Publications
Evaluation of the Technical Condition of Pipes during the Transportation of Hydrogen Mixtures According to the Energy Approach
Jun 2024
Publication
In this study a theoretical–experimental methodology for determining the stress–strain state in pipeline systems taking into account the hydrogen environment was developed. A complex of theoretical and experimental studies was conducted to determine the specific energy of destruction as an invariant characteristic of the material’s resistance to strain at different hydrogen concentrations. The technique is based on the construction of complete diagrams of the destruction of the material based on the determination of true strains and stresses in the local volume using the method involving the optical–digital correlation of speckle images. A complex of research was carried out and true diagrams of material destruction were constructed depending on the previous elastic–plastic strain and the action of the hydrogen environment. The change in the concentration of hydrogen absorbed by the material was estimated depending on the value of the specific energy of destruction. A study was conducted on tubular samples and the degree of damage to the material of the inner wall under the action of hydrogen and stress from the internal pressure was evaluated according to the change in specific energy depending on the value of the true strain established with the help of an optical–digital correlator on the outer surface and the degree of damage was determined. It has been established that the specific fracture energy of 17G1S steel decreases by 70–90% under the influence of hydrogen. The effect of the change in the amount of strain energy on the thickness of the pipe wall is illustrated.
Transitioning towards Net-Zero Emissions in Chemical and Process Industries: A Holistic Perspective
Sep 2023
Publication
Given the urgency to combat climate change and ensure environmental sustainability this review examines the transition to net-zero emissions in chemical and process industries. It addresses the core areas of carbon emissions reduction efficient energy use and sustainable practices. What is new however is that it focuses on cutting-edge technologies such as biomass utilization biotechnology applications and waste management strategies that are key drivers of this transition. In particular the study addresses the unique challenges faced by industries such as cement manufacturing and highlights the need for innovative solutions to effectively reduce their carbon footprint. In particular the role of hydrogen as a clean fuel is at the heart of revolutionizing the chemical and process sectors pointing the way to cleaner and greener operations. In addition the manuscript explores the immense importance of the European Green Deal and the Sustainable Development Goals (SDGs) for the chemical industry. These initiatives provide a clear roadmap and framework for advancing sustainability driving innovation and reducing the industry’s environmental impact and are a notable contribution to the existing body of knowledge. Ultimately alignment with the European Green Deal and the SDGs can bring numerous benefits to the chemical industry increasing its competitiveness promoting societal well-being and supporting cross-sector collaboration to achieve shared sustainability goals. By highlighting the novelty of integrating cutting-edge technologies addressing unique industrial challenges and positioning global initiatives this report offers valuable insights to guide the chemical and process industries on their transformative path to a sustainable future.
Correlations between Component Size Green Hydrogen Demand and Breakeven Price for Energy Islands
Jun 2023
Publication
The topic of energy islands is currently a focal point in the push for the energy transition. An ambitious project in the North Sea aims to build an offshore wind-powered electrolyser for green hydrogen production. Power-to-X (PtX) is a process of converting renewable electricity into hydrogen-based energy carriers such as natural gas liquid fuels and chemicals. PtH2 represents a subset of PtX wherein hydrogen is the resultant green energy from the conversion process. Many uncertainties surround PtH2 plants affecting the economic success of the investment and making the price of hydrogen and the levelized cost of hydrogen (LCOH) of this technology uncompetitive. Several studies have analysed PtH2 layouts to identify the hydrogen price without considering how component capacities and external inputs affect the breakeven price. Unlike previous works this paper investigates component capacity dependencies under variables such as wind and hydrogen demand shape for dedicated/non-dedicated system layouts. To this end the techno-economic analysis finds the breakeven price optimising the components to reach the lowest selling price. Results show that the hydrogen price can reach 2.2 €/kg for a non-dedicated system for certain combinations of maximum demand and electrolyser capacity. Furthermore the LCOH analysis revealed that the offshore wind electrolyser system is currently uncompetitive with hydrogen production from carbon-based technologies but is competitive with renewable technologies. The sensitivity analysis reveals the green electricity price in the non-dedicated case for which a dedicated system has a lower optimum hydrogen price. The price limit for the dedicated case is 116 €/MWh.
