-designed moving path and transportation time.
Numerical Simulation of Homogenous/Inhomogeneous Hydrogen-air Explosion in a Rectangular Channel
Sep 2019
Publication
Hydrogen is one of the promising energy sources in the future because it has the advantages of clean combustion products high efficiency and renewable energy. However hydrogen has the characteristics of low ignition energy wide flammable range (4% -75%) and fast burning flame speed which can cause explosion hazards. Typically the accidental release of hydrogen into confined or semi confined enclosures can often lead to a flammable hydrogen-air mixture with concentration gradients and possible flame acceleration and deflagration-to-detonation transition (DDT). The present study aims to test the capability of our in-house density-based solver ExplosionEngFoam for flame acceleration (FA) and deflagration-to-detonation transition (DDT) in homogenous/inhomogeneous hydrogen-air mixtures. The solver is based on the open source computational fluid dynamics (CFD) platform OpenFOAM and uses the modified Weller et al.’s combustion model taking into account LD and RT instabilities turbulence and non-unity Lewis number etc. Numerical simulations were conducted for both homogeneous and inhomogeneous mixtures in a long enclosed channel with 5.4 m in length and 0.06 m in height. The predictions demonstrate good quantitative agreement with the experimental measurements in flame tip position speed and pressure profiles by Boeck et al. The flow characteristics such as flame fine structure wave evolution etc. were also discussed.
Project Cavendish - National Grid Gas Transmission
Sep 2020
Publication
The Isle of Grain (IoG) presents a technically feasible commercially viable strategic location to build and operate a hydrogen production facility which would be a key enabler to the UK meeting the Net Zero 2050 target.
As highlighted in the ‘Net Zero – The UK’s contribution to stopping global warming’ report published by The Committee on Climate Change in May 2019 hydrogen is set to have a major part to play in reducing UK carbon dioxide emissions. Carbon Capture and Storage (CCS) is also seen as essential to support those supplies.
The report further recognises that this will involve increased investments and that CCS and hydrogen will require both capital funding and revenue support.
For hydrogen to have a part to play in the decarbonisation of London and the south east of England a large-scale hydrogen production facility will be required which will provide a multi vector solution through the decarbonisation of the gas grid.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
As highlighted in the ‘Net Zero – The UK’s contribution to stopping global warming’ report published by The Committee on Climate Change in May 2019 hydrogen is set to have a major part to play in reducing UK carbon dioxide emissions. Carbon Capture and Storage (CCS) is also seen as essential to support those supplies.
The report further recognises that this will involve increased investments and that CCS and hydrogen will require both capital funding and revenue support.
For hydrogen to have a part to play in the decarbonisation of London and the south east of England a large-scale hydrogen production facility will be required which will provide a multi vector solution through the decarbonisation of the gas grid.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Vapour Cloud Explosions from the Ignition of Methane, Hydrogen, Air Mixtures in a Congested Region
Sep 2007
Publication
To facilitate the transition to the hydrogen economy the EU project NATURALHY is studying the potential for the existing natural gas pipeline networks to transport hydrogen together with natural gas to end-users. Hydrogen may then be extracted for hydrogen fuel-cell applications or the mixture used directly by consumers in existing gas-fired equipment with the benefit of lower carbon emissions. The existing gas pipeline networks are designed constructed and operated to safely transport natural gas mostly methane. However hydrogen has significantly different properties that may adversely affect both the integrity of the network and thereby increase the likelihood of an accidental leak and the consequences if the leak finds a source of ignition. Consequently a major part of the NATURALHY project is focused on assessing how much hydrogen could be introduced into the network without adversely impacting on the safety of the network and the risk to the public. Hydrogen is more reactive than natural gas so the severity of an explosion following an accidental leak may be increased. This paper describes field-scale experiments conducted to measure the overpressures generated by ignition of methane/hydrogen/air mixtures in a congested but unconfined region. Such regions may be found in the gas handling and metering stations of the pipeline networks. The 3 m x 3 m x 2 m high congested region studied contained layers of pipes. The composition of the methane/hydrogen mixture used was varied from 0% hydrogen to 100% hydrogen. On the basis of the experiments performed the maximum overpressures generated by methane/hydrogen mixtures with 25% (by volume) or less hydrogen content are not likely to be much more than those generated by methane alone. Greater percentages of hydrogen did significantly increase the explosion overpressure.
