Publications
Coupling Wastewater Treatment with Fuel Cells and Hydrogen Technology
Apr 2024
Publication
Fuel cells (FCs) and hydrogen technologies are emerging renewable energy sources with promising results when applied to wastewater treatment (WWT). These devices serve not only for power generation but some specific FCs can be employed for degradation of pollutants and synthesis of intermediates needed in WWT. Microbial FCs are potent devices for WWT even containing refractory pollutants. Despite being a nascent technology with high capital expenses the use of cost-effective materials reduction of operational cost and increased generation of energy and value-added chemicals such as hydrogen will facilitate the market penetration through selected niches and hybridization with alternative WWT technologies.
Laboratory Studies on Underground H2 Storage: Bibliometric Analysis and Review of Current Knowledge
Dec 2024
Publication
: The global demand for energy and the need to mitigate climate change require a shift from traditional fossil fuels to sustainable and renewable energy alternatives. Hydrogen is recognized as a significant component for achieving a carbon-neutral economy. This comprehensive review examines the underground hydrogen storage and particularly laboratory-scale studies related to rock– hydrogen interaction exploring current knowledge. Using bibliometric analysis of data from the Scopus and Web of Science databases this study reveals an exponential increase in scientific publications post-2015 which accounts for approximately 85.26% of total research output in this field and the relevance of laboratory experiments to understand the physicochemical interactions of hydrogen with geological formations. Processes in underground hydrogen storage are controlled by a set of multi-scale parameters including solid properties (permeability porosity composition and geomechanical properties) and fluid properties (liquid and gas density viscosity etc.) together with fluid–fluid and solid–fluid interactions (controlled by solubility wettability chemical reactions etc.). Laboratory experiments aim to characterize these parameters and their evolution simulating real-world storage conditions to enhance the reliability and applicability of findings. The review emphasizes the need to expand research efforts globally to comprehensively address the currently existing issues and knowledge gaps.
Optimization Strategy for Low-Carbon Economy of Integrated Energy System Considering Carbon Capture-Two Stage Power-to-Gas Hydrogen Coupling
Jun 2024
Publication
To further optimize the low-carbon economy of the integrated energy system (IES) this paper establishes a two-stage P2G hydrogen-coupled electricity–heat–hydrogen–gas IES with carbon capture (CCS). First this paper refines the two stages of P2G and introduces a hydrogen fuel cell (HFC) with a hydrogen storage device to fully utilize the hydrogen energy in the first stage of power-to-gas (P2G). Then the ladder carbon trading mechanism is considered and CCS is introduced to further reduce the system’s carbon emissions while coupling with P2G. Finally the adjustable thermoelectric ratio characteristics of the combined heat and power unit (CHP) and HFC are considered to improve the energy utilization efficiency of the system and to reduce the system operating costs. This paper set up arithmetic examples to analyze from several perspectives and the results show that the introduction of CCS can reduce carbon emissions by 41.83%. In the CCS-containing case refining the P2G two-stage and coupling it with HFC and hydrogen storage can lead to a 30% reduction in carbon emissions and a 61% reduction in wind abandonment costs; consideration of CHP and HFC adjustable thermoelectric ratios can result in a 16% reduction in purchased energy costs.
X-ray Absorpton Spectroscopy Study on Hydrogen Recombination Catalysts of Palladium Nanoparticles on Titanium Oxide under Wet Condition
Sep 2023
Publication
Hydrogen recombination catalyst is useful tool for reducing hydrogen in closed area. The catalyst is known to be poisoned under wet condition in long time use. The study is focused on the behavior of pre-oxidized Pd nanoparticle as the hard-used catalyst in high humidity environment by comparison of alumina and titanium oxide supports using in situ X-ray absorption spectroscopy technique. The reduction of surface oxide layer of Pd/TiO2 was promoted by water during hydrogen recombination although the reduction reaction of Pd/Al2O3 was inhibited by water.