Study on Hydrogen Substitution in a Compressed Natural Gas Spark-ignition Passenger Car Engine
Jun 2023
Publication
Hydrogen substitution in applications fueled by compressed natural gas arises as a potential alternative to fossil fuels and it may be the key to an effective hydrogen economy transition. The reduction of greenhouse gas emissions especially carbon dioxide and unburned methane as hydrogen is used in transport and industry applications makes its use an attractive option for a sustainable future. The purpose of this research is to examine the gradual adoption of hydrogen as a fuel for light-duty transportation. Particularly the study focuses on evaluating the performance and emissions of a single-cylinder port fuel injection spark-ignition engine as hydrogen is progressively increased in the natural gas-based fuel blend. Results identify the optimal conditions for air dilution and engine operation parameters to achieve the best performance. They corroborate that the dilution rate has to be adjusted to control pollutant emissions as the percentage of hydrogen is increased. Moreover the study identifies the threshold for hydrogen substitution below which the reduction of carbon dioxide emissions due to efficiency gains is negligible compared to the reduction of the carbon content in the fuel blend. These findings will help reduce the environmental footprint of light-duty transportation not only in the long term but also in the short and medium terms.
Economic Analysis of a Photovoltaic Hydrogen Refueling Station Based on Hydrogen Load
Sep 2023
Publication
With the goal of achieving “carbon peak in 2030 and carbon neutrality in 2060” as clearly proposed by China the transportation sector will face long–term pressure on carbon emissions and the application of hydrogen fuel cell vehicles will usher in a rapid growth period. However true “zero carbon” emissions cannot be separated from “green hydrogen”. Therefore it is of practical significance to explore the feasibility of renewable energy hydrogen production in the context of hydrogen refueling stations especially photovoltaic hydrogen production which is applied to hydrogen refueling stations (hereinafter referred to “photovoltaic hydrogen refueling stations”). This paper takes a hydrogen refueling station in Shanghai with a supply capacity of 500 kg/day as the research object. Based on a characteristic analysis of the hydrogen demand of the hydrogen refueling station throughout the day this paper studies and analyzes the system configuration operation strategy environmental effects and economics of the photovoltaic hydrogen refueling station. It is estimated that when the hydrogen price is no less than 6.23 USD the photovoltaic hydrogen refueling station has good economic benefits. Additionally compared with the conventional hydrogen refueling station it can reduce carbon emissions by approximately 1237.28 tons per year with good environmental benefits.
Underground Hydrogen Storage: A UK Perspective
Oct 2023
Publication
Hydrogen is anticipated to play a key role in global decarbonization and within the UK’s pathway to achieving net zero targets. However as the production of hydrogen expands in line with government strategies a key concern is where this hydrogen will be stored for later use. This study assesses the different large-scale storage options in geological structures available to the UK and addresses the surrounding uncertainties moving towards establishing a hydrogen economy. Currently salt caverns look to be the most favourable option considering their proven experience in the storage of hydrogen especially high purity hydrogen natural sealing properties low cushion gas requirement and high charge and discharge rates. However their geographical availability within the UK can act as a major constraint. Additionally a substantial increase in the number of new caverns will be necessary to meet the UK’s storage demand. Salt caverns have greater applicability as a good short-term storage solution however storage in porous media such as depleted hydrocarbon reservoirs and saline aquifers can be seen as a long-term and strategic solution to meet energy demand and achieve energy security. Porous media storage solutions are estimated to have capacities which far exceed projected storage demand. Depleted fields have generally been well explored prior to hydrocarbon extraction. Although many saline aquifers are available offshore UK geological characterizations are still required to identify the right candidates for hydrogen storage. Currently the advantages of depleted gas reservoirs over saline aquifers make them the favoured option after salt caverns.
Advances in Hydrogen-Powered Trains: A Brief Report
Sep 2023
Publication
The majority of rail vehicles worldwide use diesel as a primary fuel source. Diesel engine carbon emissions harm the environment and human health. Although railway electrification can reduce emissions it is not always the most economical option especially on routes with low vehicle demand. As a result interest in hydrogen-powered trains as a way to reduce greenhouse gas (GHG) emissions has steadily grown in recent years. In this paper we discuss advancements made in hydrogen-powered freight and commuter trains as well as the technology used in some aspects of hydrogen-powered vehicles. It was observed that hydrogen-powered trains are already in use in Europe and Asia unlike most developing countries in Africa. Commuter trains have received most of the research and development (R&D) attention but interest in hydrogen-powered freight trains has recently picked up momentum. Despite the availability and use of gray and blue hydrogen green hydrogen is still the preferred fuel for decarbonizing the rail transport sector.
