Publications
Hydrogen as an Energy Vector to Optimize the Energy Exploitation of a Self-consumption Solar Photovoltaic Facility in a Dwelling House
Nov 2019
Publication
Solar photovoltaic (PV) plants coupled with storage for domestic self-consumption purposes seem to be a promising technology in the next years as PV costs have decreased significantly and national regulations in many countries promote their installation in order to relax the energy requirements of power distribution grids. However electrochemical storage systems are still unaffordable for many domestic users and thus the advantages of self-consumption PV systems are reduced. Thus in this work the adoption of hydrogen systems as energy vectors between a PV plant and the energy user is proposed. As a preliminary study in this work the design of a PV and hydrogen-production self-consumption plant for a single dwelling is described. Then a technical and economic feasibility study conducted by modeling the facility within the Homer Energy Pro energy systems analysis tool is reported. The proposed system will be able to provide back not only electrical energy but also thermal energy through a fuel cell or refined water covering the fundamental needs of the householders (electricity heat or cooling and water). Results show that although the proposed system effectively increases the energy local use of the PV production and reduces significantly the energy injections or demands into/from the power grid avoiding power grid congestions and increasing the nano-grid resilience operation and maintenance costs may reduce its economic attractiveness for a single dwelling.
Development of a Hydrogen Supplement for use with IGEM/SR/25
Jun 2022
Publication
In response to the UK Government’s commitment to achieve net-zero carbon emissions by 2050 a range of research and demonstration projects are underway to investigate the feasibility of using hydrogen in place of natural gas within the national transmission and distribution system. In order for these projects to achieve their full scope of work a mechanism for performing hazardous area classification for hydrogen installations is required. At present IGEM/SR/25 is used to undertake such assessments for natural gas installations but the standard is not currently applicable to hydrogen or hydrogen/natural gas blends.<br/>This report presents updated data and a summary of the recommended methodologies for hazardous area classification of installations using hydrogen or blends of up to 20% hydrogen in natural gas. The contents of this report are intended to provide a technical commentary and the data for a hydrogen-specific supplement to IGEM/SR/25. The supplement will specifically cover 100% hydrogen and a 20/80% by volume blend of hydrogen/natural gas. Reference to intermediate blends is included in this report where appropriate to cover the anticipated step-wise introduction of hydrogen into the natural gas network.<br/>This report is divided into a series of appendices each of which covers a specific area of the IGEM standard. Each appendix includes a summary of specific recommendations made to enable IGEM/SR/25 to be applied to hydrogen and blends of up to 20% hydrogen in natural gas. The reader is encouraged to review the individual appendices for specific conclusions associated with the topic areas addressed in this report.<br/>In general the existing methodologies and approaches used for area classification in IGEM/SR/25 have been deemed appropriate for installations using either hydrogen or blends of up to 20% hydrogen in natural gas. Where necessary revised versions of the equations and zoning distances used in the standard are presented which account for the influence of material property differences between natural gas and the two alternative fuels considered in this work.
The Implications of Ambitious Decarbonisation of Heat and Road Transport for Britain’s Net Zero Carbon Energy Systems
Oct 2021
Publication
Decarbonisation of heating and road transport are regarded as necessary but very challenging steps on the pathway to net zero carbon emissions. Assessing the most efficient routes to decarbonise these sectors requires an integrated view of energy and road transport systems. Here we describe how a national gas and electricity transmission network model was extended to represent multiple local energy systems and coupled with a national energy demand and road transport model. The integrated models were applied to assess a range of technologies and policies for heating and transport where the UK’s 2050 net zero carbon emissions target is met. Overall annual primary energy use is projected to reduce by between 25% and 50% by 2050 compared to 2015 due to ambitious efficiency improvements within homes and vehicles. However both annual and peak electricity demands in 2050 are more than double compared with 2015. Managed electric vehicle charging could save 14TWh/year in gas-fired power generation at peak times and associated emissions whilst vehicle-to-grid services could provide 10GW of electricity supply during peak hours. Together managed vehicle charging and vehicle-to-grid supplies could result in a 16% reduction in total annual energy costs. The provision of fast public charging facilities could reduce peak electricity demand by 17GW and save an estimated £650 million annually. Although using hydrogen for heating and transport spreads the hydrogen network costs between homeowners and motorists it is still estimated to be more costly overall compared to an all-electric scenario. Bio-energy electricity generation plants with carbon capture and storage are required to drive overall energy system emissions to net zero utilisation of which is lowest when heating is electrified and road transport consists of a mix of electric and hydrogen fuel-cell vehicles. The analysis demonstrates the need for an integrated systems approach to energy and transport policies and for coordination between national and local governments.