Multiperiod Modeling and Optimization of Hydrogen-Based Dense Energy Carrier Supply Chains
Feb 2024
Publication
The production of hydrogen-based dense energy carriers (DECs) has been proposed as a combined solution for the storage and dispatch of power generated through intermittent renewables. Frameworks that model and optimize the production storage and dispatch of generated energy are important for data-driven decision making in the energy systems space. The proposed multiperiod framework considers the evolution of technology costs under different levels of promotion through research and targeted policies using the year 2021 as a baseline. Furthermore carbon credits are included as proposed by the 45Q tax amendment for the capture sequestration and utilization of carbon. The implementation of the mixed-integer linear programming (MILP) framework is illustrated through computational case studies to meet set hydrogen demands. The trade-offs between different technology pathways and contributions to system expenditure are elucidated and promising configurations and technology niches are identified. It is found that while carbon credits can subsidize carbon capture utilization and sequestration (CCUS) pathways substantial reductions in the cost of novel processes are needed to compete with extant technology pathways. Further research and policy push can reduce the levelized cost of hydrogen (LCOH) by upwards of 2 USD/kg.
A Techno-economic Analysis of Future Hydrogen Reconversion Technologies
Jun 2024
Publication
The transformation of fossil fuel-based power generation systems towards greenhouse gas-neutral ones based on renewable energy sources is one of the key challenges facing contemporary society. The temporal volatility that accompanies the integration of renewable energy (e.g. solar radiation and wind) must be compensated to ensure that at any given time a sufficient supply of electrical energy for the demands of different sectors is available. Green hydrogen which is produced using renewable energy sources via electrolysis can be used to chemically store electrical energy on a seasonal basis. Reconversion technologies are needed to generate electricity from stored hydrogen during periods of low renewable electricity generation. This study presents a detailed technoeconomic assessment of hydrogen gas turbines. These technologies are also superior to fuel cells due to their comparatively low investment costs especially when it comes to covering the residual loads. As of today hydrogen gas turbines are only available in laboratory or small-scale settings and have no market penetration or high technology readiness level. The primary focus of this study is to analyze the effects on gas turbine component costs when hydrogen is used instead of natural gas. Based on these findings an economic analysis addressing the current state of these turbine components is conducted. A literature review on the subsystems is performed considering statements from leading manufactures and researchers to derive the cost deviations and total cost per installed capacity (€/kWel). The results reveal that a hydrogen gas turbine power plant has an expected cost increase of 8.5% compared to a conventional gas turbine one. This leads to an average cost of 542.5 €/kWel for hydrogen gas turbines. For hydrogen combined cycle power plants the expected cost increase corresponds to the cost of the gas turbine system as the steam turbine subsystem remains unaffected by fuel switching. Additionally power plant retrofit potentials were calculated and the respective costs in the case of an upgrade were estimated. For Germany as a case study for an industrialized country the potential of a possible retrofit is between 2.7 and 11.4 GW resulting to a total investment between 0.3 and 1.1 billion €.
Decarbonizing the European Energy System in the Absence of Russian Gas: Hydrogen Uptake and Carbon Capture Developments in the Power, Heat and Industry Sectors
Dec 2023
Publication
Hydrogen and carbon capture and storage are pivotal to decarbonize the European energy system in a broad range of pathway scenarios. Yet their timely uptake in different sectors and distribution across countries are affected by supply options of renewable and fossil energy sources. Here we analyze the decarbonization of the European energy system towards 2060 covering the power heat and industry sectors and the change in use of hydrogen and carbon capture and storage in these sectors upon Europe’s decoupling from Russian gas. The results indicate that the use of gas is significantly reduced in the power sector instead being replaced by coal with carbon capture and storage and with a further expansion of renewable generators. Coal coupled with carbon capture and storage is also used in the steel sector as an intermediary step when Russian gas is neglected before being fully decarbonized with hydrogen. Hydrogen production mostly relies on natural gas with carbon capture and storage until natural gas is scarce and costly at which time green hydrogen production increases sharply. The disruption of Russian gas imports has significant consequences on the decarbonization pathways for Europe with local energy sources and carbon capture and storage becoming even more important. Given the highlighted importance of carbon capture and storage in reaching the climate targets it is essential that policymakers ameliorate regulatory challenges related to these value chains.