Collective Hydrogen Stand-alone Renewable Energy Systems for Buildings in Spain. Towards the Self-sufficiency
May 2024
Publication
The article examines the feasibility of implementing standalone hydrogen-based renewable energy systems in Spanish residential buildings specifically analyzing the optimization of a solar-battery and solar-hydrogen system for a building with 20 dwellings in Spain. The study initially assesses two standalone setups: solarbattery and solar-hydrogen. Subsequently it explores scenarios where these systems are connected to the grid to only generate and sell surplus energy. A scenario involving grid connection for self-consumption without storage serves as a benchmark for comparison. All system optimizations are designed to meet energy demands without interruptions while minimizing costs as determined by a techno-economic analysis. The systems are sized using custom software that incorporates an energy management system and employs the Jaya algorithm for optimization. The findings indicate that selling surplus energy can be economically competitive and enhance the efficiency of grid-connected self-consumption systems representing the study’s main innovation. The conclusion highlights the economic and technical potential of an autonomous hybrid energy system that includes hydrogen with the significant remaining challenge being the development of a regulatory framework to support its technical feasibility in Spain.
Composition Tracking of Natural Gas-Hydrogen Mixtures in Pipeline Flow Using High-resolution Schemes
Jul 2024
Publication
A transient pipeline flow model with gas composition tracking is solved for studying the operation of a natural gas pipeline under nonisothermal flow conditions in a hydrogen injection scenario. Two approaches to high-resolution pipeline flow modeling based on the WENO scheme are presented and compared with the implicit finite difference method. The high-resolution models are capable of capturing fast fluid transients and tracking the step changes in the composition of the transported mixture. The implicit method assumes the decoupling of the flow model components in order to enhance calculation efficiency. The validation of the composition tracking results against actual gas transmission pipeline indicates that both models exhibit good prediction performance with normalized root mean square errors of 0.406% and 1.48% respectively. Under nonisothermal flow conditions the prediction response of the reduced model against a high-resolution flow model with respect to the mass and energy linepack is at most 3.20%.
3D CFD Simulation of a Gaseous Fuel Injection in a Hydrogen-fueled Internal Combustion Engine
Oct 2021
Publication
Nowadays one of the hottest topic in the automotive engineering community is the reduction of fossil fuels. Hydrogen is an alternative energy source that is already providing clean renewable and efficient power being used in fuel cells. Despite being developed since a few decades fuel cells are affected by several hurdles the most impacting one being their cost per unit power. While waiting for their cost reduction and mass-market penetration hydrogen-fueled internal combustion engines (H2ICEs) can be a rapidly applicable solution to reduce pollution caused by the combustion of fossil fuels. Such engines benefit from the advanced technology of modern internal combustion engines (ICEs) and the advantages related to hydrogen combustion although some modifications are needed for conventional liquid-fueled engines to run on hydrogen. The gaseous injection of hydrogen directly into the combustion chamber is a challenge both for the designers and for the injection system suppliers. To reduce uncertainties time and development cost computational fluid dynamics (CFD) tools appear extremely useful since they can accurately predict mixture formation and combustion before the expensive production/testing phase. The high-pressure gaseous injection which takes place in Direct-Injected H2ICEs promotes a super-sonic flow with very high gradients in the zone between the bulk of the injected hydrogen and the flow already inside the combustion chamber. To develop a methodology for an accurate simulation of these phenomena the SoPHy Engine of the Engine Combustion Network group (ECN) is used and presented. This engine is fed through a single nozzle H2-injector; planar laser-induced fluorescence (PLIF) data are available for comparison with the CFD outcomes.