Results of the HySafe CFD Validation Benchmark SBEPV5
Sep 2007
Publication
The different CFD tools used by the NoE HySafe partners are applied to a series of integral complex Standard Benchmark Exercise Problems (SBEPs). All benchmarks cover complementarily physical phenomena addressing application relevant scenarios and refer to associated experiments with an explicit usage of hydrogen. After the blind benchmark SBEPV1 and SBEPV3 with subsonic vertical release in a large vessel and in a garage like facility SBEPV4 with a horizontal under-expanded jet release through a small nozzle SBEPV5 covers the scenario of a subsonic horizontal jet release in a multi-compartment room.<br/>As the associated dispersion experiments conducted by GEXCON Norsk Hydro and STATOIL were disclosed to the participants the whole benchmark was conducted openly. For the purpose of validation only the low momentum test D27 had to be simulated.<br/>The experimental rig consists of a 1.20 m x 0.20 m x 0.90 m (Z vertical) vessel divided into 12 compartments partially even physically by four baffle plates. In each compartment a hydrogen concentration sensor is mounted. There is one vent opening at the wall opposite the release location centrally located about 1 cm above floor with dimensions 0.10 m (Y) times 0.20 m (Z). The first upper baffle plate close to the release point is on a sensitive location as it lies nearly perfectly in the centre of the buoyant jet and thus separates the flow into the two compartments. The actual release was a nominally constant flow of 1.15 norm liters for 60 seconds. With a 12mm nozzle diameter this corresponds to an average exit velocity of 10.17 m/s.<br/>6 CFD packages have been applied by 7 HySafe partners to simulate this experiment: ADREAHF by NCSRD FLACS by GexCon and DNV KFX by DNV FLUENT by UPM and UU CFX by HSE/HSL and GASFLOW by FZK. The results of the different participants are compared against the experimental data. Sensitivity studies were conducted by FZK using GASFLOW and by DNV applying KFX.<br/>Conclusions based on the comparisons and the sensitivity studies related to the performance of the applied turbulence models and discretisation schemes in the release and diffusion phase are proposed. These are compared to the findings of the previous benchmark exercises.
Safe Operation of Natural Gas Appliances Fuelled with Hydrogen & Natural Gas Mixtures (Progress Obtained in the Naturalhy-Project)
Sep 2007
Publication
Considering the transition towards the hydrogen economy dependent on hydrogen penetration scenario the cost of a new hydrogen pipeline infrastructure in Europe may amount to several thousands of billions of EURO’s. Therefore the examination of the potential contribution of the existing natural gas assets is a practical and logical first step. As the physical and chemical properties of hydrogen differ significantly from those of natural gas it is not at all possible to simply exchange natural gas by hydrogen in the existing infrastructure. In this paper first a brief overview will be given of the NATURALHY-project. Further the focus will be on the impact of added hydrogen on the performance of existing natural gas domestic end user appliances which is related to the operation of the natural gas grid connecting the different types of appliance. The application of the fundamental insights and carefully designed experiments comparing the behaviour of gases using justified reference conditions have been shown to offer essential progress. The Wobbe index limits of the natural gas distributed pose a first limiting factor upon the maximum allowable hydrogen concentration. Constant-Wobbe index and decreasing-Wobbe index options of H2 admixture have been studied. Considering the appliance light back H2 limiting factor for domestic appliances fuel-rich appliances are the critical ones. Also taking into account stationary gas engines gas turbines industrial applications and natural gas grid management it is not yet justified to present statements on what level of hydrogen concentration could be safely allowed in which specific natural gas distribution region. But more clarity has been obtained on combustion safety aspects of existing domestic appliances on the connection with Wobbe distribution conditions and on the bottlenecks still to be handled.
