Publications
Numerical Simulation Study of Gas Stratification in Hydrogen-Enriched Natural Gas Pipelines
Jun 2025
Publication
Hydrogen blending in natural gas pipelines facilitates renewable energy integration and cost-effective hydrogen transport. Due to hydrogen’s lower density and higher leakage potential compared to natural gas understanding hydrogen concentration distribution is critical. This study employs ANSYS Fluent 2022 R1 with a realizable k-ε model to analyze flow dynamics of hydrogen–methane mixtures in horizontal and undulating pipelines. The effects of hydrogen blending ratios pressure (3–8 MPa) and pipeline geometry were systematically investigated. Results indicate that in horizontal pipelines hydrogen concentrations stabilize near initial values across pressure variations with minimal deviation (maximum increase: 1.6%). In undulating pipelines increased span length of elevated sections reduces maximum hydrogen concentration while maintaining proximity (maximum increase: 0.65%) to initial levels under constant pressure. Monitoring points exhibit concentration fluctuations with changing pipeline parameters though no persistent stratification occurs. However increasing the undulating height elevation difference leads to an increase in the maximum hydrogen concentration at the top of the pipeline rising from 3.74% to 9.98%. The findings provide theoretical insights for safety assessments of hydrogen–natural gas co-transport and practical guidance for pipeline design optimization.
Europe's Environment 2025 - Main Report, Europe's Environment and Climate: Knowledge for Resilience, Prosperity and Sustainability
Jan 2025
Publication
Every five years as mandated in its founding regulation the European Environment Agency (EEA) publishes a state of the environment report. Europe's environment 2025 provides decision makers at European and national levels as well as the general public with a comprehensive and cross-cutting assessment on environment climate and sustainability in Europe. Europe's environment 2025 is the 7th state of the environment report published by the EEA since 1995. Europe's environment 2025 has been prepared in close collaboration with the EEA’s European Environment Information and Observation Network (Eionet). The report draws on the Eionet’s vast expertise of leading experts and scientists in the environmental field across the EEA’s 32 member countries and six cooperating countries.
Multi-time Scaling Optimization for Electric Station Considering Uncertainties of Renewable Energy and EVs
Oct 2025
Publication
The development of new energy vehicles particularly electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) represents a strategic initiative to address climate change and foster sustainable development. Integrating PV with hydrogen production into hybrid electricity-hydrogen energy stations enhances land and energy efficiency but introduces scheduling challenges due to uncertainties. A multi-time scale scheduling framework which includes day-ahead and intraday optimization is established using fuzzy chance-constrained programming to minimize costs while considering the uncertainties of PV generation and charging/refueling demand. Correspondingly trapezoidal membership function and triangular membership function are used for the fuzzy quantification of day-ahead and intraday predictions of photovoltaic power generation and load demands. The system achieves 29.37% lower carbon emissions and 17.73% reduced annualized costs compared to day-ahead-only scheduling. This is enabled by real-time tracking of PV/load fluctuations and optimized electrolyzer/fuel cell operations maximizing renewable energy utilization. The proposed multi-time scale framework dynamically addresses short-term fluctuations in PV generation and load demand induced by weather variability and temporal dynamics. By characterizing PV/load uncertainties through fuzzy methods it enables formulation of chance-constrained programming models for operational risk quantification. The confidence level – reflecting decision-makers’ reliability expectations – progressively increases with refined temporal resolution balancing economic efficiency and operational reliability.
Development and Validation of an All-metal Scroll Pump for PEM Fuel Cell Hydrogen Recirculation
Oct 2025
Publication
Hydrogen recirculation is essential for maintaining fuel efficiency and durability in Proton Exchange Membrane Fuel Cell (PEMFC) systems particularly in automotive range extender applications. This study presents the design simulation and experimental validation of a dry all-metal scroll pump developed for hydrogen recirculation in a 5 kW PEMFC system. The pump operates without oil or polymer seals offering long-term compatibility with dry hydrogen. Two prototypes were fabricated: SP1 incorporating PTFE-bronze tip seals and SP2 a fully metallic seal-free design. A fully deterministic one-dimensional (1D) model was developed to predict thermodynamic performance including leakage and heat transfer effects and validated against experimental results. SP1 achieved higher flow rates due to reduced axial leakage but experienced elevated friction and temperature. In contrast SP2 provided improved thermal stability and lower friction with slightly reduced flow performance. The pump demonstrated a maximum flow rate of 50 l/min and an isentropic efficiency of 82.2 % at 2.5 bara outlet pressure. Simulated performance showed strong agreement with experimental results with deviations under 5 %. The findings highlight the critical role of thermal management and manufacturing tolerances in dry scroll pump design. The seal-free liquid-cooled scroll architecture presents a promising solution for compact oil-free hydrogen recirculation in low-power fuel cell systems.
