Publications
The Role of Industrial Catalysts in Accelerating the Renewable Energy Transition
Aug 2025
Publication
Industrial catalysts are accelerating the global transition toward renewable energy serving as enablers for innovative technologies that enhance efficiency lower costs and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production biofuel generation and biomass conversion highlighting their transformative impact on renewable energy systems. Precious-metal-based electrocatalysts such as ruthenium (Ru) iridium (Ir) and platinum (Pt) demonstrate high efficiency but face challenges due to their cost and stability. Alternatives like nickel-cobalt oxide (NiCo2O4) and Ti3C2 MXene materials show promise in addressing these limitations enabling costeffective and scalable hydrogen production. Additionally nickel-based catalysts supported on alumina optimize SMR reducing coke formation and improving efficiency. In biofuel production heterogeneous catalysts play a crucial role in converting biomass into valuable fuels. Co-based bimetallic catalysts enhance hydrodeoxygenation (HDO) processes improving the yield of biofuels like dimethylfuran (DMF) and γ-valerolactone (GVL). Innovative materials such as biochar red mud and metal–organic frameworks (MOFs) facilitate sustainable waste-to-fuel conversion and biodiesel production offering environmental and economic benefits. Power-to-X technologies which convert renewable electricity into chemical energy carriers like hydrogen and synthetic fuels rely on advanced catalysts to improve reaction rates selectivity and energy efficiency. Innovations in non-precious metal catalysts nanostructured materials and defect-engineered catalysts provide solutions for sustainable energy systems. These advancements promise to enhance efficiency reduce environmental footprints and ensure the viability of renewable energy technologies.
Hydrogen Behavior and Mitigation Measures: State of Knowledge and Database from Nuclear Community
Nov 2024
Publication
Hydrogen has become a key enabler for decarbonization as countries pledge to reach net zero carbon emissions by 2050. With hydrogen infrastructure expanding rapidly beyond its established applications there is a requirement for robust safety practices solutions and regulations. Since the 1980s considerable efforts have been undertaken by the nuclear community to address hydrogen safety issues because in severe accidents of water-cooled nuclear reactors a large amount of hydrogen can be produced from the oxidation of metallic components with steam. As evidenced in the Fukushima accident hydrogen combustion can cause severe damage to reactor building structures promoting the release of radioactive fission products to the environment. A great number of large-scale experiments have been conducted in the framework of national and international projects to understand the hydrogen dispersion and combustion behavior under postulated accidental conditions. Empirical engineering models and computer codes have been developed and validated for safety analysis. Hydrogen recombiners known as Passive Autocatalytic Recombiners (PARs) were developed and have been widely installed in nuclear containments to mitigate hydrogen risk. Complementary actions and strategies were established as part of severe accident management guidelines to prevent or limit the consequences of hydrogen explosions. In addition hydrogen monitoring systems were developed and have been implemented in nuclear power plants. The experience and knowledge gained from the nuclear community on hydrogen safety is valuable and applicable for other industries involving hydrogen production transport storage and use.
Optimal Operating Parameters for Advanced Alkaline Water Electrolysis
Sep 2022
Publication
Advanced zero-gap alkaline electrolyzers can be operated at a significantly higher current density than traditional alkaline electrolyzers. We have investigated how their performance is influenced by diaphragm thickness temperature and pressure. For this a semiempirical current-voltage model has been developed based on experimental data of a 20 Nm3 /h electrolyzer. The model was extrapolated to thinner diaphragm thicknesses and higher temperatures showing that a nominal current density of 1.8 A cm2 is possible with a 0.1 mm diaphragm at 100 C. However these operating parameters also lead to increased gas crossover which limits the ability to operate at low loads. A gas crossover model has been developed which shows that crossover is mainly driven by diffusive transport of hydrogen caused by a high local supersaturation at the diaphragm surface. To enable a low minimum load of 10% the operating pressure should be kept below 8 bara.