Design of an Electric Vehicle Charging System Consisting of PV and Fuel Cell for Historical and Tourist Regions
Jun 2024
Publication
One of the most important problems in the widespread use of electric vehicles is the lack of charging infrastructure. Especially in tourist areas where historical buildings are located the installation of a power grid for the installation of electric vehicle charging stations or generating electrical energy by installing renewable energy production systems such as large-sized PV (photovoltaic) and wind turbines poses a problem because it causes the deterioration of the historical texture. Considering the need for renewable energy sources in the transportation sector our aim in this study is to model an electric vehicle charging station using PVPS (photovoltaic power system) and FC (fuel cell) power systems by using irradiation and temperature data from historical regions. This designed charging station model performs electric vehicle charging meeting the energy demand of a house and hydrogen production by feeding the electrolyzer with the surplus energy from producing electrical energy with the PVPS during the daytime. At night when there is no solar radiation electric vehicle charging and residential energy demand are met with an FC power system. One of the most important advantages of this system is the use of hydrogen storage instead of a battery system for energy storage and the conversion of hydrogen into electrical energy with an FC. Unlike other studies in our study fossil energy sources such as diesel generators are not included for the stable operation of the system. The system in this study may need hydrogen refueling in unfavorable climatic conditions and the energy storage capacity is limited by the hydrogen fuel tank capacity.
Interactions Between Electricity and Hydrogen Markets: A Bi-level Equilibrium Approach
Jul 2025
Publication
Energy systems increasingly rely on the synergistic operations of the electricity and hydrogen markets pursuing decarbonization. In this context it is necessary to develop tools capable of representing the interactions between these two markets to understand the role of hydrogen as an energy vector. This paper introduces a bi-level optimization model that captures the interactions between the electricity and hydrogen markets positioning hydrogen generators as strategic electricity price makers in the power market. The model can be efficiently solved and applied to real-world scenarios by reformulating it as a Mixed Integer Linear Program. The case studies analyze spot market behaviors when hydrogen generators are modeled as price makers in the electricity market. First single-period simulations reveal the effects of price-making and next a year-long simulation assesses broader implications. The findings demonstrate that conventional modeling assumptions such as the price-taker hydrogen generators in the electricity market and constant production cost hypothesis lead to non-optimal hydrogen generation strategies that raise electricity prices while reducing the profit of hydrogen generators and the hydrogen market social welfare. These results highlight the need for models that accurately reflect the interdependencies between these two energy markets.
Exploring the Viability of Utilizing Treated Wastewater as a Sustainable Water Resource for Green Hydrogen Generation Using Solid Oxide Electrolysis Cells (SOECs)
Jul 2023
Publication
In response to the European Union’s initiative toward achieving carbon neutrality the utilization of water electrolysis for hydrogen production has emerged as a promising avenue for decarbonizing current energy systems. Among the various approaches Solid Oxide Electrolysis Cell (SOEC) presents an attractive solution especially due to its potential to utilize impure water sources. This study focuses on modeling a SOEC supplied with four distinct streams of treated municipal wastewaters using the Aspen Plus software. Through the simulation analysis it was determined that two of the wastewater streams could be effectively evaporated and treated within the cell without generating waste liquids containing excessive pollutant concentrations. Specifically by evaporating 27% of the first current and 10% of the second it was estimated that 26.2 kg/m3 and 9.7 kg/m3 of green hydrogen could be produced respectively. Considering the EU’s target for Italy is to have 5 GW of installed power capacity by 2030 and the mass flowrate of the analyzed wastewater streams this hydrogen production could meet anywhere from 0.4% to 20% of Italy’s projected electricity demand.
Techno-Economic Analysis of Clean Hydrogen Production Plants in Sicily: Comparison of Distributed and Centralized Production
Jul 2024
Publication
This paper presents an assessment of the levelized cost of clean hydrogen produced in Sicily a region in Southern Italy particularly rich in renewable energy and where nearly 50% of Italy’s refineries are located making a comparison between on-site production that is near the end users who will use the hydrogen and centralized production comparing the costs obtained by employing the two types of electrolyzers already commercially available. In the study for centralized production the scale factor method was applied on the costs of electrolyzers and the optimal transport modes were considered based on the distance and amount of hydrogen to be transported. The results obtained indicate higher prices for hydrogen produced locally (from about 7 €/kg to 10 €/kg) and lower prices (from 2.66 €/kg to 5.80 €/kg) for hydrogen produced in centralized plants due to economies of scale and higher conversion efficiencies. How-ever meeting the demand for clean hydrogen at minimal cost requires hydrogen distribution pipelines to transport it from centralized production sites to users which currently do not exist in Sicily as well as a significant amount of renewable energy ranging from 1.4 to 1.7 TWh per year to cover only 16% of refineries’ hydrogen needs.