Engineering Models for Refueling Protocol Development: Validation and Recommendations
Sep 2023
Publication
Fouad Ammouri,
Nicola Benvenuti,
Elena Vyazmina,
Vincent Ren,
Guillaume Lodier,
Quentin Nouvelot,
Thomas Guewouo,
Dorine Crouslé,
Rony Tawk,
Nicholas Hart,
Steve Mathison,
Taichi Kuroki,
Spencer Quong,
Antonio Ruiz,
Alexander Grab,
Alexander Kvasnicka,
Benoit Poulet,
Christopher Kutz and
Martin Zerta
The PRHYDE project (PRotocol for heavy duty HYDrogEn refueling) funded by the Clean Hydrogen partnership aims at developing recommendations for heavy-duty refueling protocols used for future standardization activities for trucks and other heavy duty transport systems applying hydrogen technologies. Development of a protocol requires a validated approach. Due to the limited time and budget the experimental data cannot cover the whole possible ranges of protocol parameters such as initial vehicle pressure and temperature ambient and precooling temperatures pressure ramp refueling time hardware specifications etc. Hence a validated numerical tool is essential for a safe and efficient protocol development. For this purpose engineering tools are used. They give good results in a very reasonable computation time of several seconds or minutes. These tools provide the heat parameters estimation in the gas (volume average temperature) and 1D temperature distribution in the tank wall. The following models were used SOFIL (Air Liquide tool) HyFill (by ENGIE) and H2Fills (open access code by NREL). The comparison of modelling results and experimental data demonstrated a good capability of codes to predict the evolution of average gas temperature in function of time. Some recommendations on model validation for the future protocol development are given.
An Overview on the Technologies Used to Storage Hydrogen
Aug 2023
Publication
Hydrogen energy has a significant potential in mitigating the intermittency of renewable energy generation by converting the excess of renewable energy into hydrogen through many technologies. Also hydrogen is expected to be used as an energy carrier that contribute to the global decarbonization in transportation industrial and building sectors. Many technologies have been developed to store hydrogen energy. Hydrogen can be stored to be used when needed and thus synchronize generation and consumption. The current paper presents a review on the different technologies used to store hydrogen. The storage capacity advantages drawbacks and development stages of various hydrogen storage technologies were presented and compared.
Off-grid Wind/Hydrogen Systems with Multi-electrolyzers: Optimized Operational Strategies
Sep 2023
Publication
Optimized operation of wind/hydrogen systems can increase the system efficiency and further reduce the hydrogen production cost. In this regard extensive research has been done but there is a lack of detailed electrolyzer models and effective management of multiple electrolyzers considering their physical restrictions. This work proposes electrolyzer models that integrate the efficiency variation caused by load level change start–stop cycle (including hot and cold start) thermal management and degradation caused by frequent starts. Based on the proposed models three operational strategies are considered in this paper: two traditionally utilized methods simple start–stop and cycle rotation strategies and a newly proposed rolling optimizationbased strategy. The results from daily operation show that the new strategy results in a more balanced load level among the electrolyzers and a more stable temperature. Besides from a yearly operation perspective it is found that the proposed rolling optimization method results in more hydrogen production higher system efficiency and lower LCOH. The new method leads to hydrogen production of 311297 kg compared to 289278 kg and 303758 kg for simple start–stop and cycle rotation methods. Correspondingly the system efficiencies for the new simple start–stop and cycle rotation methods are 0.613 0.572 and 0.587. The resulting LCOH from the new method is 3.89 e/kg decreasing by 0.35 e/kg and 0.21 e/kg compared to the simple start–stop and cycle rotation methods. Finally the proposed model is compared with two conventional models to show its effectiveness in revealing more operational details and reliable results.
Re-enacting the Hydrogen Tank Explosion of a Fuel-cell Electric Vehicle: An Experimental Study
May 2023
Publication
With the world-wide decision to reduce carbon emissions through the Paris Agreement (2015) the demand for hydrogen-fuelled vehicles has been increasing. Although hydrogen is not a toxic gas it has a wide flammable range (4e75%) and can explode due to static electricity. Therefore studies on hydrogen safety are urgently required. In this study an explosion was induced by applying fire to the lower part of a fuel cell electric vehicle (FCEV). Out of three compressed hydrogen storage tanks installed in the vehicle two did not have hydrogen fuel and one was filled with compressed gaseous hydrogen of 700 bar and forcedly deactivated its temperature-activated pressure relief device. The side-on overpressure transducers were installed by distance in main directions to measure the side-on overpressure generated by the vehicle explosion. A 10 m-long protective barrier was installed on which reflected overpressure displacement and acceleration were measured to examine the effect of attenuation of explosion damage in the event of an accident. The vehicle exploded approximately 11 min after ignition generating a blast wave fireballs and fragments. The results of the experiment showed that the protective barrier could almost completely block explosive pressure smoke and scattering generated during an explosion. Through Probit function analysis the probabilities of an accident occurring were derived based on peak overpressure peak impulse and scattering. The results of this study can be used to develop standard operating procedures (SOPs) for firefighters as the base data for setting the initial operation location and deriving the safe separation distance.
