Publications
A Parametric Study on In-situ Hydrogen Production from Hydrocarbon Reservoirs - Effect of Reservoir and Well Properties
Jul 2024
Publication
Energy transition is a key driver to combat climate change and achieve zero carbon future. Sustainable and costeffective hydrogen production will provide valuable addition to the renewable energy mix and help minimize greenhouse gas emissions. This study investigates the performance of in-situ hydrogen production (IHP) process using a full-field compositional model as a precursor to experimental validation The reservoir model was simulated as one geological unit with a single point uniform porosity value of 0.13 and a five-point connection type between cell to minimize computational cost. Twenty-one hydrogen forming reactions were modelled based on the reservoir fluid composition selected for this study. The thermodynamic and kinetic parameters for the reactions were obtained from published experiments due to the absence of experimental data specific to the reservoir. A total of fifty-four simulation runs were conducted using CMG STARS software for 5478 days and cumulative hydrogen produced for each run was recorded. Results generated were then used to build a proxy model using Box-Behnken design of experiment method and Support Vector Machine with RBF kernel. To ascertain accuracy of the proxy models analysis of variance (ANOVA) was conducted on the variables. The average absolute percentage error between the proxy model and numerical simulation was calculated to be 10.82%. Optimization of the proxy model was performed using genetic algorithm to maximize cumulative hydrogen produced. Based on this optimized model the influence of porosity permeability well location injection rate and injection pressure were studied. Key results from this study reveals that lower permeability and porosity reservoirs supports more hydrogen yield injection pressure had a negligible effect on hydrogen yield and increase in oxygen injection rate corelated strongly with hydrogen production until a threshold value beyond which hydrogen yield decreased. The framework developed in the study could be used as tool to assess candidate reservoirs for in-situ hydrogen production.
Mechanistic Evaluation of the Reservoir Engineering Performance for the Underground Hydrogen Storage in a Deep North Sea Aquifer
Jul 2023
Publication
Underground hydrogen storage (UHS) in aquifers salt caverns and depleted hydrocarbon reservoirs allows for the storage of larger volumes of H2 compared to surface storage in vessels. In this work we investigate the impact of aquifer-related mechanisms and parameters on the performance of UHS in an associated North Sea aquifer using 3D numerical compositional simulations. Simulation results revealed that the aquifer's permeability heterogeneity has a significant impact on the H2 recovery efficiency where a more homogenous rock would lead to improved H2 productivity. The inclusion of relative permeability hysteresis resulted in a drop in the H2 injectivity and recovery due to H2 discontinuity inside the aquifer which leads to residual H2 during the withdrawal periods. In contrast the effects of hydrogen solubility and hydrogen diffusion were negligible when studied each in isolation from other factors. Hence it is essential to properly account for hysteresis and heterogeneity when evaluating UHS in aquifers.
Review of Environmental Life Cycle Assessment for Fuel Cell Electric Vehicles in Road Transport
Mar 2025
Publication
This article summarizes current research on the life cycle assessment (LCA) of fuel cell electric vehicles (FCEVs) in road transport. Increasing greenhouse gas emissions and climate change are pushing the transport sector to intensify efforts toward decarbonization. One promising solution is the adoption of hydrogen technologies whose development is supported by European Union regulations such as the “Fit for 55” package. FCEVs are characterized by zero emissions during operation but their environmental impact largely depends on the methods of hydrogen production. The use of renewable energy sources in hydrogen production can significantly reduce greenhouse gas emissions while hydrogen produced from fossil fuels can even result in higher emissions compared to internal combustion engine vehicles. This article also discusses the importance of hydrogen refueling infrastructure and the efficiency of fuel storage and transportation systems. In conclusion LCA shows that FCEVs can support the achievement of climate goals provided that the development of hydrogen production technologies based on renewable sources and the corresponding infrastructure is ensured. The authors also highlight the potential of hybrid technologies as a transitional solution in the process of transforming the transport sector.