Design of Clean Steel Production with Hydrogen: Impact of Electricity System Composition
Dec 2021
Publication
In Europe electrification is considered a key option to obtain a cleaner production of steel at the same time as the electricity system production portfolio is expected to consist of an increasing share of varying renewable electricity (VRE) generation mainly in the form of solar PV and wind power. We investigate cost-efficient designs of hydrogen-based steelmaking in electricity systems dominated by VRE. We develop and apply a linear cost-minimization model with an hourly time resolution which determines cost-optimal operation and sizing of the units in hydrogen-based steelmaking including an electrolyser direct reduction shaft electric arc furnace as well as storage for hydrogen and hot-briquetted iron pellets. We show that the electricity price following steelmaking leads to savings in running costs but to increased capital cost due to investments in the overcapacity of steel production units and storage units for hydrogen and hot-briquetted iron pellets. For two VRE-dominated regions we show that the electricity price following steel production reduces the total steel production cost by 23% and 17% respectively as compared to continuous steel production at a constant level. We also show that the cost-optimal design of the steelmaking process is dependent upon the electricity system mix.
Potential for Hydrogen Production from Biomass Residues in the Valencian Community
Sep 2007
Publication
The production of hydrogen from renewable sources is essential to develop the future hydrogen economy. Biomass is an abundant clean and renewable energy source and it can be important in the production of hydrogen. The Valencian Community due to its great agricultural and forestry activities generates an important quantity of biomass residues that can be used for energy generation approximately 778 kt of wet biomass residues per year. This great quantity of biomass can be transformed into a hydrogen-rich gas by different thermochemical conversion processes. In this article the potential of production of hydrogen-rich gas is analyzed considering several factors affecting the conversion yield of these processes. As a result of this analysis it could be possible to produce 1271 MNm3 of H2 per year considering the total biomass residues of the community and selecting the gasification processes.
Hydrogen Subsonic Upward Release and Dispersion Experiments in Closed Cylindrical Vessel
Sep 2007
Publication
Report presents the preliminary experimental results on hydrogen subsonic leakage in a closed vessel under the well-controlled boundary/initial conditions. Formation of hydrogen-air gas mixture cloud was studied for a transient (10 min) upward hydrogen leakage which was followed by subsequent evolution (15 min) of explosive cloud. Low-intensity ( 0.46⋅10−3 m3/sec) hydrogen release was performed via circular (diameter 0.014 m) orifice located in the bottom part of a horizontal cylindrical vessel ( ≈4 m3). A spatially distributed net of the 24 hydrogen sensors and 24 temperature sensors was used to permanently track the time dependence of the hydrogen concentration and temperature fields in vessel. Analysis of the simultaneous experimental records for the different spatial points permits to delineate the basic flow patterns and stages of hydrogen subsonic release in closed vessel in contrast to hydrogen jet release in open environment. The quantitative data were obtained for the averaged speeds of explosive cloud envelop (50% fraction of the Lower Flammability Limit (LFL)) propagation in the vertical and horizontal directions. The obtained data will be used as an experimental basis for development of the guidelines for an indoors allocation of the hydrogen sensors. Data can be also used as a new benchmark case for the reactive Computational Fluid Dynamics codes validation.
On the Use of Spray Systems- An Example of R&D Work in Hydrogen Safety for Nuclear Applications
Sep 2007
Publication
The aim of the present work is to investigate the interaction between a water spray and a laminar hydrogen-air flame in the case of steam inerted mixture. A first work is devoted to study the thermodynamics involved in the phenomena via a lumped parameter code. The flow is two- phase and reactive the gas is multi-component the water spray is polydisperse and the droplet size has certainly an influence on the flame propagation. The energy released by the reaction between hydrogen and oxygen vaporizes suspended droplets. The next step of this study will be to consider a drift-flux model for the droplets and air under hypotheses that the velocity and thermal disequilibria are weak. The multi-component feature of the gas will be further taken into account by studying a gas mixture containing hydrogen air and water vapor. A second study concerns an experimental investigation of the effect of droplets on the flame propagation using a spherical vessel. A Schlieren system is coupled to the spherical vessel in order to record the flame propagation on a digital high speed camera. Both studies will help improve our knowledge of safety relevant phenomena.