A Techno-economic Life Cycle Assessment of H2 Fuelled and Electrified Urban Buses
Sep 2025
Publication
Nowadays several technologies based on powertrain electrification and the exploitation of hydrogen represent valuable options for decarbonizing the on-road public transport sector. The considered alternatives should exhibit an effective benchmark between CO2 reduction potential and production/operational costs. Conducting a comprehensive Total Cost of Ownership (TCO) analysis coupled with a thorough Life Cycle Assessment (LCA) is therefore crucial in shaping the future for cleaner urban mobility. From this perspective this study compares different powertrain configurations for a 12 m urban bus: a conventional diesel Internal Combustion Engine Vehicle (ICEV) a series hybrid diesel two hydrogen-based series hybrid vehicles: a Hydrogen Hybrid Electric Vehicle featuring an H2-ICE (H2-HEV) or a Fuel Cell Electric Vehicle (FCEV) and a Battery Electric Vehicle (BEV). Moreover a sensitivity analysis has been conducted on the carbon footprint for power generation considering also the marginal electricity mix. In addition prospective LCA and TCO elements are introduced by addressing future technological projections for the 2030 horizon. The research reveals that as of today the BEV and hydrogen-fueled vehicles have comparable environmental impacts when the marginal electricity mix is considered. The techno-economic analysis indicates that under current conditions FCEVs and H2-HEVs are not cost-effective for CO₂ reduction unless powered by renewable energy sources. However considering future technological advancements and market evolution FCEVs offer the most promising balance between economic and environmental benefits particularly if hydrogen prices reach €4 per kilogram. If hydrogen-powered vehicles remain a niche market BEVs will be the most viable option for decarbonizing the transport sector in most European countries.
Decision Support System for Sustainable Hydrogen Production: Case Study of Saudi Arabia
Nov 2024
Publication
The global energy sector is undergoing a transition towards sustainable sources with hydrogen emerging as a promising alternative due to its high energy content and clean-burning properties. The integration of hydrogen into the energy landscape represents a significant advancement towards a cleaner greener future. This paper introduces an innovative decision support system (DSS) that combines multi-criteria decision-making (MCDM) and decision tree methodologies to optimize hydrogen production decisions in emerging economies using Saudi Arabia as a case study. The proposed DSS developed using MATLAB Web App Designer tools evaluates various scenarios related to demand and supply cost and profit margins policy implications and environmental impacts with the goal of balancing economic viability and ecological responsibility. The study's findings highlight the potential of this DSS to guide policymakers and industry stakeholders in making informed scalable and flexible hydrogen production decisions that align with sustainable development goals. The novel DSS framework integrates two key influencing factors technical and logistical by considering components such as data management modeling analysis and decision-making. The analysis component employs statistical and economic methods to model and assess the costs and benefits of eleven strategic scenarios while the decision-making component uses these results to determine the most effective strategies for implementing hydrogen production to minimize risks and uncertainties.
A Study on the Promoting Role of Renewable Hydrogen in the Transformation of Petroleum Refining Pathways
Jun 2024
Publication
The refining industry is shifting from decarbonization to hydrogenation for processing heavy fractions to reduce pollution and improve efficiency. However the carbon footprint of hydrogen production presents significant environmental challenges. This study couples refinery linear programming models with life cycle assessment to evaluate from a long-term perspective the role of low-carbon hydrogen in promoting sustainable and profitable hydrogenation refining practices. Eight hydrogen-production pathways were examined including those based on fossil fuels and renewable energy providing hydrogen for three representative refineries adopting hydrogenation decarbonization and co-processing routes. Learning curves were used to predict future hydrogen cost trends. Currently hydrogenation refineries using fossil fuels benefit from significant cost advantages in hydrogen production demonstrating optimal economic performance. However in the long term with increasing carbon taxes hydrogenation routes will be affected by the high carbon emissions associated with fossil-based hydrogen losing economic advantages compared to decarbonization pathways. With increasing installed capacity and technological advancements low-carbon hydrogen is anticipated to reach cost parity with fossil-based hydrogen before 2060. Coupling renewable hydrogen is expected to yield the most significant economic advantages for hydrogenation refineries in the long term. Renewable hydrogen drives the transition of refining processing routes from a decarbonization-oriented approach to a hydrogenation-oriented paradigm resulting in cleaner refining processes and enhanced competitiveness under emission-reduction pressures.