Intermetallic Compounds Synthesized by Mechanical Alloying for Solid-State Hydrogen Storage: A Review
Sep 2021
Publication
Hydrogen energy is a very attractive option in dealing with the existing energy crisis. For the development of a hydrogen energy economy hydrogen storage technology must be improved to over the storage limitations. Compared with traditional hydrogen storage technology the prospect of hydrogen storage materials is broader. Among all types of hydrogen storage materials solid hydrogen storage materials are most promising and have the most safety security. Solid hydrogen storage materials include high surface area physical adsorption materials and interstitial and non-interstitial hydrides. Among them interstitial hydrides also called intermetallic hydrides are hydrides formed by transition metals or their alloys. The main alloy types are A2B AB AB2 AB3 A2B7 AB5 and BCC. A is a hydride that easily forms metal (such as Ti V Zr and Y) while B is a non-hydride forming metal (such as Cr Mn and Fe). The development of intermetallic compounds as hydrogen storage materials is very attractive because their volumetric capacity is much higher (80–160 kgH2m−3 ) than the gaseous storage method and the liquid storage method in a cryogenic tank (40 and 71 kgH2m−3 ). Additionally for hydrogen absorption and desorption reactions the environmental requirements are lower than that of physical adsorption materials (ultra-low temperature) and the simplicity of the procedure is higher than that of non-interstitial hydrogen storage materials (multiple steps and a complex catalyst). In addition there are abundant raw materials and diverse ingredients. For the synthesis and optimization of intermetallic compounds in addition to traditional melting methods mechanical alloying is a very important synthesis method which has a unique synthesis mechanism and advantages. This review focuses on the application of mechanical alloying methods in the field of solid hydrogen storage materials.
A Review of Hydrogen Direct Injection for Internal Combustion Engines: Towards Carbon-Free Combustion
Nov 2018
Publication
A paradigm shift towards the utilization of carbon-neutral and low emission fuels is necessary in the internal combustion engine industry to fulfil the carbon emission goals and future legislation requirements in many countries. Hydrogen as an energy carrier and main fuel is a promising option due to its carbon-free content wide flammability limits and fast flame speeds. For spark-ignited internal combustion engines utilizing hydrogen direct injection has been proven to achieve high engine power output and efficiency with low emissions. This review provides an overview of the current development and understanding of hydrogen use in internal combustion engines that are usually spark ignited under various engine operation modes and strategies. This paper then proceeds to outline the gaps in current knowledge along with better potential strategies and technologies that could be adopted for hydrogen direct injection in the context of compression-ignition engine applications—topics that have not yet been extensively explored to date with hydrogen but have shown advantages with compressed natural gas.
Analysis of Standard and Innovative Methods for Allocating Upstream and Refinery GHG Emissions to Oil Products
Sep 2017
Publication
Alternative fuel policies need accurate and transparent methods to find the embedded carbon intensity of individual refinery products. This study investigates different ways of allocating greenhouse gases emissions deriving from refining and upstream crude oil supply. Allocation methods based on mass energy content economic value and innovatively added-value are compared with the marginal refining emissions calculated by CONCAWE’s linear-programming model to the average EU refinery which has been adopted as reference in EU legislation. Beside the most important transportation fuels (gasoline diesel kerosene/jet fuel and heavy fuel oil) the analysis extends to petroleum coke and refinery hydrogen. Moreover novel criteria based on the implications due to hydrogen usage by each fuel pathway have been introduced to test the consistency of the analyzed approaches. It is found that only two economic-based allocation methods are consistent with the introduced criteria. These two methods also give negative refinery emissions for heavy products which is coherent with the marginal emissions calculated through the CONCAWE refinery model. The recommended allocation methods are transparent and use only publicly available statistical data so they may be useful not only for future EU legislation but also in jurisdictions where a representative refinery model is not available.
Experimental Investigation of the Effect of Hydrogen Addition on Combustion Performance and Emissions Characteristics of a Spark Ignition High Speed Gasoline Engine
Sep 2014
Publication
Considering energy crises and pollution problems today much work has been done for alternative fuels for fossil fuels and lowering the toxic components in the combustion products. Expert studies proved that hydrogen one of the prominent alternative energy source which has many excellent combustion properties that can be used for improving combustion and emissions performance of gasoline-fuelled spark ignition (SI) engines. This article experimentally investigated the performance and emission characteristics of a high speed single cylinder SI engine operating with different hydrogen gasoline blends. For this purpose the conventional carburetted high speed SI engine was modified into an electronically controllable engine with help of electronic control unit (ECU) which dedicatedly used to control the injection timings and injection durations of gasoline. Various hydrogen enrichment levels were selected to investigate the effect of hydrogen addition on engine brake mean effective pressure (Bmep) brake thermal efficiency volumetric efficiency and emission characteristics. The test results demonstrated that combustion performances fuel consumption and brake mean effective pressure were eased with hydrogen enrichment. The experimental results also showed that the brake thermal efficiency was higher than that for the pure gasoline operation. Moreover HC and CO emissions were all reduced after hydrogen enrichment.
Power-to-hydrogen as Seasonal Energy Storage: An Uncertainty Analysis for Optimal Design of Low-carbon Multi-energy Systems
Jun 2020
Publication
This study analyzes the factors leading to the deployment of Power-to-Hydrogen (PtH2) within the optimal design of district-scale Multi-Energy Systems (MES). To this end we utilize an optimization framework based on a mixed integer linear program that selects sizes and operates technologies in the MES to satisfy electric and thermal demands while minimizing annual costs and CO2 emissions. We conduct a comprehensive uncertainty analysis that encompasses the entire set of technology (e.g. cost efficiency lifetime) and context (e.g. economic policy grid carbon footprint) input parameters as well as various climate-referenced districts (e.g. environmental data and energy demands) at a European-scope.