Fire Protection Strategy for Compressed Hydrogen-Powered Vehicles
Sep 2007
Publication
Virtually all major automotive companies are currently developing hydrogen-powered vehicles. The vast majority of them employ compressed hydrogen tanks and components as a means of storing the fuel onboard. Compressed hydrogen vehicle fuel systems are designed in the same way as compressed natural gas vehicles (NGV) i.e. the high pressure (up to 70 MPa) fuel is always contained within the system under all conditions with the exception of vehicular fire. In the event of a vehicle fire the fuel system is protected using a non-reclosing thermally activated pressure relief device (PRD) which safely vents the contents. Hydrogen fuel system PRDs are presently qualified to the performance requirements specified in draft hydrogen standards such ANSI/CSA HPRD 1 and EIHP Rev. 12b. They are also qualified with individual fuel tank designs in accordance with the engulfing bonfire requirements in various published/draft tank standards such as CSA B51 Part 2 JARI S001 SAE TIR J2579 ANSI/CSA HGV 2 ISO DIS 15869.2 and EIHP Rev. 12b. Since 2000 there have been over 20 documented NGV tank failures in service 11 of which have been attributed to vehicle fires. This paper will examine whether currently proposed hydrogen performance standards and installation requirements offer suitable fuel system protection in the event of vehicular fires. A number of alternative fire protection strategies will be discussed including:
- The requirement of an engulfing and/or localized fire test for individual tanks fuel systems and complete vehicles;
- The advantages/disadvantages of point source- surface area- and/or fuse-based PRDs
- The use of thermal insulating coatings/blankets for fire protection resulting in the NONventing of the fuel
- The specification of appropriate fuel system installation requirements to mitigate the effect of vehicular fires.
Assessing the Durability and Integrity of Natural Gas Infrastructures for Transporting and Distributing Mixtures of Hydrogen and Natural Gas
Sep 2005
Publication
Extensive infrastructure exists for the transport of natural gas and it is an obvious step to assess its use for the movement of hydrogen. The Naturalhy project’s objective is to prepare the European natural gas industry for the introduction of hydrogen by assessing the capability of the natural gas infrastructure to accept mixtures of hydrogen and natural gas. This paper presents the ongoing work within both Durability and Integrity Work Packages of the Naturalhy project. This work covers a gap in knowledge on risk assessment required for delivering H2+natural gas blends by means of the existing natural gas grids in safe operation.<br/>Experiments involving several parts of the existing infrastructure will be described that are being carried out to re-examine the major risks previously studied for natural gas including: effect of H2 on failure behaviour and corrosion of transmission pipes and their burst resistance (link to the Work Package Safety) on permeability and ageing of distribution pipes on reliability and ageing of domestic gas meters tightness to H2 of domestic appliances and their connexions. The information will be integrated into existing Durability assessment methodologies originally developed for natural gas.<br/>An Integrity Management Tool will be developed taking account of the effect of hydrogen on the materials properties. The tool should enable a cost effective selection of appropriate measures to control the structural integrity and maintaining equipment. The main measures considered are monitoring non destructive examination (pigging and non pigging) and repair strategies. The tool will cover a number of parameters e.g.: percentage of hydrogen in the gas mixture material of construction operating conditions and condition of cathodic protection. Thus the Integrity Management Tool will yield an inspection and maintenance plan based on the specific circumstances.