Collaborative Optimization Scheduling of Multi-Microgrids Incorporating Hydrogen-Doped Natural Gas and P2G–CCS Coupling under Carbon Trading and Carbon Emission Constraints
Apr 2024
Publication
In the context of “dual carbon” restrictions on carbon emissions have aĴracted widespread aĴention from researchers. In order to solve the issue of the insufficient exploration of the synergistic emission reduction effects of various low-carbon policies and technologies applied to multiple microgrids we propose a multi-microgrid electricity cooperation optimization scheduling strategy based on stepped carbon trading a hydrogen-doped natural gas system and P2G–CCS coupled operation. Firstly a multi-energy microgrid model is developed coupled with hydrogendoped natural gas system and P2G–CCS and then carbon trading and a carbon emission restriction mechanism are introduced. Based on this a model for multi-microgrid electricity cooperation is established. Secondly design optimization strategies for solving the model are divided into the dayahead stage and the intraday stage. In the day-ahead stage an improved alternating direction multiplier method is used to distribute the model to minimize the cooperative costs of multiple microgrids. In the intraday stage based on the day-ahead scheduling results an intraday scheduling model is established and a rolling optimization strategy to adjust the output of microgrid equipment and energy purchases is adopted which reduces the impact of uncertainties in new energy output and load forecasting and improves the economic and low-carbon operation of multiple microgrids. SeĴing up different scenarios for experimental validation demonstrates the effectiveness of the introduced low-carbon policies and technologies as well as the effectiveness of their synergistic interaction
A Techno-economic Analysis of Global Renewable Hydrogen Value Chains
Jul 2024
Publication
Many countries especially those with a high energy demand but insufficient renewable resources are currently investigating the role that imported low carbon hydrogen may play in meeting future energy requirements and emission reduction targets. A future hydrogen economy is uncertain and predicated on reduced price of hydrogen delivered to customers. Current hydrogen production steam reforming of natural gas or coal gasification is co-located to its end-use as a chemical feedstock. Large-scale multi-source value chains of hydrogen needed to support its use for energy are still at concept phase. This research investigates the combination of technical and economic factors which will determine the viability and competitiveness of two competing large scale renewable hydrogen value chains via ammonia and liquid hydrogen. Using a techno-economic model an evaluation of whether green hydrogen exports to Germany from countries with low-cost renewable electricity production but high-costs of storage distribution and transport will be economically competitive with domestic renewable hydrogen production is conducted. The model developed in Python calculates costs and energy losses for each step in the value chain. This includes production from an optimised combination of solar and/or wind generation capacity optimised storage requirements conversion to ammonia or liquid hydrogen distribution shipping and reconversion. The model can easily be applied to any scenario by changing the inputs and was used to compare export from Chile Namibia and Morocco with production in Germany using a 1 GW electrolyser and 2030 cost scenario in each case.
Sustainability Certification for Renewable Hydrogen: An International Survey of Energy Professionals
Jun 2024
Publication
Hydrogen produced from renewable energy is being promoted to decarbonise global energy systems. To support this energy transition standards certification and labelling schemes (SCLs) aim to differentiate hydrogen products based on their system-wide carbon emissions and method of production characteristics. However being certified as low-carbon clean or green hydrogen does not guarantee broader sustainability across economic environmental social or governance dimensions. Through an international survey of energy-sector and sustainability professionals (n = 179) we investigated the desirable sustainability features for renewable hydrogen SCLs and the perceived advantages and disadvantages of sustainability certification. Our mixed-method study revealed general accordance on the feasible inclusion of diverse sustainability criteria in SCLs albeit with varying degrees of perceived essentiality. Within the confines of the data some differences in viewpoints emerged based on respondents’ geographical and supply chain locations which were associated with the sharing of costs and benefits. Qualitatively respondents found the idea of SCL harmonisation attractive but weighed this against the risks of duplication complicated administrative procedures and contradictory regulation. The implications of this research centre on the need for further studies to inform policy recommendations for an overarching SCL sustainability framework that embodies the principles of harmonisation in the context of multistakeholder governance.