Simulation of Hydrogen Drying via Adsorption in Offshore Hydrogen Production
Sep 2025
Publication
According to the international standard ISO 14687:2019 for hydrogen fuel quality the maximum allowable concentration of water in hydrogen for use in refueling stations and storage systems must not exceed 5 µmol/mol. Therefore an adsorption purification process following the electrolyzer is necessary. This study numerically investigates the adsorption of water and the corresponding water loading on zeolite 13X BFK based on the mass flows entering the adsorption column from three 5 MW electrolyzers coupled to a 15 MW offshore wind turbine. As the mass flow is influenced by wind speed a direct comparison between realistic wind speeds and adsorption loading is presented. The presented numerical discretization of the model also accounts for perturbations in wind speed and consequently mass flows. In addition adsorption isobars were measured for water on zeolite 13X BFK within the required pressure and temperature range. The measured data was utilized to fit parameters to the Langmuir–Freundlich isotherm.
Providing the Transport Sector in Europe with Fossil Free Energy - A Model-based Analysis under Consideration of the MENA Region
Mar 2025
Publication
For reaching the European greenhouse gas emission targets the phase-in of alternative technologies and energy carriers is crucial for all sectors. For the transport sector synthetic fuels are–next to electromobility–a promising option especially for long-distance shipping and air transport. Within this context the import of synthetic fuels from the Middle East and Northern Africa (MENA) region seems attractive due to low costs for renewable electricity in this region and low transport costs of synthetic fuels at the same time. Against this background this paper analyzes the role of the MENA region in meeting the future synthetic fuel demand in Europe using a cost-optimizing energy supply model. In this model the production storage and transport of electricity hydrogen and synthetic fuels by various technologies in both European and MENA countries in the period up to 2050 are explicitly modeled. Thereby different scenarios are analyzed to depict regional differences in investment risks: a base scenario that does not take into account regional differences in investments risks and three risk scenarios with different developments of regional investment risks. Sensitivity analyses are also carried out to derive conclusions about the robustness of results. Results show that meeting the future synthetic fuel demand in Europe to a large extent by imports from the MENA region can be an attractive option from an economic point of view. If investment risks are incorporated however lower import quotas of synthetic fuels are economically attractive for Europe: the higher generation costs are outweighed by the lower investments risks in Europe to a certain extent. Thereby investment risks outweigh other factors such as transport distance or renewable electricity generation costs in terms of exporting MENA regions and a synthetic fuel import is especially attractive from MENA countries with low investment risks. Concluding within this paper detailed export relations between MENA and EU considering investment risks were modeled for the first time. These model results should be complemented by a more in-depth analysis of the MENA countries including evaluating opportunities for local value chain development sustainability concerns (including social factors) and optimal site selection.
Hydrogen Cargo Bikes as a Data-driven Solution for Last-mile Decarbonization
Oct 2025
Publication
The growing demand for low-emission urban freight has intensified efficiency challenges in lastmile delivery especially in dense city centres. This study assesses hydrogen-powered cargo bikes as a scalable zero-emission alternative to fossil fuel vans and battery-electric cargo bikes. Using real-world logistics data from Rome we apply simulation models including Monte Carlo cost analysis Artificial Intelligence driven routing K-means station placement and fleet scaling. Results show hydrogen bikes deliver 15% more parcels daily than electric counterparts reduce refuelling detours by 31.4% and lower per-trip fuel use by 32%. They can cut up to 120 metric tons of CO2 annually per 100-bike fleet. While battery-electric cargo bikes remain optimal for short trips hydrogen bikes offer superior uptime range and rapid refuelling—ideal for highfrequency mid-distance logistics. Under supportive pricing and infrastructure hydrogen cargo bikes represent a resilient and sustainable solution for decarbonizing last-mile delivery in city areas.