Molecular Transport Effects of Hydrocarbon Addition on Turbulent Hydrogen Flame Propagation
Sep 2007
Publication
We analytically investigated the influence of light hydrocarbons on turbulent premixed H2/air atmospheric flames under lean conditions in view of safe handling of H2 systems applications in H2 powered IC engines and gas turbines and also with an orientation towards modelling of H2 combustion. For this purpose an algebraic flame surface wrinkling model included with pressure and fuel type effects is used. The model predictions of turbulent premixed flames are compared with the set of corresponding experimental data of Kido et al. (Kido Nakahara et al. 2002). These expanding spherical flame data include H2–air mixtures doped with CH4 and C3H8 while the overall equivalence ratio of all the fuel/air mixtures is fixed at 0.8 for constant unstretched laminar flame speed of 25 cm/s by varying N2 composition. The model predictions show that there is little variation in turbulent flame speed ST for C3H8 additions up to 20-vol%. However for 50 vol% doping flame speed decreases by as much as 30 % from 250 cm/s that of pure H2–air mixtures for turbulence intensity of 200 cm/s. With respect to CH4 for 50 vol% doping ST reduces by only 6 % cf. pure H2/air mixture. In the first instance the substantial decrease of ST with C3H8 addition may be attributed to the increase in the Lewis number of the dual-fuel mixture and proportional restriction of molecular mobility of H2. That is this decrease in flame speed can be explained using the concept of leading edges of the turbulent flame brush (Lipatnikov and Chomiak 2005). As these leading edges have mostly positive curvature (convex to the unburned side) preferential-diffusive-thermal instabilities cause recognizable impact on flame speed at higher levels of turbulence with the effect being very strong for lean H2 mixtures. The lighter hydrocarbon substitutions tend to suppress the leading flame edges and possibly transition to detonation in confined structures and promote flame front stability of lean turbulent premixed flames. Thus there is a necessity to develop a predictive reaction model to quantitatively show the strong influence of molecular transport coefficients on ST.
Computational Modelling of Pressure Effects from Hydrogen Explosions
Sep 2007
Publication
The statement of the problem and algorithm of computational modelling of the processes of formation of the hydrogen-air mixture in the atmosphere its explosion (taking into account chemical interaction) and dispersion of the combustion materials in the open space with complex relief are presented. The finite-difference scheme was developed for the case of the three-dimensional system of gas dynamics equations complemented by the mass conservation laws of the gas admixture and combustion materials. The algorithm of the computation of thermal and physical parameters of the gas mixture appearing as a result of the instantaneous explosion taking into account chemical interaction was developed. The algorithm of computational solution of the difference scheme obtained on the basis of Godunov method was considered. The verification of the mathematical model showed its acceptable accuracy in comparison with known experimental data. It allows using the developed model for the modelling of pressure and thermal consequences of possible failures at the industrial enterprises which store and use hydrogen. The computational modelling of an explosion of the gas hydrogen cloud appearing as a result of instantaneous destruction of high pressure containers at the fuelling station was carried out. The analysis of different ways of protection of the surrounding buildings from destructive effects of the shock wave was conducted. The recommendations considering the choice of dimensions of the protection area around the fuelling station were worked out.
Comparative Study of Embrittlement of Quenched and Tempered Steels in Hydrogen Environments
Mar 2022
Publication
The study of steels which guarantee safety and reliability throughout their service life in hydrogen-rich environments has increased considerably in recent years. Their mechanical behavior in terms of hydrogen embrittlement is of utmost importance. This work aims to assess the effects of hydrogen on the tensile properties of quenched and tempered 42CrMo4 steels. Tensile tests were performed on smooth and notched specimens under different conditions: pre-charged in high pressure hydrogen gas electrochemically pre-charged and in-situ hydrogen charged in an acid aqueous medium. The influence of the charging methodology on the corresponding embrittlement indexes was assessed. The role of other test variables such as the applied current density the electrolyte composition and the displacement rate was also studied. An important reduction of the strength was detected when notched specimens were subjected to in-situ charging. When the same tests were performed on smooth tensile specimens the deformation results were reduced. This behavior is related to significant changes in the operative failure micromechanisms from ductile (microvoids coalescence) in absence of hydrogen or under low hydrogen contents to brittle (decohesion of martensite lath interfaces) under the most stringent conditions.