Standalone and System-level Perspectives on Hydrogen-based Sustainable Aviation Fuel Pathways for Denmark
Mar 2025
Publication
Aviation is one of the most challenging sectors to electrify directly due to its high energy density demands. Hydrogen offers a pathway for indirect electrification in such sectors enabling sustainable aviation fuels (SAF) production when combined with a carbon source. SAF produced via methanol or Fischer-Tropsch (FT) synthesis (e-SAF) has higher volumetric density than hydrogen remains liquid under standard conditions and can be used as a direct drop-in fuel. Certain FT-based e-SAF pathways are already certified for use in blends enhancing their appeal for sustainable aviation. This study evaluates e-SAF pathways in terms of resource efficiency and costs for different carbon sources. The results from both a standalone and system-level perspective indicate that biomass gasification-sourced carbon is the most energy-efficient pathway given biomass availability. For point-source and direct air capture pathways electricity costs for renewable hydrogen dominate the overall costs comprising about 70 % of total e-SAF costs. Given cheap renewable electricity and by-product revenues e-SAF can achieve price levels of 0.5–1.1 €/litre which is cost-competitive with their fossil-based counterparts. A breakeven electricity price of 9–29 €/MWh is needed for e-SAF made via a point source-based CO2 pathway compared with a moderate aviation fossil fuel price of 0.5 €/litre.
Environmental Assessment of a Hydrogen Supply Chain Using LOHC System with Novel Low-PGM Catalysts: A Life Cycle Approach
Nov 2024
Publication
Hydrogen has emerged as a key element in the transition to a sustainable energy model. Among hydrogen storage and transport technologies liquid organic hydrogen carriers (LOHCs) stand out as a promising alternative for large-scale long-term use. Catalysts essential in these systems are usually composed of platinum group metals (PGMs) over alumina known for their high cost and scarcity. This study analyzes the overall environmental impact of the LOHC benzyltoluene/perhydro-benzyltoluene-based hydrogen supply chain by means of the life cycle assessment (LCA) focusing on the synthesis processes of novel low-PGM catalysts which remain under explored in existing literature. The results identify dehydrogenation as the most impactful step due to significant heat consumption and highlight the substantial environmental footprint associated with the use of platinum in catalyst production. This research provides crucial insights into the environmental implications of LOHC systems particularly the role of novel low-PGM catalysts and offers guidance for their future large-scale applications.
Techno-economic Assessment of Liquid Carrier Methods for Intercontinental Shipping of Hydrogen: A Case Study
Nov 2024
Publication
As global economies seek to transition to low-carbon energy systems to achieve net zero targets hydrogen has potential to play a key role to decarbonise sectors that are unsuited to electrification or where long-term energy storage is required. Hydrogen can also assist in enabling decentralized renewable power generation to satisfy higher electricity demand to match the scale-up of electrified technologies. In this context suitable transport storage and distribution networks will be essential to connect hydrogen generation and utilisation sites. This paper presents a techno-economic impact evaluation of international marine hydrogen transportation between Canada and the Netherlands comparing liquid hydrogen ammonia and a dibenzyl toluene liquid organic hydrogen carrier (LOHC) as potential transport vectors. Economic costs energy consumption and losses in each phase of the transportation system were analysed for each vector. Based on the devised scenarios our model suggests levelised costs of hydrogen of 6.35–9.49 $2022/kgH2 and pathway efficiencies of 55.6–71.9%. While liquid hydrogen was identified as the most cost-competitive carrier sensitivity analysis revealed a merit order for system optimisation strategies based upon which LOHC could outperform both liquid hydrogen and ammonia in the future.
The Making of H2-scapes in the Global South: Political Geography Perspectives on an Emergent Field of Research
Feb 2025
Publication
Clean hydrogen is touted as a cornerstone of the global energy transition. It can help to decarbonize hard-to-electrify sectors ship renewable power over great distances and boost energy security. Clean hydrogen’s appeal is increasingly felt in the Global South where countries seek to benefit from production export and consumption opportunities new infrastructures and technological innovations. These geographies are however in the process of taking shape and their associated power configurations spatialities and socio-ecological consequences are yet to be more thoroughly understood and examined. Drawing on political geography perspectives this article proposes the concept of “hydrogen landscape” – or in short H2-scape – to theorize and explore hydrogen transitions as space-making processes imbued with power relations institutional orders and social meanings. In this endeavor it outlines a conceptual framework for understanding the making of H2-scapes and offers three concrete directions for advancing empirical research on hydrogen transitions in the Global South: (1) H2-scapes as resource frontiers; (2) H2-scapes as port-centered arrangements; and (3) H2-scapes as failure. As hydrogen booms in finances projects and visibility the article illuminates conceptual tools and perspectives to think about and facilitate further research on the emergent political geographies of hydrogen transitions particularly in more uneven unequal and vulnerable Global South landscapes.