Comparative Analysis of Hydrogen vs. Methane Pipeline Transport Systems with Integrated Methane Pyrolysis for Low-carbon Hydrogen Supply
Jan 2025
Publication
Establishing a climate-neutral energy system is among the most urgent challenges facing humanity with the natural gas network forming a critical component of energy and commodity infrastructure. The hydrogen economy based on climate-neutral hydrogen which serves as both energy source and raw-material for numerous sectors offers a promising pathway for significant reduction in CO2 emissions. However the lack of an extensive hydrogen infrastructure underscores the need for transitional solutions. Given this infrastructure gap and the urgency to establish a reliable and less emission-intensive commodity network methane pyrolysis (MP) emerges as a promising technology for supporting the transition to a climate-neutral energy system. Within this context this study evaluates the intricacies of long-distance pipeline transport of hydrogen (H2) and methane (CH4) focusing on the placement of MP units. The primary goal is to provide “turquoise hydrogen” produced from natural gas via MP along with solid carbon from distant locations to industrial consumers. Two configurations are assessed: Configuration I represents a centralized supply concept transporting molecular hydrogen while Configuration II delivers methane to consumers for on-site hydrogen production. The reference system covers a transport distance of 500 km extending to 4000 km with recompression stations every 125 km. The transport capacity of the hydrogen pipeline is set at 13 GW with the methane mass flow set to match the equivalent hydrogen output chemically bound in methane. A parameter study examines power requirements and global warming impact (GWI) over various transport distances. For distances between 2000 and 4000 km Configuration II requires less power (Δ = 229.4–443.0 MW) and results in GWI savings of 0.25 to 0.37 kgCO2-eq.kgH2−1 owing primarily to the lower specific energy consumption for methane transport compared to hydrogen. The study concludes that the electricity mix of the exporting and importing regions significantly affects the GWI of hydrogen supply with the MP unit contributing a substantial part (6.92 kgCO2-eq.kgH2−1) to the total GWI. The approach of Configuration I is favorable for regions with a low-GWI electricity supply while Configuration II is better suited for regions where the electricity mixes of both the exporting and importing regions are similar.
Techno-economic Feasibility of Integrating Hybrid-battery Hydrogen Energy Storage in Academic Buildings
Apr 2024
Publication
Green hydrogen production and storage are vital in mitigating carbon emissions and sustainable transition. However the high investment cost and management requirements are the bottleneck of utilizing hybrid hydrogen-based systems in microgrids. Given the necessity of cost-effective and optimal design of these systems the present study examines techno-economic feasibility of integrating hybrid hydrogen-based systems into an outdoor test facility. With this perspective several solar-driven hybrid scenarios are introduced at two energy storage levels namely the battery and hydrogen energy storage systems including the high-pressure gaseous hydrogen and metal hydride storage tanks. Dynamic simulations are carried out to address subtle interactions in components of the hybrid system by establishing a TRNSYS model coupled to a Fortran code simulating the metal hydride storage system. The OpenStudio-EnergyPlus plugin is used to simulate the building load validate against experimental data according to the measured data and monitored operating conditions. Aimed at enabling efficient integration of energy storage systems a techno-enviro-economic optimization algorithm is developed to simultaneously minimize the levelized cost of the electricity and maximize the CO2 mitigation in each proposed hybrid scenario. The results indicate that integrating the gaseous hydrogen and metal hydride storages into the photovoltaic-alone scenario enhances 22.6% and 14.4% of the annual renewable factor. Accordingly the inclusion of battery system to these hybrid scenarios gives a 30.4% and 20.3 % boost to the renewable factor value respectively. Although the inclusion of battery energy storage into the hybrid systems increases the renewable factor the results imply that it reduces the hydrogen production rate via electrolysis. The optimized values of the levelized cost of electricity and CO2 emission for different scenarios vary in the range of 0.376–0.789 $/kWh and 6.57–9.75 ton respectively. The multi-criteria optimizations improve the levelized cost of electricity and CO2 emission by up to 46.2% and 11.3% with respect to their preliminary design.
Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review
Oct 2021
Publication
The global economic growth the increase in thepopulation and advances in technology lead to an increment in theglobal primary energy demand. Considering that most of thisenergy is currently supplied by fossil fuels a considerable amountof greenhouse gases are emitted contributing to climate changewhich is the reason why the next European Union bindingagreement is focused on reducing carbon emissions usinghydrogen. This study reviews different technologies for hydrogenproduction using renewable and non-renewable resources.Furthermore a comparative analysis is performed on renewable-based technologies to evaluate which technologies are economically and energetically more promising. The results show howbiomass-based technologies allow for a similar hydrogen yield compared to those obtained with water-based technologies but withhigher energy efficiencies and lower operational costs. More specifically biomass gasification and steam reforming obtained a properbalance between the studied parameters with gasification being the technique that allows for higher hydrogen yields while steamreforming is more energy-efficient. Nevertheless the application of hydrogen as the energy vector of the future requires both the useof renewable feedstocks with a sustainable energy source. This combination would potentially produce green hydrogen whilereducing carbon dioxide emissions limiting global climate change and thus achieving the so-called hydrogen economy.
Global Demand for Green Hydrogen-based Steel: Insights from 28 Scenarios
Jul 2024
Publication
Growing expectations are being placed on green hydrogen-based steel for decarbonising the global steel industry. However the scale of the expected demand is dispersed across numerous case studies resulting in a fragmented picture. This study examines 28 existing scenarios to provide a cohesive view of future global demand. In the short term the demand for green hydrogen-based steel is expected to be limited constituting 2% of current total steel production by 2030. However a transformation phase is expected around 2040 marked by accelerated growth. By 2050 global demand is projected to reach 660 Mt (with an interquartile range of 368–1000 Mt) equivalent to 35% (19%–53%) of current total steel production. To meet such growing demand green hydrogen supply and electrolyser capacity will need to increase to more than 1000 times current levels by 2050. These trends highlight both short-term limitations and long-term potential. Decarbonisation efforts will therefore require immediate emission reductions with already scalable options while simultaneously building the enabling infrastructure for green hydrogen-based steelmaking to ensure long-term impacts.
Characterizing Hydrogen-diesel Dual-fuel Performance and Emissions in a Commercial Heavy-duty Diesel Truck
Sep 2024
Publication
This study investigates hydrogen (H2) as a supplementary fuel in heavy-duty diesel engines using pre-manifold injection. A H2-diesel dual-fuel (H2DF) system was implemented on a commercial class-8 heavy-duty diesel truck without modifying the original diesel injection system and engine control unit (ECU). Tests were conducted on a chassis dynamometer at engine speeds between 1000 and 1400 rpm with driver-demanded torques from 10 to 75%. The hydrogen energy fraction (HEF) was strategically controlled in the range between 10 and 30%. Overall CO2 reduction (comparable to the HEF level) was achieved with similar brake-specific energy consumption (BSEC) at all loads and speeds. To maintain the same shaft torque the driver-demanded torque was reduced in H2DF operation which resulted in a lower boost pressure. At higher loads engine-out BSNOx slightly decreased while BSCO and black carbon (BC) increased significantly due to lower oxygen concentration resulting from the lower boost pressure. At lower loads engine-out BSCO and BSBC decreased moderately while NO2/NO ratio increased substantially in H2DF operation. Deliberate air path and diesel injection control are expected to enable higher HEF and GHG reductions.