Minimum-emissions MES with large amounts of renewable energy generation and high ratios of seasonal thermal-to-electrical demand optimally achieve zero operational CO2 emissions by utilizing PtH2 seasonally to offset the long-term mismatch between renewable generation and energy demand. PtH2 is only used to abate the last 5–10% emissions and it is installed along with a large battery capacity to maximize renewable self-consumption and completely electrify thermal demand with heat pumps and fuel cells. However this incurs additional cost. Additionally we show that ‘traditional’ MES comprised of renewables and short-term energy storage are able to decrease emissions by 90% with manageable cost increases.
The impact of uncertainty on the optimal system design reveals that the most influential parameter for PtH2 implementation is (1) heat pump efficiency as it is the main competitor in providing renewable-powered heat in winter. Further battery (2) capital cost and (3) lifetime prove to be significant as the competing electrical energy storage technology. In the face of policy uncertainties a CO2 tax shows large potential to reduce emissions in district MES without cost implications. The results illustrate the importance of capturing the dynamics and uncertainties of short- and long-term energy storage technologies for assessing cost and CO2 emissions in optimal MES designs over districts with different geographical scopes.
Minimum-emissions MES with large amounts of renewable energy generation and high ratios of seasonal thermal-to-electrical demand optimally achieve zero operational CO2 emissions by utilizing PtH2 seasonally to offset the long-term mismatch between renewable generation and energy demand. PtH2 is only used to abate the last 5–10% emissions and it is installed along with a large battery capacity to maximize renewable self-consumption and completely electrify thermal demand with heat pumps and fuel cells. However this incurs additional cost. Additionally we show that ‘traditional’ MES comprised of renewables and short-term energy storage are able to decrease emissions by 90% with manageable cost increases.
The impact of uncertainty on the optimal system design reveals that the most influential parameter for PtH2 implementation is (1) heat pump efficiency as it is the main competitor in providing renewable-powered heat in winter. Further battery (2) capital cost and (3) lifetime prove to be significant as the competing electrical energy storage technology. In the face of policy uncertainties a CO2 tax shows large potential to reduce emissions in district MES without cost implications. The results illustrate the importance of capturing the dynamics and uncertainties of short- and long-term energy storage technologies for assessing cost and CO2 emissions in optimal MES designs over districts with different geographical scopes.
Assessment of the Economic Efficiency of the Operation of Low-Emission and Zero-Emission Vehicles in Public Transport in the Countries of the Visegrad Group
Nov 2021
Publication
Transport is one of the key sectors of the European economy. However the intensive development of transport caused negative effects in the form of an increase in the emission of harmful substances. The particularly dramatic situation took place in the V4 countries. This made it necessary to implement solutions reducing emissions in transport including passenger transport. Such activities can be implemented in the field of implementation of low-emission and zero-emission vehicles for use. That is why the European Union and the governments of the Visegrad Group countries have developed numerous recommendations communications laws and strategies that order carriers to implement low- and zero-emission mobility. Therefore transport organizers and communication operators faced the choice of the type of buses. From an economic point of view each entrepreneur is guided by the economic efficiency of the vehicles used. Hence the main aim of the article was to conduct an economic evaluation of the operational efficiency of ecological vehicles. As more than 70% of vehicles in use in the European Union are still diesel driven the economic efficiency assessment was also made for vehicles with traditional diesel drive. To conduct the research the method of calculating the total cost of ownership of vehicles in operation was used. As a result of the research it was found that electric buses are the cheapest in the entire period of use (15 years) and then those powered by CNG. On the other hand the cost of using hydrogen buses is the highest. This is due to the high purchase prices of these vehicles. However the EU as well as the governments of individual countries support enterprises and communication operators by offering them financing for investments. The impact of the forecasted fuel and energy prices and the planned inflation on operating costs was also examined. In this case the analyses showed that the forecasted changes in fuel and energy prices as well as the expected inflation will significantly affect the costs of vehicle operation and the economic efficiency of using various types of drives. These changes will have a positive impact on the implementation of zero-emission vehicles into exploitation. Based on the analyses it was found that in 2035 hydrogen buses will have the lowest operating costs.
A Quantitative Assessment of the Hydrogen Storage Capacity of the UK Continental Shelf
Nov 2020
Publication
Increased penetration of renewable energy sources and decarbonisation of the UK's gas supply will require large-scale energy storage. Using hydrogen as an energy storage vector we estimate that 150 TWh of seasonal storage is required to replace seasonal variations in natural gas production. Large-scale storage is best suited to porous rock reservoirs. We present a method to quantify the hydrogen storage capacity of gas fields and saline aquifers using data previously used to assess CO2 storage potential. We calculate a P50 value of 6900 TWh of working gas capacity in gas fields and 2200 TWh in saline aquifers on the UK continental shelf assuming a cushion gas requirement of 50%. Sensitivity analysis reveals low temperature storage sites with sealing rocks that can withstand high pressures are ideal sites. Gas fields in the Southern North Sea could utilise existing infrastructure and large offshore wind developments to develop large-scale offshore hydrogen production.
Electric Load Influence on Performances of a Composite Plant for Hydrogen Production from RES and its Conversion in Electricity
Nov 2019
Publication
The analysis here presented investigates the influence of electrical load on the operational performances of a plant for hydrogen production from solar energy and its conversion in electricity via a fuel cell. The plant is an actual one currently under construction in Reggio Calabria (Italy) at the site of the Mediterranean university campus; it is composed of a Renewable Energy Source (RES) section (photovoltaic panels) a hydrogen production section and a fuel cell power section feeding the electrical energy demand of the load. Two different load configurations have been analysed and simulations have been carried out through HomerTM simulation code. Results allow interesting conclusions regarding the plant operation to be drawn. The study could have a remarkable role in supporting further research activities aimed at the assessment of the optimal configuration of this type of pioneering plants designed for feeding electrical loads possibly in a self-sufficient way.