Local and Global Sensitivity Analysis for Railway Upgrading Between Hydrogen Fuel Cell and Electrification
Nov 2024
Publication
In the field of rail transit the UK Department of Transport stated that it will realize a comprehensive transformation of UK railways by 2050 abandoning traditional diesel trains and upgrading them to new environmentally friendly trains. The current mainstream upgrade methods are electrification and hydrogen fuel cells. Comprehensive upgrades are costly and choosing the optimal upgrade method for trams and mainline railways is critical. Without a sensitivity analysis it is difficult for us to determine the influence relationship between each parameter and cost resulting in a waste of cost when choosing a line reconstruction method. In addition by analyzing the sensitivity of different parameters to the cost the primary optimization direction can be determined to reduce the cost. Global higher-order sensitivity analysis enables quantification of parameter interactions showing non-additive effects between parameters. This paper selects the main parameters that affect the retrofit cost and analyzes the retrofit cost of the two upgrade methods in the case of trams and mainline railways through local and global sensitivity analysis methods. The results of the analysis show that given the current UK rail system it is more economical to choose electric trams and hydrogen mainline trains. For trams the speed at which the train travels has the greatest impact on the final cost. Through the sensitivity analysis this paper provides an effective data reference for the current railway upgrading and reconstruction plan and provides a theoretical basis for the next step of train parameter optimization.
Techno-economic Analysis of Underground Hydrogen Storage in Europe
Dec 2023
Publication
Hydrogen storage is crucial to developing secure renewable energy systems to meet the European Union’s 2050 carbon neutrality objectives. However a knowledge gap exists concerning the site-specific performance and economic viability of utilizing underground gas storage (UGS) sites for hydrogen storage in Europe. We compile information on European UGS sites to assess potential hydrogen storage capacity and evaluate the associated current and future costs. The total hydrogen storage potential in Europe is 349 TWh of working gas energy (WGE) with site-specific capital costs ranging from $10 million to $1 billion. Porous media and salt caverns boasting a minimum storage capacity of 0.5 TWh WGE exhibit levelized costs of $1.5 and $0.8 per kilogram of hydrogen respectively. It is estimated that future levelized costs associated with hydrogen storage can potentially decrease to as low as $0.4 per kilogram after three experience cycles. Leveraging these techno-economic considerations we identify suitable storage sites.
Levelized Cost of Biohydrogen from Steam Reforming of Biomethane with Carbon Capture and Storage (Golden Hydrogen)—Application to Spain
Feb 2024
Publication
The production of biohydrogen with negative CO2 emissions through the steam methane reforming of biomethane coupled with carbon capture and storage represents a promising technology particularly for industries that are difficult to electrify. In spite of the maturity of this technology which is currently employed in the production of grey and blue hydrogen a detailed cost model that considers the entire supply chain is lacking in the literature. This study addresses this gap by applying correlations derived from actual facilities producing grey and blue hydrogen to calculate the CAPEX while exploring various feedstock combinations for biogas generation to assess the OPEX. The analysis also includes logistic aspects such as decentralised biogas production and the transportation and storage of CO2 . The levelized cost of golden hydrogen is estimated to range from EUR 1.84 to 2.88/kg compared to EUR 1.47/kg for grey hydrogen and EUR 1.93/kg for blue hydrogen assuming a natural gas cost of EUR 25/MWh and excluding the CO2 tax. This range increases to between 3.84 and 2.92 with a natural gas cost of EUR 40/MWh with the inclusion of the CO2 tax. A comparison with conventional green hydrogen is performed highlighting both prices and potential thereby offering valuable information for decision-making.