Thermal Design and Heat Transfer Optimisation of a Liquid Organic Hydrogen Carrier Batch Reactor for Hydrogen Storage
Aug 2023
Publication
Liquid organic hydrogen carriers (LOHCs) are considered a promising hydrogen storage technology. Heat must be exchanged with an external medium such as a heat transfer fluid for the required chemical reactions to occur. Batch reactors are simple but useful solutions for small-scale storage applications which can be modelled with a lumped parameter approach adequately reproducing their dynamic performance. For such reactors power is consumed to circulate the external heat transfer fluid and stir the organic liquid inside the reactor and heat transfer performance and power consumption are two key parameters in reactor optimisation. Therefore with reference to the hydrogen release phase this paper describes a procedure to optimise the reactor thermal design based on a lumped-parameter model in terms of heat transfer performance and minimum power consumption. Two batch reactors are analysed: a conventional jacketed reactor with agitation nozzles and a half-pipe coil reactor. Heat transfer performance is evaluated by introducing a newly defined dimensionless parameter the Heat Transfer Ratio (HTR) whose value directly correlates to the heat rate required by the carrier's dehydrogenation reaction. The resulting model is a valid tool for adequately reproducing the hydrogen storage behaviour within dynamic models of complex and detailed energy systems.
Study on the Inherent Safety of On-board Methanol Reforming Hydrogen Production Fuel Cell System
Sep 2023
Publication
Methanol as a liquid phase hydrogen storage carrier has broad prospects. Although the on-board methanol reforming hydrogen fuel cell system (MRFC) has long been proposed to replace the traditional hydrogen fuel cell vehicle the inherent safety of the system itself has rarely been studied. This paper adopted the improved method of Inherently Safer Process Piping (ISPP) to evaluate the pipeline inherent safety of MRFC. The process data such as temperature pressure viscosity and density were obtained by simulating the MRFC in ASPEN HYSYS. The Process Stream Characteristic Index (PSCI) and risk assessment of jet fire and vapor cloud explosion was carried out for the key streams with those simulated data. The results showed the risk ranks of different pipelines in the MRFC and the countermeasures were given according to different risk ranks. Through the in-depth study of the evaluation results this paper demonstrates the risk degree of the system in more detail and reduces the fuzziness of risk rating. By applying ISPP to the small integrated system of MRFC this paper realizes the leap of inherent safety assessment method in the object and provides a reference for the inherent safety assessment of relevant objects in the future.
LES of Turbulent Under-expanded Hydrogen Jet Flames
Sep 2023
Publication
In the frame of hydrogen-powered aircraft Airbus wants to understand all the H2 physics and explore every scenario in order to develop and manufacture safe products operated in a safe environment. Within the framework of a Large Eddy Simulation (LES) methodology for modeling turbulence a comparative numerical study of free under-expanded jet H2/AIR flame is conducted. The investigated geometry consists of straight nozzles with a millimetric diameter fed with pure H2 at upstream pressures ranging from 2 to 10 bar. Numerical results are compared with available experimental measurements such as; temperature signals using thermocouples. LES confirms its prediction capability in terms of shock jet structure and flame length. A particular attention is paid for capturing experimental unstable flame when upstream pressure decreases. Furthermore flame stabilization and flame anchoring are analyzed. Mechanisms of flame stabilization are highlighted for case 1 and stabilization criteria are tested. Finally an ignition map to reach flame stabilization is proposed for each case regarding the literature.