Ammonia–Hydrogen Dual-Fuel Combustion: Strategies for Optimizing Performance and Reducing Emissions in Internal Combustion Engines
Jun 2025
Publication
The urgent need to mitigate climate change and reduce greenhouse gas emissions has accelerated the search for sustainable and scalable energy carriers. Among the different alternatives ammonia stands out as a promising carbon-free fuel thanks to its high energy density efficient storage and compatibility with existing infrastructure. Moreover it can be produced through sustainable green processes. However its application in internal combustion engines is limited by several challenges including low reactivity narrow flammability limits and high ignition energy. These factors can compromise combustion efficiency and contribute to increased unburned ammonia emissions. To address these limitations hydrogen has emerged as a complementary fuel in dual-fuel configurations with ammonia. Hydrogen’s high reactivity enhances flame stability ignition characteristics and combustion efficiency while reducing emissions of unburned ammonia. This review examines the current status of dual-fuel ammonia and hydrogen combustion strategies in internal combustion engines and summarizes the experimental results. It highlights the potential of dual-fuel systems to optimize engine performance and minimize emissions. It identifies key challenges knowledge gaps and future research directions to support the development and widespread adoption of ammonia–hydrogen dual-fuel technologies.
Dynamic Life cycle Assessment of Climate Change Impacts of Hydrogen Production from Energy Crops
Oct 2025
Publication
Life Cycle Assessments (LCAs) are predominantly conducted using a static approach which aggregates emissions over time without considering emissions timing. Additionally LCAs often assume biogenic carbon neutrality neglecting site-specific forest carbon fluxes and temporal trade-offs. This study applies both static and dynamic LCA and incorporates biogenic carbon to evaluate the climate change impact of hydrogen production. It focuses on gasification of eucalyptus woodchips cultivated on former marginal grasslands (BIO system) which avoids competition with land used for food production. A case study is presented in western Andalusia (Spain) with the aim to replace hydrogen produced via the conventional steam methane reforming (SMR) pathway (BAU system) at La Rabida ´ refinery. The CO2FIX model was used to simulate biogenic carbon fluxes providing insights into carbon sequestration dynamics and it was found that the inclusion of biogenic carbon flows from eucalyptus plantations dramatically reduced CO₂ equivalent emissions (176 % in the static approach and 369 % in the dynamic approach) primarily due to soil and belowground biomass carbon sequestration. The dynamic LCA showed significantly lower CO₂ emissions than the static LCA (106 % reduction) shifting emissions from − 1.79 kg CO₂/kg H₂ in the static approach to − 3.69 kg CO₂/kg H₂ in the dynamic approach. These findings highlight the need to integrate emission dynamics and biogenic carbon flows into LCA methodologies to support informed decision-making and the development of more effective environmental policies.
Techno-Economic Analysis of Onsite Sustainable Hydrogen Production via Ammonia Decomposition with Heat Recovery System
Jun 2025
Publication
Hydrogen offers a promising solution to reduce emissions in the energy sector with the growing need for decarbonisation. Despite its environmental benefits the use of hydrogen presents significant challenges in storage and transport. Many studies have focused on the different types of hydrogen production and analysed the pros and cons of each technique for different applications. This study focuses on techno-economic analysis of onsite hydrogen production through ammonia decomposition by utilising the heat from exhaust gas generated by hydrogen-fuelled gas turbines. Aspen Plus simulation software and its economic evaluation system are used. The Siemens Energy SGT-400 gas turbine’s parameters are used as the baseline for the hydrogen gas turbine in this study together with the economic parameters of the capital expenditure (CAPEX) and operating expenditure (OPEX) are considered. The levelised cost of hydrogen (LCOH) is found to be 5.64 USD/kg of hydrogen which is 10.6% lower than that of the conventional method where a furnace is used to increase the temperature of ammonia. A major contribution of the LCOH comes from the ammonia feed cost up to 99%. The price of ammonia is found to be the most sensitive parameter of the contribution to LCOH. The findings of this study show that the use of ammonia decomposition via heat recovery for onsite hydrogen production with ammonic recycling is economically viable and highlight the critical need to further reduce the prices of green ammonia and blue ammonia in the future.