Chemical Kinetic Analysis of High-Pressure Hydrogen Ignition and Combustion toward Green Aviation
Jan 2024
Publication
In the framework of the “Multidisciplinary Optimization and Regulations for Low-boom and Environmentally Sustainable Supersonic aviation” project pursued by a consortium of European government and academic institutions coordinated by Politecnico di Torino under the European Commission Horizon 2020 financial support the Italian Aerospace Research Centre is computationally investigating the high-pressure hydrogen/air kinetic combustion in the operative conditions typically encountered in supersonic aeronautic ramjet engines. This task is being carried out starting from the zero-dimensional and one-dimensional chemical kinetic assessment of the complex and strongly pressure-sensitive ignition behavior and flame propagation characteristics of hydrogen combustion through the validation against experimental shock tube and laminar flame speed measurements. The 0D results indicate that the kinetic mechanism by Politecnico di Milano and the scheme formulated by Kéromnès et al. provide the best matching with the experimental ignition delay time measurements carried out in high-pressure shock tube strongly argon-diluted reaction conditions. Otherwise the best behavior in terms of laminar flame propagation is achieved by the Mueller scheme while the other investigated kinetic mechanisms fail to predict the flame speeds at elevated pressures. This confirms the non-linear and intensive pressure-sensitive behavior of hydrogen combustion especially in the critical high-pressure and low-temperature region which is hard to be described by a single all-encompassing chemical model.
Offshore Green Hydrogen Production from Wind Energy: Critical Review and Perspective
Feb 2024
Publication
Hydrogen is envisaged to play a major role in decarbonizing our future energy systems. Hydrogen is ideal for storing renewable energy over longer durations strengthening energy security. It can be used to provide electricity renewable heat power long-haul transport shipping and aviation and in decarbonizing several industrial processes. The cost of green hydrogen produced from renewable via electrolysis is dominated by the cost of electricity used. Operating electrolyzers only during periods of low electricity prices will limit production capacity and underutilize high investment costs in electrolyzer plants. Hydrogen production from deep offshore wind energy is a promising solution to unlock affordable electrolytic hydrogen at scale. Deep offshore locations can result in an increased capacity factor of generated wind power to 60–70% 4–5 times that of onshore locations. Dedicated wind farms for electrolysis can use the majority >80% of the produced energy to generate economical hydrogen. In some scenarios hydrogen can be the optimal carrier to transport the generated energy onshore. This review discusses the opportunities and challenges in offshore hydrogen production using electrolysis from wind energy and seawater. This includes the impact of site selection size of the electrolyzer and direct use of seawater without deionization. The review compares overall electrolysis system efficiency cost and lifetime when operating with direct seawater feed and deionized water feed using reverse osmosis and flash evaporation systems. In the short to medium term it is advised to install a reverse osmosis plant with an ion exchanger to feed the electrolysis instead of using seawater directly.
A Review on Underground Gas Storage Systems: Natural Gas, Hydrogen and Carbon Sequestration
May 2023
Publication
The concept of underground gas storage is based on the natural capacity of geological formations such as aquifers depleted oil and gas reservoirs and salt caverns to store gases. Underground storage systems can be used to inject and store natural gas (NG) or hydrogen which can be withdrawn for transport to end-users or for use in industrial processes. Geological formations can additionally be used to securely contain harmful gases such as carbon dioxide deep underground by means of carbon capture and sequestration technologies. This paper defines and discusses underground gas storage highlighting commercial and pilot projects and the behavior of different gases (i.e. CH4 H2 and CO2) when stored underground as well as associated modeling investigations. For underground NG/H2 storage the maintenance of optimal subsurface conditions for efficient gas storage necessitates the use of a cushion gas. Cushion gas is injected before the injection of the working gas (NG/H2). The behavior of cushion gas varies based on the type of gas injected. Underground NG and H2 storage systems operate similarly. However compared to NG storage several challenges could be faced during H2 storage due to its low molecular mass. Underground NG storage is widely recognized and utilized as a reference for subsurface H2 storage systems. Furthermore this paper defines and briefly discusses carbon capture and sequestration underground. Most reported studies investigated the operating and cushion gas mixture. The mixture of operating and cushion gas was studied to explore how it could affect the recovered gas quality from the reservoir. The cushion gas was shown to influence the H2 capacity. By understanding and studying the different underground system technologies future directions for better management and successful operation of such systems are thereby highlighted.
No more items...