Economic Framework for Green Shipping Corridors: Evaluating Cost-effective Transition from Fossil Fuels Towards Hydrogen
Aug 2024
Publication
Global warming’s major cause is the emission of greenhouse-effect gases (GHG) especially carbon dioxide (CO2) whose main source is the combustion of fossil fuels. Fossil fuels serve as the primary energy source in many industries including shipping which is the focus of this study. One of the measures proposed to tackle GHG emissions is the development of green shipping corridors - carbon-free shipping routes that require the transition to alternative fuels which are gaining competitiveness. One of the reasons for that is carbon pricing which taxes CO2 emissions. However the lack of consensus on the most cost-advantageous alternative fuel in the long run results in the delay of the implementation of green shipping corridors. To make it more accessible for stakeholders to conduct an economic analysis of the various options a framework to determine and minimize the costs of transitioning from fossil fuels to any alternative fuel is proposed over the period of one voyage considering the lost opportunity cost the deployment cost of bunkering vessels at the necessary call ports the cost of converting the vessel the car-bon emissions tax cost and the fuel cost. This will allow stakeholders to choose the most economical alternative fuel accelerating the development of green shipping corridor initiatives. To validate the effectiveness of the framework it was applied in a case study involving a shipowner seeking to transition from heavy fuel oil (HFO) to Ammonia Hydrogen Liquefied Natural Gas (LNG) or Methanol. This study faced limitations due to the unknown costs of installing bunkering vessels for Ammonia and Hydrogen. However it evaluates the cost-effectiveness of alternative fuels providing insights into their short-term economic viability. The results showed that Hydrogen is the most costadvantageous fuel until a deployment cost per bunkering vessel of 1990285$ for a sailing speed of 22 knots and 2190171$ for a sailing speed of 18 knots is reached after which LNG becomes the most economical option regardless of variations in the carbon tax. Moreover a sensitivity analysis was conducted to determine the effects of variations in parameters such as carbon tax fuel prices and vessel conversion costs in the total cost of each fuel option. Results highlighted that even though HFO remains the most economical fuel option even when considering a high increase in carbon tax the cost gap between HFO and alternative fuels narrows significantly with the increase in carbon tax. Furthermore the sailing speed impacts the fuels’ competitiveness as the cost difference between HFO and alternative fuels decreases at higher speeds.
Enhancing Safety and Operation of Hydrogen Fueling Stations: A Model-based Method for Complex Failure Scenario Analysis
Jun 2025
Publication
As a zero-emission fuel hydrogen provides a promising solution with significant potential to meet the increasing demand for clean energy alternatives. Hydrogen fueling stations are essential infrastructure for the commercialization of hydrogen fuel cells but the flammability of hydrogen poses safety challenges throughout its lifecycle. Past incidents highlight the need for robust risk assessments starting with comprehensive hazard identification and failure scenario analysis.<br/>This paper proposes using Multilevel Flow Modelling (MFM) a functional modeling method integrated with reasoning capability to support safety evaluations. MFM enables the structured representation of system functions and supports tasks such as fault diagnosis and hazard analysis. Previously applied in nuclear offshore and chemical systems MFM is here used to model a liquid hydrogen fueling station. This paper demonstrates that a developed MFM model identifies failure scenarios related to hydrogen leaks overpressure and operational reliability issues.<br/>This paper conducts a comparison between MFM and traditional methods FMEA and FTA and demonstrates MFM's strength in handling the key challenges rooted from complex failure interactions. Results suggest MFM is complementary to traditional methods and can enhance risk assessments. MFM also contributes to digitalization in safety assessment and monitoring systems ultimately improving hydrogen fueling station reliability and safety.