Techno-Economic Evaluation of a Floating Photovoltaic-Powered Green Hydrogen for FCEV for Different Köppen Climates
Sep 2025
Publication
The escalating global demand for electricity coupled with environmental concerns and economic considerations has driven the exploration of alternative energy sources creating competition for land with other sectors. A comprehensive analysis of a 10 MW floating photovoltaic (FPV) system deployed across different Köppen climate zones along with techno-economic analysis involves evaluating technical efficiency and economic viability. Technical parameters are assessed using PVsyst simulation and HOMER Pro. While economic analysis considers return on investment net present value internal rate of return and payback period. Results indicate that temperate and dry zones exhibit significant electricity generation potential from an FPV. The study outlines the payback period with the lowest being 5.7 years emphasizing the system’s environmental benefits by reducing water loss in the form of evaporation. The system is further integrated with hydrogen generation while estimating the number of cars that can be refueled at each location with the highest amount of hydrogen production being 292817 kg/year refueling more than 100 cars per day. This leads to an LCOH of GBP 2.84/kg for 20 years. Additionally the comparison across different Koppen climate zones suggests that even with the high soiling losses dry climate has substantial potential; producing up to 18829587 kWh/year of electricity and 292817 kg/year of hydrogen. However factors such as high inflation can reduce the return on investment to as low as 13.8%. The integration of FPV with hydropower plants is suggested for enhanced power generation reaffirming its potential to contribute to a sustainable energy future while addressing the UN’s SDG7 SDG9 SDG13 and SDG15.
Hydrogen Pathways for Green Fertilizer Production: A Comparative Techno-economic Study of Electrolysis and Plasmalysis
Sep 2025
Publication
Decarbonizing ammonia production is critical to meeting global climate targets in agriculture. This study evaluates two hydrogen pathways plasmalysis and electrolysis at Ontario’s Courtright Complex using detailed techno-economic modeling. The natural gas–based plasma system achieves the lowest hydrogen cost ($1.35/kg) but incurs high annual fuel expenses ($297.7 M/y) and shows strong sensitivity to natural gas prices. Electrolysis powered by 110 MW PV 1700 MW wind 60 MW biomass 95 MWh battery storage and a 2.0 GW electrolyzer produces hydrogen at $2.07/kg with lower fuel costs ($29.7 M/y) and significant grid interaction (2.67 TWh/y imports and 1.89 TWh/y exports) enhancing operational flexibility. Over a 15-year horizon both pathways deliver substantial CO2 reductions (plasmalysis: 27000 kt; electrolysis: 26045 kt). Extending plant lifetimes from 10 to 30 y reduces the levelized cost of hydrogen from $2.25 to $1.91/kg in the plasmalysis case and from $1.52 to $1.18/kg in the electrolysis case while increasing overall net present cost. Although electrolysis requires higher capital investment ($5.53 B compared with $1.79 B) it demonstrates resilience to fuel price volatility and provides additional grid revenue. In contrast plasmalysis offers near-term cost advantages but remains dependent on fossil gas underscoring its role as a transitional rather than fully green option for ammonia decarbonization.
Analysis of Hydrogen Leakage and Influencing Factors of Fuel Cell Vehicles in Enclosed Spaces
Jun 2025
Publication
A simulation study was conducted on the hydrogen leakage diffusion process and influencing factors of fuel cell vehicles in enclosed spaces. The results indicate that when hydrogen leakage flows towards the rear of the vehicle it mainly flows along the rear wall of the space and diffuses to the surrounding areas. Setting ventilation openings of different areas on the top of the carriage did not significantly improve the spatial diffusion speed of the leaked hydrogen and the impact on the concentration of leaked hydrogen was limited to the vicinity of the ventilation openings. The ventilation opening at the rear can accelerate the diffusion of hydrogen gas to the external environment significantly reducing the concentration of hydrogen and rate of gas rise. When the leaked hydrogen gas flows towards the front of the vehicle and above the space the concentration of hydrogen mainly increases along the height direction of the space. The research results have significant safety implications for the use of fuel cell semi-trailer trucks.