Water Electrolysis for the Production of Hydrogen to Be Employed in the Ironmaking and Steelmaking Industry
Nov 2021
Publication
The way to decarbonization will be characterized by the huge production of hydrogen through sustainable routes. Thus the basic production way is water electrolysis sustained by renewable energy sources allowing for obtaining “green hydrogen”. The present paper reviews the main available technologies for the water electrolysis finalized to the hydrogen production. We describe the fundamental of water electrolysis and the problems related to purification and/or desalinization of water before electrolysis. As a matter of fact we describe the energy efficiency issues with particular attention to the potential application in the steel industry. The fundamental aspects related to the choice of high-temperature or low-temperature technologies are analyzed.
Preliminary Design of a Self-Sufficient Electrical Storage System Based on Electrolytic Hydrogen for Power Supply in a Residential Application
Oct 2021
Publication
The use of renewable energy and hydrogen technology is a sustainable solution for the intermittent feature of renewable energies. Hence the aim of the present work is to design a self-sufficient system for a one-family house by coupling a solar photovoltaic array and an anion exchange membrane water electrolyzer (AEMWE). The first step is the selection of the photovoltaic panel by using PV-SYST 7.0 software. Then the hydrogen production system is calculated by coupling the electrolyzer and photovoltaic panel current–potential curves. A fuel cell is selected to use the hydrogen produced when solar energy is not available. Finally the hydrogen storage tank is also estimated to store hydrogen for a design basis of four consecutive cloudy days according to the hydrogen consumption of the fuel cell. The whole system is designed by a simple procedure for a specific location in Ciudad Real (Spain) for January which is known as the coldest month of the year. The simple procedure described in this work could be used elsewhere and demonstrated that the hydrogen production at low scale is a suitable technology to use renewable energy for self-energy supporting in a residential application without any connection to the grid.
Achieving Net Zero Electricity Sectors in G7 Members
Oct 2021
Publication
Achieving Net Zero Electricity Sectors in G7 Members is a new report by the International Energy Agency that provides a roadmap to driving down CO2 emissions from electricity generation to net zero by 2035 building on analysis in Net Zero by 2050: A Roadmap for the Global Energy Sector.
The new report was requested by the United Kingdom under its G7 Presidency and followed the G7 leaders’ commitment in June 2021 to reach “an overwhelmingly decarbonised” power system in the 2030s and net zero emissions across their economies no later than 2050. It is designed to inform policy makers industry investors and citizens in advance of the COP26 Climate Change Conference in Glasgow that begins at the end of October 2021.
Starting from recent progress and the current state of play of electricity in the G7 the report analyses the steps needed to achieve net zero emissions from electricity and considers the wider implications for energy security employment and affordability. It identifies key milestones emerging challenges and opportunities for innovation.
The report also underscores how G7 members can foster innovation through international collaboration and as first movers lower the cost of technologies for other countries while maintaining electricity security and placing people at the centre of clean energy transitions.
Link to their website
The new report was requested by the United Kingdom under its G7 Presidency and followed the G7 leaders’ commitment in June 2021 to reach “an overwhelmingly decarbonised” power system in the 2030s and net zero emissions across their economies no later than 2050. It is designed to inform policy makers industry investors and citizens in advance of the COP26 Climate Change Conference in Glasgow that begins at the end of October 2021.
Starting from recent progress and the current state of play of electricity in the G7 the report analyses the steps needed to achieve net zero emissions from electricity and considers the wider implications for energy security employment and affordability. It identifies key milestones emerging challenges and opportunities for innovation.
The report also underscores how G7 members can foster innovation through international collaboration and as first movers lower the cost of technologies for other countries while maintaining electricity security and placing people at the centre of clean energy transitions.
Link to their website
The Role of Advanced Demand-sector Technologies and Energy Demand Reduction in Achieving Ambitious Carbon Budgets
Jan 2019
Publication
Limiting cumulative carbon emissions to keep global temperature increase to well below 2°C (and as low as 1.5°C) is an extremely challenging task requiring rapid reduction in the carbon intensity of all sectors of the economy and with limited leeway for residual emissions. Addressing residual emissions in ‘challenging-to-decarbonise’ sectors such as the industrial and aviation sectors relies on the development and commercialization of innovative advanced technologies currently still in their infancy. The aim of this study was to (a) explore the role of advanced technologies in achieving deep decarbonisation of the energy system and (b) provide technology- specific details of how rapid and deep carbon intensity reductions can be achieved in the energy demand sectors. This was done using TIAM-Grantham – a linear cost optimization model of the global energy system with a detailed representation of demand-side technologies. We find that the inclusion of advanced technologies in the demand sectors together with energy demand reduction through behavioural changes enables the model to achieve the rapid and deep decarbonisation of the energy system associated with limiting global warming to below 2°C whilst at the same time reduces reliance on negative emissions technologies by up to ∼18% compared to the same scenario with a standard set of technologies. Realising such advanced technologies at commercial scales as well as achieving such significant reductions in energy demand represents a major challenge for policy makers businesses and civil society. There is an urgent need for continued R&D efforts in the demand sectors to ensure that advanced technologies become commercially available when we need them and to avoid the gamble of overreliance on negative emissions technologies to offset residual emissions.