Data-driven Optimal Scheduling for Underground Space Based Integrated Hydrogen Energy System
Dec 2021
Publication
Integrated hydrogen energy systems (IHESs) have attracted extensive attention in miti-gating climate problems. As a kind of large-scale hydrogen storage device undergroundhydrogen storage (UHS) can be introduced into IHES to balance the seasonal energy mis-match while bringing challenges to optimal operation of IHES due to the complex geolog-ical structure and uncertain hydrodynamics. To address this problem a deep deterministicpolicy gradient (DDPG)-based optimal scheduling method for underground space basedIHES is proposed. The energy management problem is formulated as a Markov decisionprocess to characterize the interaction between environmental states and policy. Based onDDPG theory the actor-critic structure is applied to approximate deterministic policy andactor-value function. Through policy iteration and actor-critic network training the oper-ation of UHS and other energy conversion devices can be adaptively optimised which isdriven by real-time response data instead of accurate system models. Finally the effective-ness of the proposed optimal scheduling method and the benefits of underground spaceare verified through time-domain simulations.
Technical–Economic Analysis of Renewable Hydrogen Production from Solar Photovoltaic and Hydro Synergy in a Pilot Plant in Brazil
Sep 2024
Publication
Renewable hydrogen obtained from renewable energy sources especially when produced through water electrolysis is gaining attention as a promising energy vector to deal with the challenges of climate change and the intermittent nature of renewable energy sources. In this context this work analyzes a pilot plant that uses this technology installed in the Itumbiara Hydropower Plant located between the states of Goiás and Minas Gerais Brazil from technical and economic perspectives. The plant utilizes an alkaline electrolyzer synergistically powered by solar photovoltaic and hydro sources. Cost data for 2019 when the equipment was purchased and 2020–2023 when the plant began continuous operation are considered. The economic analysis includes annualized capital maintenance and variable costs which determines the levelized cost of hydrogen (LCOH). The results obtained for the pilot plant’s LCOH were USD 13.00 per kilogram of H2 with an efficiency loss of 2.65% for the two-year period. Sensitivity analysis identified the capacity factor (CF) as the main determinant of the LCOH. Even though the analysis specifically applies to the Itumbiara Hydropower Plant the CF can be extrapolated to larger plants as it directly influences hydrogen production regardless of plant size or capacity
Experimental Investigation of High Temperature Oxidation Behaviour of Steels Exposed to Air-fuel Natural Gas or Hydrogen Combustion Atmospheres during Reheating on a Semi-industrial Scale
Jun 2025
Publication
In the future steel products will be reheated for hot working using hydrogen instead of natural gas. This study investigated the differences in oxide scale formation between natural gas/air and hydrogen/air combustion at constant air-fuel-ratio. Samples of a hypo-eutectoid eutectoid and hyper-eutectoid steel grade (dimensions: 30 x 30 x 50 mm W x H x L) were exposed to the two atmospheres in a semi-industrial scale furnace for 180 min at three sample core temperatures (1100 1200 and 1280 °C). Specific mass gain was calculated and the samples were metallographically examined. Switching the fuel increased scale formation depending on the steel. The exponential correlation between temperature and scale formation is more pronounced for the eutectoid and the hyper-eutectoid steel grade. Metallographic investigations revealed similar scale morphologies in both atmospheres but with significant temperature dependence. The decarburization depth is atmosphere-independent. Thus switching fuel does not negatively impact the properties of the steel substrate; it only increases scale formation during reheating.
Zero-emission Propulsion System Featuring, Flettner Rotors, Batteries and Fuel Cells, for a Merchant Ship
Jul 2024
Publication
To meet the International Maritime Organization’s (IMO) goal of decarbonising the shipping sector by 2050 zero-emission ship propulsion systems should be developed to replace conventional fossil fuel-based ones. In this study we propose a zero-emission hybrid hydrogen-wind-powered propulsion system to be retrofitted to a benchmark merchant ship with a conventional propulsion system. The ship and its propulsion systems are modelled using an in-house platform. We analyse power and energy requirements for the ship over a realistic route and one-year schedule factoring in actual sea and weather conditions. Initially we examine the battery-powered propulsion system which proves impractical even with a reduction in the ship’s speed and the addition of a charging station. This retrofitted battery-powered propulsion system will occupy a significant portion of the existing ship’s deadweight due to its substantial weight consequently reducing the ship’s cargo capacity. To address this we evaluate integrating a hydrogen-powered fuel cell system with power equal to the non-propulsive constant load in the ship. We demonstrate that under these conditions and with four Flettner rotors and the charging station positioned mid-port on the ship’s route the size of the zero-emission propulsion system can be approximately 20% of the deadweight rendering such a system feasible.