Hydrogen Production from Low-quality Water: Challenges and Perspectives
Sep 2022
Publication
The Next Generation EU plan fosters the development of a large capacity for hydrogen generation. However water and energy resources are strictly connected to an indissoluble nexus. For that water electrolysis may counteract the coexistence of two primary UNO Sustainable Development Goals humankind must face to achieve a prosperous and equal society namely SDG 7 (Affordable access to renewable energy sources) and SDG 6 (clean water). To design innovative energy systems implementing hydrogen as an efficient and sustainable vector water resources need careful management and energy use ought not to compete with freshwater delivery. Therefore the present study reviews the technologies available for hydrogen production and their fitness to water quality standards. Among the feeding possibilities to be scrutinized wastewaters and saline waters are worth attention. Each source of water asks for a specific design and management of the water treatment pre-process. Since these steps are energydemanding in some applications the direct use of low-quality water to produce hydrogen may be envisaged. An example is the direct feeding of seawater to Solid Oxide Electrolysers (SOE). SOEs appear more promising than commercial low-temperature electrolysis systems since water steam production integrates the function of preliminary water treatment.
Impact of Impurities on Water Electrolysis: A Review
Feb 2023
Publication
Low temperature water electrolysers such as Proton Exchange Membrane Water Electrolysers (PEMWEs) Alkaline Water Electrolysers (AWEs) and Anion Exchange Membrane Water Electrolysers (AEMWEs) are known to be sensitive to water quality with a range of common impurities impacting performance hydrogen quality and device lifetime. Purification of feed water adds to cost operational complexity and design limitations while failure of purification equipment can lead to degradation of electrolyser materials and components. Increased robustness to impurities will offer a route to longer device lifetimes and reduced operating costs but understanding of the impact of impurities and associated degradation mechanisms is currently limited. This critical review offers for the first time a comprehensive overview of relevant impurities in operating electrolysers and their impact. Impurity sources degradation mechanisms characterisation techniques water purification technologies and mitigation strategies are identified and discussed. The review generalises already reported mechanisms proposes new mechanisms and provides a framework for consideration of operational implications.
The Multi-Objective Distributed Robust Optimization Scheduling of Integrated Energy Systems Considering Green Hydrogen Certificates and Low-Carbon Demand Response
Feb 2025
Publication
To address the issues of energy wastage and uncertainty impacts associated with high levels of renewable energy integration a multi-objective distributed robust low-carbon optimization scheduling strategy for hydrogen-integrated Integrated Energy Systems (IES) is proposed. This strategy incorporates a green hydrogen trading mechanism and lowcarbon demand response. Firstly to leverage the low-carbon and clean characteristics of hydrogen energy an efficient hydrogen utilization model was constructed consisting of electricity-based hydrogen production waste heat recovery multi-stage hydrogen use hydrogen blending in gas and hydrogen storage. This significantly enhanced the system’s renewable energy consumption and carbon reduction. Secondly to improve the consumption of green hydrogen a novel reward–punishment green hydrogen certificate trading mechanism was proposed. The impact of green hydrogen trading prices on system operation was discussed promoting the synergistic operation of green hydrogen and green electricity. Based on the traditional demand-response model a novel low-carbon demand-response strategy is proposed with carbon emission factors serving as guiding signals. Finally considering the uncertainty of renewable energy an innovative optimal trade-off multi-objective distributed robust model was proposed which simultaneously considered low-carbon economic and robustness aspects. The model was solved using an improved adaptive particle swarm optimization algorithm. Case study results show that after introducing the reward–punishment green hydrogen trading mechanism and low-carbon demand response the system’s total cost was reduced by approximately 5.16% and 4.37% and carbon emissions were reduced by approximately 7.84% and 6.72% respectively. Moreover the proposed multi-objective distributed robust model not only considers the system’s economy low-carbon and robustness but also offers higher solving efficiency and optimization performance compared to multi-objective optimization methods.