Simulator Development of Virtual Experience and Accident Scenarios of Hydrogen Stations for Safety
Sep 2007
Publication
Nowadays 4 type hydrogen stations have been demonstrated in Korea for preparing hydrogen economy. This simulator is consists of virtual experience modules and virtual accident scenarios of 4 type hydrogen stations. Virtual experience modules show the performance properties through a movie or a virtual reality technology. Also they provide an explanation of hydrogen station equipment and a guide for operators immediately after the accident. Virtual accident scenario modules show accident simulations based on modelling equations as 3D virtual reality. These modules could choose the sham accident for every kind of a station after categorizing all possible accidents in a station A Commercialized CFD program based on hydrogen dispersion model theory shows a movie of accident simulations. The result of a simulator has been developed as web applications. And will be applied to training materials and public relations for a user concerned about hydrogen stations.
Non-combustion Related Impact of Hydrogen Admixture - Material Compatibility
Jun 2020
Publication
The present document is part of a larger literature survey of this WP aiming to establish the current status of gas utilisation technologies in order to determine the impact of hydrogen (H2) admixture on natural gas (NG) appliances. This part focuses on the non-combustion related aspects of injecting hydrogen in the gas distribution networks within buildings including hydrogen embrittlement of metallic materials chemical compatibility and leakage issues. In the particular conditions of adding natural gas and hydrogen (NG / H2) mixture into a gas distribution network hydrogen is likely to reduce the mechanical properties of metallic components. This is known as hydrogen embrittlement (HE) (Birnbaum 1979). This type of damage takes place once a critical level of stress / strain and hydrogen content coexist in a susceptible microstructure. Currently four mechanisms were identified and will be discussed in detail. The way those mechanisms act independently or together is strongly dependent on the material the hydrogen charging procedure and the mechanical loading type. The main metallic materials used in gas appliances and gas distribution networks are: carbon steels stainless steels copper brass and aluminium alloys (Thibaut 2020). The presented results showed that low alloy steels are the most susceptible materials to hydrogen embrittlement followed by stainless steels aluminium copper and brass alloys. However the relative pressures of the operating conditions of gas distribution network in buildings are low i.e. between 30 to 50 mbar. At those low hydrogen partial pressures it is assumed that a gas mixture composed of NG and up to 50% H2 should not be problematic in terms of HE for any of the metallic materials used in gas distribution network unless high mechanical stress / strain and high stress concentrations are applied. The chemical compatibility of hydrogen with other materials and specifically polyethylene (PE) which is a reference material for the gas industry is also discussed. PE was found to have no corrosion issues and no deterioration or ageing was observed after long term testing in hydrogen gas. The last non-combustion concern related to the introduction of hydrogen in natural gas distribution network is the propensity of hydrogen toward leakage. Indeed the physical properties of hydrogen are different from other gases such as methane or propane and it was observed that hydrogen leaks 2.5 times quicker than methane. This bibliographical report on material deterioration chemical compatibility and leakage concerns coming with the introduction of NG / H2 mixture in the gas distribution network sets the basis for the upcoming experimental work where the tightness of gas distribution network components will be investigated (Task 3.2.3 WP3). In addition tightness of typical components that connect end-user appliances to the local distribution line shall be evaluated as well.
Assessment and Evaluation of 3rd Party Risk for Planned Hydrogen Demonstration Facility
Sep 2007
Publication
Potential risk exposure of 3rd parties i.e. people not involved in the actual operation of a plant is often a critical factor to gain authority approval and public acceptance for a development project. This is also highly relevant for development of demonstration facilities for hydrogen production and refuelling infrastructure. This paper presents and discusses results for risk exposure of 3rd parties based on risk assessment studies performed for the planned Hydrogen Technology Research Centre Hytrec in Trondheim. The methodology applied is outlined. Key assumptions and study uncertainties are identified and how these might affect the results are discussed.<br/>The purpose of Hytrec is to build a centre for research development and demonstration of hydrogen as an energy carrier. Hydrogen will be produced both by reforming of natural gas with CO2 capture and by electrolysis of water. The plant also includes a SOFC that will run on natural gas or hydrogen and produce heat and electricity for the Hytrec visitor centre. Hytrec will be located in a populated area without access control. Most of the units will be located within cabinets and modules.<br/>The authors acknowledge the Hytrec project and the Hytrec project partners Statoil Statkraft and DNV for their support and for allowing utilisation of results from the Hytrec QRA in this paper.
No more items...