Green Hydrogen Production and Deployment: Opportunities and Challenges
Aug 2025
Publication
Green hydrogen is emerging as a pivotal energy carrier in the global transition toward decarbonization offering a sustainable alternative to fossil fuels in sectors such as heavy industry transportation power generation and long-duration energy storage. Despite its potential large-scale deployment remains hindered by significant economic technological and infrastructure challenges. Current production costs for green hydrogen range from USD 3.8 to 11.9/kg H2 significantly higher than gray hydrogen at USD 1.5–6.4/kg H2 due to high electricity prices and electrolyzer capital costs exceeding USD 2000 per kW. This review critically examines the key bottlenecks in green hydrogen production focusing on water electrolysis technologies electrocatalyst limitations and integration with renewable energy sources. The economic viability of green hydrogen is constrained by high electricity consumption capital-intensive electrolyzer costs and operational inefficiencies making it uncompetitive with fossil fuel-based hydrogen. Infrastructure and supply chain challenges including limited hydrogen storage transport complexities and critical material dependencies further restrict market scalability. Additionally policy and regulatory gaps disparities in financial incentives and the absence of a standardized certification framework hinder international trade and investment in green hydrogen projects. This review also highlights market trends and global initiatives assessing the role of government incentives and cross-border collaborations in accelerating hydrogen adoption. While technological advancements and cost reductions are progressing overcoming these challenges requires sustained innovation stronger policy interventions and coordinated efforts to develop a resilient scalable and cost-competitive green hydrogen sector.
Green Hydrogen in the Alps: Mapping Local Stakeholders Perspectives and Identifying Opportunities for Decarbonization
Jun 2025
Publication
The effects of climate change and reliance on fossil fuels in the Alps highlight the need for energy sufficiency improved efficiency and renewable energy deployment to support decarbonization goals. Hydrogen has gained attention as a versatile zero-emission energy carrier with the potential to drive cleaner energy solutions and sustainable tourism in Alpine regions. This study shares findings from a hydrogen survey conducted within the Interreg Alpine Space AMETHyST project which included questionnaires and roundtable discussions across Alpine territories. The survey explored hydrogen’s role in decarbonizing the Alps gathering insights from local stakeholders about their knowledge expertise needs and targets for hydrogen solutions. It also mapped existing hydrogen initiatives. Results revealed strong interest in hydrogen implementation with many territories eager to launch projects. However high investment and operational costs along with associated risks are key barriers. The absence of clear local hydrogen strategies and of a comprehensive regulatory framework also poses significant challenges. Incentivization schemes could facilitate initiatives and foster local hydrogen economies. The most promising application areas for hydrogen in the Alps are private and public mobility sectors. The residential sector particularly in tourist accommodations also presents potential. Regardless of specific uses developing renewable energy capacity and infrastructure is essential to create green hydrogen ecosystems that can store excess renewable energy from intermittent sources for later use.
Determining Pilot Ignition Delay in Dual-Fuel Medium-Speed Marine Engines Using Methanol or Hydrogen
Jun 2025
Publication
Dual-fuel engines are a way of transitioning the marine sector to carbon-neutral fuels like hydrogen and methanol. For the development of these engines accurate simulation of the combustion process is needed for which calculating the pilot’s ignition delay is essential. The present work investigates novel methodologies for calculating this. This involves the use of chemical kinetic schemes to compute the ignition delay for various operating conditions. Machine learning techniques are used to train models on these data sets. A neural network model is then implemented in a dual-fuel combustion model to calculate the ignition delay time and is compared using a lookup table or a correlation. The numerical results are compared with experimental data from a dual-fuel medium-speed marine engine operating with hydrogen or methanol from which the method with best accuracy and fastest calculation is selected.
Investigation of Erosion Behavior and Life Prediction of Stainless Steel Tube Under Hydrogen Gas with High Velocity
Sep 2025
Publication
The erosion behavior and the service life of a hydrogen transmission tube with high velocity suitable for a hydrogen fuel aviation engine are not clear which is the bottleneck for its application. In this study a coupled model considering the fluid flow field of hydrogen and discrete motion of particles was established. The effects of the geometry parameters and erosion parameters on the hydrogen erosion behavior were investigated. The maximum erosion rate increased exponentially with the increased hydrogen velocity and increased linearly with the increased erosion time. The large bend radius and inner diameter of the bend tube contributed to the decreased erosion rate. There was an optimized window of the bend angle for a small erosion rate. The relationship between the accumulated thickness loss and maximum erosion rate was established. The prediction model of the service life was established using fourth strength theory. The service life of the tube was sensitive to the hydrogen velocity and erosion time. The experiments were conducted and the variations in thickness and hardness were measured. The simulated models agreed with the experiments and could provide guidance for the parameter selection and prediction of the service life of a bend tube.