"Green" Ammonia: Impact of Renewable Energy Intermittency on Plant Sizing and Levelized Cost of Ammonia
Oct 2018
Publication
Ammonia production currently contributesalmost 11% of global industrial carbon dioxide emissions or1.3% of global emissions. In the context of global emissiontargets and growing demand decarbonization of this processis highly desirable. We present a method to calculate a firstestimate for the optimum size of an ammonia productionplant (at the process level) the required renewable energy(RE) supply and the levelized cost of ammonia (LCOA) forislanded operation with a hydrogen buffer. A model wasdeveloped to quantitatively identify the key variables thatimpact the LCOA (relative to a ±10 GBP/tonne change inLCOA): levelized cost of electricity (±0.89 GBP/MWh) electrolyzer capital expenditure (±65 GBP/kW) minimum Haber−Bosch (HB) load (±12% of rated power) maximum rate of HB load ramping and RE supply mix. Using 2025/2030 estimatesresults in a LCOA of 588 GBP/tonne for Lerwick Scotland. The application of the model will facilitate and improve theproduction of carbon-free ammonia in the future.
Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting
Oct 2012
Publication
Hydrogen is the ideal fuel for the future because it is clean energy efficient and abundant in nature. While various technologies can be used to generate hydrogen only some of them can be considered environmentally friendly. Recently solar hydrogen generated via photocatalytic water splitting has attracted tremendous attention and has been extensively studied because of its great potential for low-cost and clean hydrogen production. This paper gives a comprehensive review of the development of photocatalytic water splitting for generating hydrogen particularly under visible-light irradiation. The topics covered include an introduction of hydrogen production technologies a review of photocatalytic water splitting over titania and non-titania based photocatalysts a discussion of the types of photocatalytic water-splitting approaches and a conclusion for the current challenges and future prospects of photocatalytic water splitting. Based on the literatures reported here the development of highly stable visible–light-active photocatalytic materials and the design of efficient low-cost photoreactor systems are the key for the advancement of solar-hydrogen production via photocatalytic water splitting in the future.
A Comprehensive Analysis of Characteristics of Hydrogen Operation as a Preparation for Retrofitting a Compression Ignition Engine to a Hydrogen Engine
Mar 2025
Publication
Hydrogen is a carbon-neutral fuel so in theory it holds enormous potential. The use of hydrogen as a fuel for traditional internal combustion engines is becoming increasingly prominent. The authors now have the opportunity to retrofit a single-cylinder diesel research engine to an engine with hydrogen operation. For this reason before that conversion they prepared a comprehensive review study regarding hydrogen. Firstly the study analyzes the most essential properties of hydrogen in terms of mixture formation and combustion compared to diesel. After that it deals with indirect and direct injection and what kind of combustion processes can occur. Since there is a possibility of preignition backfire and knocking the process can be dangerous in the case of indirect mixture formation and so a short subsection is devoted to these uncontrolled combustion phenomena. The next subsection shows how important in many ways a special spark plug and ignition system are for hydrogen operation. The next part of the study provides a detailed presentation of the possible combustion chamber design for operation with hydrogen fuel. The last section reveals how many parameters can be focused on analyzing the hydrogen’s combustion process. The authors conclude that intake manifold injection and a Heron-like combustion chamber design with a special spark plug with an ignition system would be an appropriate solution.