The Progress of Autoignition of High-Pressure Hydrogen Gas Leakage: A Comprehensive Review
Aug 2024
Publication
As a paradigm of clean energy hydrogen is gradually attracting global attention. However its unique characteristics of leakage and autoignition pose significant challenges to the development of high-pressure hydrogen storage technologies. In recent years numerous scholars have made significant progress in the field of high-pressure hydrogen leakage autoignition. This paper based on diffusion ignition theory thoroughly explores the mechanism of high-pressure hydrogen leakage autoignition. It reviews the effects of various factors such as gas properties burst disc rupture conditions tube geometric structure obstacles etc. on shock wave growth patterns and autoignition characteristics. Additionally the development of internal flames and propagation characteristics of external flames after ignition kernels generation are summarized. Finally to promote future development in the field of high-pressure hydrogen energy storage and transportation this paper identifies deficiencies in the current research and proposes key directions for future research.
A Comprehensive Review of Hydrogen Safety through a Metadata Analysis Framework
Feb 2025
Publication
Hydrogen is widely recognized as a promising clean energy carrier but its highly flammable and explosive nature presents significant safety challenges in its production storage transportation and usage. Addressing these challenges is critical for the successful integration of hydrogen into global energy systems aligning with the United Nations’ sustainable development goals to support the transition to a low-carbon future. This study aims to provide a comprehensive review of hydrogen safety through a metadata analysis framework focusing on risks challenges mitigation strategies and regulations for safe handling. Previous reviews have largely addressed general hydrogen safety concerns but none have systematically evaluated the issue from a data-driven perspective. This review fills that gap by analyzing research trends root causes of hydrogen’s unsafe handling such as its low molecular density broad flammability range and high permeability and exploring solutions such as chemical additives and gaseous inhibitors to improve safety. Utilizing bibliometric techniques and scientific mapping tools this study synthesizes extensive research spanning from 2000 to 2024 visualizing the evolution of hydrogen safety research and identifying critical areas for future inquiry. The findings contribute valuable insights into the safe deployment of hydrogen technologies offering recommendations for future research and regulatory advancements to mitigate risks and ensure hydrogen’s role in a sustainable energy future.
A Correlation for Turbulent Combustion Speed Accounting for Instabilities and Expansion Speed in a Hydrogen-natural Gas Spark Ignition Engine
Oct 2020
Publication
An analysis of the turbulent premixed combustion speed in an internal combustion engine using natural gas hydrogen and intermediate mixtures as fuels is carried out with different air-fuel ratios and engine speeds. The combustion speed has been calculated by means of a two-zone diagnosis thermodynamic model combined with a geometric model using a spherical flame front hypothesis. 48 operating conditions have been analyzed. At each test point the pressure record of 200 cycles has been processed to calculate the cycle averaged turbulent combustion speed for each flame front radius. An expression of turbulent combustion speed has been established as a function of two parameters: the ratio between turbulence intensity and laminar combustion speed and the second parameter the ratio between the integral spatial scale and the thickness of the laminar flame front increased by instabilities. The conclusion of this initial study is that the position of the flame front has a great influence on the expression to calculate the combustion speed. A unified correlation for all positions of the flame front has been obtained by adding one correction term based on the expansion speed as a turbulence source. This unified correlation is thus valid for all experimental conditions of fuel types air–fuel ratios engine speeds and flame front positions. The correlation can be used in quasi-dimensional predictive models to determine the heat released in an ICE.
No more items...