Publications
Underground Hydrogen Storage: Insights for Future Development
Oct 2025
Publication
Underground hydrogen storage (UHS) is a relatively new technology that demonstrates notable potential for the efficient storage of large quantities of green hydrogen. Its large-scale implementation requires a comprehensive understanding of numerous factors including safe and effective storage methods as well as overcoming various thresholds and challenges. This article presents strategies for accelerating the implementation of this technology identifying the thresholds and challenges affecting the development and future scale-up of UHS. It characterises challenges and constraints related to geology (including the type and geological characterisation of structures hydrogen storage capacity and hydrogen interactions with underground environments) the technological aspects of hydrogen storage (such as infrastructure management and monitoring) and economic and legal considerations. The need for the rapid implementation of demonstration projects has been emphasised. The identified thresholds and challenges along with the resulting recommendations are crucial for paving the way for the large-scale implementation of UHS. Addressing these issues will significantly influence the implementation of this technology post-2030.
Design of Hydrogen-Powered Mobile Emergency Power Vehicle with Soft Open Point and Appropriate Energy Management Strategy
Oct 2025
Publication
Mobile emergency power supply vehicles (MEPSVs) powered by diesel engines or lithiumion batteries (LIBs) have become a viable tool for emergency power supply. However diesel-powered MEPSVs generate noise and environmental pollution while LIB-powered vehicles suffer from limited power supply duration. To overcome these limitations a hydrogen-powered MEPSV incorporating a soft open point (SOP) was developed in this study. We analyzed widely used operating scenarios for the SOP-equipped MEPSV and determined important parameters including vehicle body structure load capacity driving speed and power generation capability for the driving motor hydrogen fuel cell (FC) module auxiliary LIB module and SOP equipment. Subsequently we constructed an energy management strategy for the model for MEPSV which uses multiple energy sources of hydrogen fuel cells and lithium-ion batteries. Through simulations an optimal hydrogen consumption rate in various control strategies was validated using a predefined load curve to optimize the energy consumption minimization strategy and achieve the highest efficiency.
No more items...