Investigation on Implementing Hydrogen Technology in Residential Sector
Jul 2024
Publication
Rapid urbanization and globalization are causing a rise in the energy demand within the residential sector. Currently majority of the energy demand for the residential sector being supplied from fossil fuels these sources account for greenhouse gas emissions responsible for anthropogenic-driven climate change. About 85 % of the world’s energy demands are being met by non-renewable sources of energy. An immediate need to shift towards renewable energy sources to generate electricity is the need of the hour. These long-standing renewable energy sources including solar hydropower and wind energy have been crucial pillars of sustainable energy for years. However as their implementation has matured we are increasingly recognizing their limitations. Issues such as the scarcity of suitable locations and the significant carbon footprint associated with constructing renewable energy infrastructure are becoming more apparent. Hydrogen has been found to play a vital role as an energy carrier in framing the energy picture in the 21st century. Currently about 1 % of the global energy demands are being met by hydrogen energy harnessed through renewable methods. Its low carbon emissions when compared to other methods lower comparative production costs and high energy efficiency of 40–60 % make it a suitable choice. Integrating hydrogen production systems with other renewable source of energy such as solar and wind energy have been discussed in this review in detail. With the concepts of green buildings or net zero energy buildings gaining attraction integration of hydrogen-based systems within residential and office sectors through the use of devices such as micro–Combined Heat and Power devices (mCHP) have proven to be effective and efficient. These devices have been found to save the consumed energy by 22 % along with an effective reduction in carbon emissions of 18 % when used in residential sectors. Using the rejected energy from other processes these mCHP devices can prove to be vital in meeting the energy demands of the residential sector. Through the support of government schemes mCHP devices have been widely used in countries such as Japan and Finland and have benefitted from the same. Hydrogen storage is critical for efficient operation of the integrated renewable systems as improper storage of the hydrogen produced could lead to human and environmental disasters. Using boron hydrides or ammonia (121 kg H2/m3 ) or through organic carriers hydrogen can be stored safely and easily regenerated without loss of material. A thorough comparison of all the renewable sources of energy that are used extensively is required to evaluate the merits of using hydrogen as an energy carrier which has been addressed in this review paper. The need to address the research gap in application of mCHP devices in the residential sector and the benefits they provide has been addressed in this review. With about 2500 GW of energy ready to be harnessed through the mCHP devices globally the potential of mCHP systems globally are discussed in detail in this paper. This review discusses challenges and solutions to hydrogen production storage and ways to implement hydrogen technology in the residential sector. This review allows researchers to build a renewable alternative with hydrogen as a clean energy vector for generating electricity in residential systems.
Flexibility Value of Multimodal Hydrogen Energy Utilization in Electric–Hydrogen–Thermal Systems
Jun 2024
Publication
Hydrogen energy is now a crucial technological option for decarbonizing energy systems. Comprehensive utilization is a typical mode of hydrogen energy deployment leveraging its excellent conversion capabilities. Hydrogen is often used in combination with electrical and thermal energy. However current hydrogen utilization modes are relatively singular resulting in low energy utilization efficiency and high wind curtailment rates. To improve energy utilization efficiency and promote the development of hydrogen energy we discuss three utilization modes of hydrogen energy including hydrogen storage integration into a fuel cell and gas turbine hybrid power generation system and hydrogen methanation. We propose a hydrogen energy system with multimodal utilization and integrate it into an electrolytic hydrogen–thermal integrated energy system (EHTIES). A mixed-integer linear programming (MILP) optimization scheduling model for the EHT-IES is developed and solved using the Cplex solver to improve the operational feasibility of the EHTIES focusing on minimizing economic costs and reducing wind curtailment rates. Case studies in northwest China verify the effectiveness of the proposed model. By comparing various utilization modes energy storage methods and scenarios this study demonstrated that integrating a hydrogen energy system with multimodal utilization into the EHT-IES offers significant technical benefits. It enhances energy utilization efficiency and promotes the absorption of wind energy thereby increasing the flexibility of the EHT-IES.
Analysis of China’s Low-Carbon Power Transition Path Considering Low-Carbon Energy Technology Innovation
Jan 2025
Publication
Innovation in key low-carbon technologies plays a supporting role in achieving a high-quality low-carbon transition in the power sector. This paper aims to integrate research on the power transition pathway under the “dual carbon” goals with key technological innovation layouts. First it deeply analyzes the development trends of three key low-carbon technologies in the power sector—new energy storage CCUS and hydrogen energy—and establishes a quantitative model for their technological support in the low-carbon transition of the power sector. On this basis the objective function and constraints of traditional power planning models are improved to create an integrated optimization model for the power transition pathway and key low-carbon technologies. Finally a simulation analysis is conducted using China’s power industry “dual carbon” pathway as a case study. The optimization results include the power generation capacity structure power generation mix carbon reduction pathway and key low-carbon technology development path for China from 2020 to 2060. Additionally the impact of uncertainties in breakthroughs in new energy storage CCUS and hydrogen technologies on the power “dual carbon” pathway is analyzed providing technological and decision-making support for the low-carbon transition of the power sector.
No more items...