Integration Design and Operation Strategy of Multi-Energy Hybrid System Including Renewable Energies, Batteries and Hydrogen
Oct 2020
Publication
In some areas the problem of wind and solar power curtailment is prominent. Hydrogen energy has the advantage of high storage density and a long storage time. Multi-energy hybrid systems including renewable energies batteries and hydrogen are designed to solve this problem. In order to reduce the power loss of the converter an AC-DC hybrid bus is proposed. A multi-energy experiment platform is established including a wind turbine photovoltaic panels a battery an electrolyzer a hydrogen storage tank a fuel cell and a load. The working characteristics of each subsystem are tested and analyzed. The multi-energy operation strategy is based on state monitoring and designed to enhance hydrogen utilization energy efficiency and reliability of the system. The hydrogen production is guaranteed preferentially and the load is reliably supplied. The system states are monitored such as the state of charge (SOC) and the hydrogen storage level. The rated and ramp powers of the battery and fuel cell and the pressure limit of the hydrogen storage tank are set as safety constraints. Eight different operation scenarios comprehensively evaluate the system’s performance and via physical experiments the proposed operation strategy of the multi-energy system is verified as effective and stable.
The Role of Renewable Hydrogen and Inter-seasonal Storage in Decarbonising Heat – Comprehensive Optimisation of Future Renewable Energy Value Chains
Nov 2018
Publication
Demands for space and water heating constitute a significant proportion of the total energy demands in Great Britain and are predominantly satisfied through natural gas which makes the heat sector a large emitter of carbon dioxide. Renewable hydrogen which can be injected into the gas grid or used directly in processes for generating heat and/or electricity is being considered as a low-carbon alternative energy carrier to natural gas because of its suitability for large-scale long- and short-term storage and low transportation losses all of which help to overcome the intermittency and seasonal variations in renewables. This requires new infrastructures for production storage transport and utilisation of renewable hydrogen – a hydrogen value chain – the design of which involves many interdependent decisions such as: where to locate wind turbines; where to locate electrolysers close to wind generation or close to demands; whether to transport energy as electricity or hydrogen and how; where to locate storage facilities; etc. This paper presents the Value Web Model a novel and comprehensive spatio-temporal mixed-integer linear programming model that can simultaneously optimise the design planning and operation of integrated energy value chains accounting for short-term dynamics inter-seasonal storage and investments out to 2050. It was coupled with GIS modelling to identify candidate sites for wind generation and used to optimise a number of scenarios for the production of hydrogen from onshore and offshore wind turbines in order to satisfy heat demands. The results show that over a wide range of scenarios the optimal pathway to heat is roughly 20% hydrogen and 80% electricity. Hydrogen storage both in underground caverns and pressurised tanks is a key enabling technology.
Future Electricity Series Part 1 - Power from Fossil Fuels
Apr 2013
Publication
Power from Fossil Fuels analyses the role of coal and gas power generation in the UK's future power generation mix. It is the first of three reports in Carbon Connect's 2013 research inquiry the Future Electricity Series which examines what role fossil fuels renewables and nuclear can play in providing secure sustainable and affordable electricity in the UK. The report finds that significantly decarbonising the power sector by 2030 will prove the most successful strategy on energy sustainability security and affordability grounds and that switching the UK’s reliance on coal to gas generation - while using fossil fuel power stations increasingly for backup purposes - will be the most viable method of achieving this. The independent report chaired by former energy minister Charles Hendry MP and Opposition Energy and Climate Change Spokesperson in the House of Lords Baroness Worthington was compiled between January and April 2013 and received contributions from over 30 experts in academia industry Parliament and Government and was launched in Parliament on the 22nd April 2013. This independent inquiry was sponsored by the Institution of Gas Engineers and Managers
Hydrogen Production Technologies: Current State and Future Developments
Mar 2013
Publication
Hydrogen (H2) is currently used mainly in the chemical industry for the production of ammonia and methanol. Nevertheless in the near future hydrogen is expected to become a significant fuel that will largely contribute to the quality of atmospheric air. Hydrogen as a chemical element (H) is the most widespread one on the earth and as molecular dihydrogen (H2) can be obtained from a number of sources both renewable and nonrenewable by various processes. Hydrogen global production has so far been dominated by fossil fuels with the most significant contemporary technologies being the steam reforming of hydrocarbons (e.g. natural gas). Pure hydrogen is also produced by electrolysis of water an energy demanding process. This work reviews the current technologies used for hydrogen (H2) production from both fossil and renewable biomass resources including reforming (steam partial oxidation autothermal plasma and aqueous phase) and pyrolysis. In addition other methods for generating hydrogen (e.g. electrolysis of water) and purification methods such as desulfurization and water-gas shift reactions are discussed.