Energy Management for Microgrids with Hybrid Hydrogen-Battery Storage: A Reinforcement Learning Framework Integrated Multi-Objective Dynamic Regulation
Aug 2025
Publication
The integration of renewable energy resources (RES) into microgrids (MGs) poses significant challenges due to the intermittent nature of generation and the increasing complexity of multi-energy scheduling. To enhance operational flexibility and reliability this paper proposes an intelligent energy management system (EMS) for MGs incorporating a hybrid hydrogen-battery energy storage system (HHB-ESS). The system model jointly considers the complementary characteristics of short-term and long-term storage technologies. Three conflicting objectives are defined: economic cost (EC) system response stability and battery life loss (BLO). To address the challenges of multi-objective trade-offs and heterogeneous storage coordination a novel deep-reinforcement-learning (DRL) algorithm termed MOATD3 is developed based on a dynamic reward adjustment mechanism (DRAM). Simulation results under various operational scenarios demonstrate that the proposed method significantly outperforms baseline methods achieving a maximum improvement of 31.4% in SRS and a reduction of 46.7% in BLO.
Challenges and Opportunities in Green Hydrogen Adoption for Decarbonizing Hard-to-Abate Industries: A Comprehensive Review
Feb 2024
Publication
The decarbonization of hard-to-abate industries is crucial for keeping global warming to below 2◦C. Green or renewable hydrogen synthesized through water electrolysis has emerged as a sustainable alternative for fossil fuels in energy-intensive sectors such as aluminum cement chemicals steel and transportation. However the scalability of green hydrogen production faces challenges including infrastructure gaps energy losses excessive power consumption and high costs throughout the value chain. Therefore this study analyzes the challenges within the green hydrogen value chain focusing on the development of nascent technologies. Presenting a comprehensive synthesis of contemporary knowledge this study assesses the potential impacts of green hydrogen on hard-to-abate sectors emphasizing the expansion of clean energy infrastructure. Through an exploration of emerging renewable hydrogen technologies the study investigates aspects such as economic feasibility sustainability assessments and the achievement of carbon neutrality. Additionally considerations extend to the potential for large-scale renewable electricity storage and the realization of net-zero goals. The findings of this study suggest that emerging technologies have the potential to significantly increase green hydrogen production offering affordable solutions for decarbonization. The study affirms that global-scale green hydrogen production could satisfy up to 24% of global energy needs by 2050 resulting in the abatement of 60 gigatons of greenhouse gas (GHG) emissions - equivalent to 6% of total cumulative CO2 emission reductions. To comprehensively evaluate the impact of the hydrogen economy on ecosystem decarbonization this article analyzes the feasibility of three business models that emphasize choices for green hydrogen production and delivery. Finally the study proposes potential directions for future research on hydrogen valleys aiming to foster interconnected hydrogen ecosystems.
Speculative Connections: Port Authorities, Littoral Territories and the Assembling of the Green Hydrogen Frontier
Feb 2025
Publication
This article examines the role of European port authorities in assembling the green hydrogen frontier through the production of speculative connections with prospective hydrogen export zones in the global South. Specifically it analyses the role of a particular discursive tool the pre-feasibility report in fixing the meaning of Namibian territory for the purposes of green hydrogen export disembedding hydrogen products from the social political and ecological bases of their production. We argue that the green hydrogen frontier is fundamentally a speculative project insofar as it both accentuates the productive indeterminacy of green hydrogen as an energy commodity and develops a series of discursive strategies designed to measure map and capture the anticipated value of this commodity. The article’s findings advance geographical debates on energy territory and speculation by demonstrating the role of the port authority - an under-researched actor in the literature on energy transitions - in the reimagination and transformation of littoral territories in the global South.
A Review on the Overall Performance of Metal Hydride-Based Hydrogen Storage Systems
Mar 2025
Publication
Metal hydride-based hydrogen storage (MHHS) has been used for several purposes including mobile and stationary applications. In general the overall MHHS performance for both applications depends on three main factors which are the appropriate selection of metal hydride material uses design configurations of the MHHS based on the heat exchanger and overall operating conditions. However there are different specific requirements for the two applications. The weight of the overall MHHS is the key requirement for mobile applications while hydrogen storage capacity is the key requirement for stationary applications. Based on these requirements several techniques have been recently used to enhance MHHS performance by mostly considering the faster hydrogen absorption/desorption reaction. Considering metal hydride (MH) materials their low thermal conductivity significantly impacts the hydrogen absorption/desorption reaction. For this purpose a comprehensive understanding of these three main factors and the hydrogen absorption/desorption reaction is critical and it should be up to date to obtain the suitable MHHS performance for all related applications. Therefore this article reviews the key techniques which have recently been applied for the enhancement of MHHS performance. In the review it is demonstrated that the design and layout of the heat exchanger greatly affect the performance of the internal heat exchanger. The initial temperature of the heat transfer fluid and hydrogen supply pressure are the main parameters to increase the hydrogen sorption rate and specific heating power. The higher supply pressure results in the improvement in specific heating power. For the metal hydride material selection under the consideration of mobile applications and stationary applications it is important to strike trade-offs between hydrogen storage capacity weight material cost and effective thermal conductivity.