Combining Babool Wood-derived Producer Gas and Hydrogen with Biodiesel as Efficienct Strategies for Dual-fuel Diesel Engine in Advancing Sustainable Energy
Sep 2025
Publication
The present investigation aims to provide a comparative assessment of using hydrogen-enriched wood waste-derived producer gas (PG) for a dual-fuel diesel engine fueled with a 20% Jatropha biodiesel/80% diesel blend (BD20) with the traditional mode. The experiments were conducted at 23°bTDC of injection timing 240 bar of injection pressure 17.5:1 of compression ratio and 1500 rpm of engine speed under various engine loads. Gas carburetor induction (GCI) port injection (PI) and inlet manifold injection (IMI) methods were used to supply H2-enriched PG while B20 is directly injected into the combustion chamber. Among all the combinations the IMI method provided the highest brake thermal efficiency of 30.91% the lowest CO emission of 0.08% and smoke opacity discharge of 49.26 HSU while NOx emission reached 1744.32 ppm which was lower than that of the PI mode. Furthermore the IMI method recorded the highest heat release rate of 91.17 J/°CA and peak cylinder pressure of 83.29 bar reflecting superior combustion quality. Finally using the IMI method for H2-enriched PG in dual-fuel diesel engines could improve combustion efficiency reduce greenhouse gas emissions and improve fuel economy showing that the combination of BD20 with H2-enriched PG offers a cleaner more sustainable and economically viable technology.
Potential of P-Type Cooper Oxides, N-type Titanium Oxides and their Mixtures as Resistive Hydrogen Gas Sensors - A Review
Oct 2025
Publication
Metal oxides (e.g. SnO2 ZnO TiO2) have been widely investigated materials for gas sensing applications including hydrogen detection. However the potential for hydrogen sensing of metal oxides such as CuO In2O3 NiO exhibiting p-type conduction has been largely overlooked. Over the last 15 years structures based on TiO2 and CuO have gained increasing interest as a promising system for hydrogen detection. Therefore this article aims to: 1) provide an overview of the performance of TiO2 as a reference material and discuss methods to enhance its sensing performance 2) summarize and highlight the role of copper oxides in hydrogen gas detection as the materials that have predominantly been studied for H2S detection 3) review efforts made to improve the sensing performance of heterostructures of CuTiOx from structures with charge compensation effect to those successfully sensing hydrogen 4) present the potential of CuTiOx for H2 detection.
Comparative Techno-economic Optimization of Microgrid Configurations Using Hybrid Battery-hydrogen Storage: NEOM Case Study, Saudi Arabia
Sep 2025
Publication
Renewable energy systems are at the core of global efforts to reduce greenhouse gas (GHG) emissions and to combat climate change. Focusing on the role of energy storage in enhancing dependability and efficiency this paper investigates the design and optimization of a completely sustainable hybrid energy system. Furthermore hybrid storage systems have been used to evaluate their viability and cost-benefits. Examined under a 100% renewable energy microgrid framework three setup configurations are as follows: (1) photovoltaic (PV) and Battery Storage System (BSS) (2) Hybrid PV/Wind Turbine (WT)/BSS and (3) Integrated PV/WT/BSS/Electrolyzer/ Hydrogen Tank/Fuel Cell (FC). Using its geographical solar irradiance and wind speed data this paper inspires on an industrial community in Neom Saudi Arabia. HOMER software evaluates technical and economic aspects net present cost (NPC) levelized cost of energy (COE) and operating costs. The results indicate that the PV/ BSS configuration offers the most sustainable solution with a net present cost (NPC) of $2.42M and a levelized cost of electricity (LCOE) of $0.112/kWh achieving zero emissions. However it has lower reliability as validated by the provided LPSP. In contrast the PV/WT/BSS/Elec/FC system with a higher NPC of $2.30M and LCOE of $0.106/kWh provides improved energy dependability. The PV/WT/BSS system with an NPC of $2.11M and LCOE of $0.0968/kWh offers a slightly lower cost but does not provide the same level of reliability. The surplus energy has been implemented for hydrogen production. A sensitivity analysis was performed to evaluate the impact of uncertainties in renewable resource availability and economic parameters. The results demonstrate significant variability in system performance across different scenarios
No more items...