The Role of Electrification and Hydrogen in Breaking the Biomass Bottleneck of the Renewable Energy System – A Study on the Danish Energy System
Jun 2020
Publication
The aim of this study is to identify the technical solution space for future fully renewable energy systems that stays within a sustainable biomass demand. In the transition towards non-fossil energy and material systems biomass is an attractive source of carbon for those demands that also in the non-fossil systems depend on high density carbon containing fuels and feedstocks. However extensive land use is already a sustainability challenge and an increase in future demands threat to exceed global sustainable biomass potentials which according to an international expert consensus is around 10 – 30 GJ/person/year in 2050. Our analytical review of 16 scenarios from 8 independent studies of fully renewable energy system designs and synthesis of 9 generic system designs reveals the significance of the role of electrification and hydrogen integration for building a fully renewable energy system which respects the global biomass limitations. The biomass demand of different fully renewable energy system designs was found to lie in the range of 0 GJ/person/year for highly integrated electrified pure electro-fuel scenarios with up to 25 GJ/person/year of hydrogen to above 200 GJ/person/year for poorly integrated full bioenergy scenarios with no electrification or hydrogen integration. It was found that a high degree of system electrification and hydrogen integration of at least 15 GJ/person/year is required to stay within sustainable biomass limits.
Oxygen Carriers for Chemical-looping Water Splitting to Hydrogen Production: A Critical Review
Oct 2021
Publication
Chemical looping water splitting (CLWS) process using metal oxides or perovskites as oxygen carriers (OCs) is capable of producing pure H2 in an efficient simple and flexible way. The OCs are first reduced by hydrocarbon fuels and then oxidized by steam in a cyclic way. After the condensation of the gaseous mixture of steam and H2 from the oxidation step pure H2 is obtained. In recent years great efforts for CLWS have been made to improve the redox activity and stability of OCs. In this paper the development of the OCs for hydrogen production from CLWS were discussed. Effects of supports and additives on the performances of OCs were compared based on redox reactions in CLWS. Fe-based OCs with CeO2 Al2O3 ZrO2 CuO MoO3 Rh etc. are very attractive for the CLWS process. Issues and challenges for the development of OCs were analyzed.
Techno-economic Assessment of a Hybrid Off-grid DC System for Combined Heat and Power Generation in Remote Islands
Mar 2019
Publication
Hybrid renewable energy systems that combine heat and electricity generation is an achievable option for remote areas where grid is uneconomical to extend. In this study a renewable-based system was designed to satisfy the electrical and thermal demands of a remote household in an off-grid Greek island. A hybrid DC system consisted of a combination of photovoltaic modules wind turbine electrolyzer-hydrogen tank fuel cell and batteries were analysed using HOMER Pro software. Based on the optimal obtained system it is found that such a system can satisfy both electrical and thermal load demand throughout the year in a reliable manner.
Optimization of Hydrogen Cost and Transport Technology in France and Germany for Various Production and Demand Scenarios
Jan 2021
Publication
Green hydrogen for mobility represents an alternative to conventional fuel to decarbonize the transportation sector. Nevertheless the thermodynamic properties make the transport and the storage of this energy carrier at standard conditions inefficient. Therefore this study deploys a georeferenced optimal transport infrastructure for four base case scenarios in France and Germany that differs by production distribution based on wind power potential and demand capacities for the mobility sector at different penetration shares for 2030 and 2050. The restrained transport network to the road infrastructure allows focusing on the optimum combination of trucks operating at different states of aggregations and storage technologies and its impact on the annual cost and hydrogen flow using linear programming. Furthermore four other scenarios with production cost investigate the impact of upstream supply chain cost and eight scenarios with daily transport and storage optimization analyse the modeling method sensitivity. The results show that compressed hydrogen gas at a high presser level around 500 bar was on average a better option. However at an early stage of hydrogen fuel penetration substituting compressed gas at low to medium pressure levels by liquid organic hydrogen carrier minimizes the transport and storage costs. Finally in France hydrogen production matches population distribution in contrast to Germany which suffers from supply and demand disparity.
Biological Hydrogen Methanation Systems – An Overview of Design and Efficiency
Oct 2019
Publication
The rise in intermittent renewable electricity production presents a global requirement for energy storage. Biological hydrogen methanation (BHM) facilitates wind and solar energy through the storage of otherwise curtailed or constrained electricity in the form of the gaseous energy vector biomethane. Biological methanation in the circular economy involves the reaction of hydrogen – produced during electrolysis – with carbon dioxide in biogas to produce methane (4H2 + CO2 = CH4 + 2H2) typically increasing the methane output of the biogas system by 70%. In this paper several BHM systems were researched and a compilation of such systems was synthesized facilitating comparison of key parameters such as methane evolution rate (MER) and retention time. Increased retention times were suggested to be related to less efficient systems with long travel paths for gases through reactors. A significant lack of information on gas-liquid transfer co-efficient was identified
Comprehensive Analysis of the Combustion of Low Carbon Fuels (Hydrogen, Methane and Coke Oven Gas) in a Spark Ignition Engine through CFD Modeling
Nov 2021
Publication
The use of low carbon fuels (LCFs) in internal combustion engines is a promising alternative to reduce pollution while achieving high performance through the conversion of the high energy content of the fuels into mechanical energy. However optimizing the engine design requires deep knowledge of the complex phenomena involved in combustion that depend on the operating conditions and the fuel employed. In this work computational fluid dynamics (CFD) simulation tools have been used to get insight into the performance of a Volkswagen Polo 1.4L port-fuel injection spark ignition engine that has been fueled with three different LCFs coke oven gas (COG) a gaseous by-product of coke manufacture H2 and CH4. The comparison is made in terms of power pressure temperature heat release flame growth speed emissions and volumetric efficiency. Simulations in Ansys® Forte® were validated with experiments at the same operating conditions with optimal spark advance wide open throttle a wide range of engine speed (2000–5000 rpm) and air-fuel ratio (λ) between 1 and 2. A sensitivity analysis of spark timing has been added to assess its impact on combustion variables. COG with intermediate flame growth speed produced the greatest power values but with lower pressure and temperature values at λ = 1.5 reducing the emissions of NO and the wall heat transfer. The useful energy released with COG was up to 16.5% and 5.1% higher than CH4 and H2 respectively. At richer and leaner mixtures (λ = 1 and λ = 2) similar performances were obtained compared to CH4 and H2 combining advantages of both pure fuels and widening the λ operation range without abnormal combustion. Therefore suitable management of the operating conditions maximizes the conversion of the waste stream fuel energy into useful energy while limiting emissions.