Hydrogen Pipelines and Embrittlement in Gaseous Environments: An Up-to-date Review
Mar 2025
Publication
Pipelines represent the most economical and efficient means for transporting hydrogen in large volumes across vast distances contributing to accelerated realization of hydrogen economy. Nowadays the development of hydrogen pipeline projects including repurposing existing pipelines for hydrogen service has become a global interest especially in those major energy-producing and energy-consuming countries. However steel pipelines are susceptible to hydrogen embrittlement (HE) in high-pressure hydrogen gas environments potentially leading to pipeline failures. In this review we establish a comprehensive knowledge base for comprehending testing and evaluating the gaseous HE in pipelines by a thorough examination of relevant research work. In addition to an overview of some major hydrogen pipeline projects in the world the article consists of four integral parts essential to gaseous HE studies namely methods for exposure of steels to high-pressure hydrogen gas; measurements of the quantity of H atoms inside the steels; stress-strain behavior of pipeline steels under highpressure hydrogen gas exposure; and fracture and fatigue testing of pre-cracked steels within gaseous environments. Further research into gaseous HE in pipelines focuses on developing standardized quantitative and consistent methods to assess and define the susceptibility of pipelines to gaseous HE.
Challenges and Potentials for Additive Manufacturing of Hydrogen Energy Components: A Review
Mar 2025
Publication
Climate change necessitates the development of sustainable energy systems with hydrogen technologies playing a key role in this transition. Additive manufacturing (AM) offers a significant potential to enhance the efficiency of hydrogen energy components and reduce their costs through rapid prototyping design freedom and functional integration. This review provides the first comprehensive summary of the current state of research on the application of AM processes in the production storage and utilization of hydrogen. It highlights various AM processes such as powder bed fusion directed energy deposition fused filament fabrication and stereolithography for the advancement of hydrogen energy components. Current research trends include the material development multi-material AM hybrid processes and the integration of artificial intelligence and machine learning. At present the technologies presented are mainly at a development stage of TRL 4–5. The next major step towards industrialization is the demonstration of prototypes outside the laboratory.
Multi-year Energy Performance Data for an Electrolysis-based Hydrogen Refueling Station
Apr 2023
Publication
Financing sizing operating or upgrading a hydrogen refueling station (HRS) is challenging and may be complex much more so in today's rapidly changing and growing hydrogen industry. There is a significant information gap regarding experimental hydrogen station activities. A high-level perspective on such data and information may facilitate the transition between present and future HRS operations. To address the need for such high-level perspective this paper presents a comprehensive data set on the performance of the California State University Los Angeles Hydrogen Research and Fueling Facility based on multi-year operational data. The analysis of over 4500 refueling events and over 8800 kg of hydrogen dispensed as well as the operation of the facility electrolyzer and of both storage and refueling compressors from 2016 to 2020 reveals a comprehensive picture of HRS energy performance and the identification of useful key performance indicators. In 2016 the station's energy efficiency was 25% but in 2017 and the first three quarters of 2018 it dropped to 15%. Station-specific energy consumption increased during these quarters. The 2020 first quarter energy consumption was between 70 and 80 kWh/kg. At this time the energy efficiency of the station reached 40%.<br/>This research is based on an unprecedented and unique dataset of an HRS operating under real-world conditions with an approach that can be informative for modeling the performance of other stations providing a dataset that HRS designers operators and investors may utilize to make data-driven choices regarding HRS components and their specs and size as well as operating strategies.
No more items...