Challenges and Prospects of Renewable Hydrogen-based Strategies for Full Decarbonization of Stationary Power Applications
Oct 2021
Publication
The exponentially growing contribution of renewable energy sources in the electricity mix requires large systems for energy storage to tackle resources intermittency. In this context the technologies for hydrogen production offer a clean and versatile alternative to boost renewables penetration and energy security. Hydrogen production as a strategy for the decarbonization of the energy sources mix has been investigated since the beginning of the 1990s. The stationary sector i.e. all parts of the economy excluding the transportation sector accounts for almost three-quarters of greenhouse gases (GHG) emissions (mass of CO2-eq) in the world associated with power generation. While several publications focus on the hybridization of renewables with traditional energy storage systems or in different pathways of hydrogen use (mainly power-to-gas) this study provides an insightful analysis of the state of art and evolution of renewable hydrogen-based systems (RHS) to power the stationary sector. The analysis started with a thorough review of RHS deployments for power-to-power stationary applications such as in power generation industry residence commercial building and critical infrastructure. Then a detailed evaluation of relevant techno-economic parameters such as levelized cost of energy (LCOE) hydrogen roundtrip efficiency (HRE) loss of power supply probability (LPSP) self-sufficiency ratio (SSR) or renewable fraction (fRES) is provided. Subsequently lab-scale plants and pilot projects together with current market trends and commercial uptake of RHS and fuel cell systems are examined. Finally the future techno-economic barriers and challenges for short and medium-term deployment of RHS are identified and discussed.
Transitioning Remote Arctic Settlements to Renewable Energy Systems – A Modelling Study of Longyearbyen, Svalbard
Nov 2019
Publication
As transitioning away from fossil fuels to renewable energy sources comes on the agenda for a range of energy systems energy modelling tools can provide useful insights. If large parts of the energy system turns out to be based on variable renewables an accurate representation of their short-term variability in such models is crucial. In this paper we have developed a stochastic long-term energy model and applied it to an isolated Arctic settlement as a challenging and realistic test case. Our findings suggest that the stochastic modelling approach is critical in particular for studies of remote Arctic energy systems. Furthermore the results from a case study of the Norwegian settlement of Longyearbyen suggest that transitioning to a system based on renewable energy sources is feasible. We recommend that a solution based mainly on renewable power generation but also including energy storage import of hydrogen and adequate back-up capacity is taken into consideration when planning the future of remote Arctic settlements.
Optimal Day-ahead Dispatch of an Alkaline Electrolyser System Concerning Thermal–electric Properties and State-transitional Dynamics
Oct 2021
Publication
Green hydrogen is viewed as a promising energy carrier for sustainable development goals. However it has suffered from high costs hindering its implementation. For a stakeholder who considers both renewable energy and electrolysis units it is important to exploit the flexibility of such portfolios to maximize system operational revenues. To this end an electrolyser model that can characterize its dynamic behavior is required in both electric and thermal aspects. In this paper we develop a comprehensive alkaline electrolyser model that is capable of describing its hydrogen production properties temperature variations and state transitions (among production stand-by and off states). This model is further used to study the optimal dispatch of an electrolyser based on a real-world hybrid wind/electrolyser system. The results show the model can effectively capture the coupling between thermal–electric dynamics and on–off performance of an electrolyser. The flexible operation strategy based on this model is proven to significantly increase daily revenues under different spot price conditions for electricity. Comparing the model with the ones derived from conventional modeling methods reveals this model offers more operating details and highlights several operational features such as the preference for working at partial load conditions although at the expense of more computing resources. It is suggested to use this model in studies related to energy integration operation planning and control scheme development in which the multi-domain dynamic properties of electrolysers in electricity/gas/heat need to be properly characterized. A sensitivity analysis on key parameters of such electrolyser system is also introduced to connect the daily operation with long-term planning.
Energy Management Strategies for a Zero-emission Hybrid Domestic Ferry
Oct 2021
Publication
The paper presents three approaches for the sizing and control of a maritime hybrid power-plant equipped with proton exchange membrane fuel cells and batteries. The study focuses on three different power-plant configurations including the energy management strategy and the power-plant component sizing. The components sizing is performed following the definition of the energy management strategy using the sequential optimization approach. These configurations are tested using a dynamic model developed in Simulink. The simulations are carried out to validate the technical feasibility of each configuration for maritime use. Each energy management strategy is developed to allow for the optimization of a chosen set of parameters such as hydrogen consumption and fuel cell degradation. It is observed that in the hybrid power-plant optimization there are always trade-offs and the optimization should be carried out by prioritizing primary factors the ship owner considers most important for day-to-day operations.
Performance of Hydrogen Storage Tanks of Type IV in a Fire: Effect of the State of Charge
Sep 2021
Publication
The use of hydrogen storage tanks at 100% of nominal working pressure (NWP) is expected only after refuelling. Driving between refuellings is characterised by the state of charge SoC <100%. There is experimental evidence that Type IV tanks tested in a fire at initial pressures below 1/3 NWP leaked without rupture. This paper aims at understanding this phenomenon. The numerical research has demonstrated that the heat transfer from fire through the composite overwrap at storage pressures below NWP/3 is sufficient to melt the polymer liner. This melting initiates hydrogen microleaks through the composite before it loses the load-bearing ability. The fire-resistance rating (FRR) is defined as the time to rupture in a fire of a tank without or with blocked thermally activated pressure relief device. The dependence of a FRR on the SoC is demonstrated for the tanks with defined material properties and volumes in the range of 36–244 L. A composite wall thickness variation is shown to cause a safety issue by reducing the tank’s FRR and is suggested to be addressed by tank manufacturers and OEMs. The effect of a tank’s burst pressure ratio on the FRR is investigated. Thermal parameters of the composite wall i.e. decomposition heat and temperatures are shown in simulations of a tank failure in a fire to play an important role in its FRR.
Exploring the Australian Public's Response to Hydrogen
Sep 2021
Publication
Over the past three years there has been a rapid increase in discussions across the different levels of Australia's governments about the role that hydrogen might play in helping the world transition to a low carbon future. While those working in the energy industry are aware of the opportunities and challenges that lay ahead the general public is less engaged. However we know from the introduction of previous technologies that public attitudes towards technologies including whether they view them to be safe can severely impact overall acceptance. Understanding how the public perceives hydrogen both for domestic and export use and the potential benefits it brings to Australia is critical for the industry to progress. In this paper we present the initial findings of a national survey of the Australian public conducted in March 2021 which builds on the results of a previous survey conducted in 2018. The 2021 respondents were drawn from all Australian states and territories (n=3020) and quotas were used to ensure adequate representation of age groups and gender. Overall the respondents have favorable views about using hydrogen for energy in Australia with caveats about production-related environmental impacts and issues such as safety. While there has been a slight increase in support for hydrogen as a possible solution for energy and environmental challenges since the 2018 survey the effect size is very small. This suggests that while hydrogen discussions have increased at a policy level little has been done to improve public understanding of hydrogen in communication strategies will be needed as the Australian hydrogen industry continues to develop and gain more widespread media attention.
Renewable Hydrogen Implementations for Combined Energy Storage, Transportation and Stationary Applications
Dec 2019
Publication
The purpose of this paper is to discuss the potential of hydrogen obtained from renewable sources for energy generation and storage systems. The first part of analysis will address such issues as various methods of green hydrogen production storage and transportation. The review of hydrogen generation methods will be followed by the critical analysis and the selection of production method. This selection is justified by the results of the comparative research on alternative green hydrogen generation technologies with focus on their environmental impacts and costs. The comparative analysis includes the biomass-based methods as well as water splitting and photo-catalysis methods while water electrolysis is taken as a benchmark. Hydrogen storage and transportation issues will be further discussed in purpose to form the list of recommended solutions. In the second part of the paper the technology readiness and technical feasibility for joint hydrogen applications will be analysed. This will include the energy storage and production systems based on renewable hydrogen in combination with hydrogen usage in mobility systems as well as the stationary applications in buildings such as combined heat and power (CHP) plants or fuel cell electric generators. Based on the analysis of the selected case studies the author will discuss the role of hydrogen for the carbon emission reduction with the stress on the real value of carbon footprint of hydrogen depending on the gas source storage transportation and applications.
A Hybrid Intelligent Model to Predict the Hydrogen Concentration in the Producer Gas from a Downdraft Gasifier
Apr 2022
Publication
This research work presents an artificial intelligence approach to predicting the hydrogen concentration in the producer gas from biomass gasification. An experimental gasification plant consisting of an air-blown downdraft fixed-bed gasifier fueled with exhausted olive pomace pellets and a producer gas conditioning unit was used to collect the whole dataset. During an extensive experimental campaign the producer gas volumetric composition was measured and recorded with a portable syngas analyzer at a constant time step of 10 seconds. The resulting dataset comprises nearly 75 hours of plant operation in total. A hybrid intelligent model was developed with the aim of performing fault detection in measuring the hydrogen concentration in the producer gas and still provide reliable values in the event of malfunction. The best performing hybrid model comprises six local internal submodels that combine artificial neural networks and support vector machines for regression. The results are remarkably satisfactory with a mean absolute prediction error of only 0.134% by volume. Accordingly the developed model could be used as a virtual sensor to support or even avoid the need for a real sensor that is specific for measuring the hydrogen concentration in the producer gas.
Research Requirements to Move the Bar Forward Using Aqueous Formate Salts as H2 Carriers for Energy Storage Applications
Nov 2020
Publication
In this perspective on hydrogen carriers we focus on the needs for the development of robust active catalysts for the release of H2 from aqueous formate solutions which are non-flammable non-toxic thermally stable and readily available at large scales at reasonable cost. Formate salts can be stockpiled in the solid state or dissolved in water for long term storage and transport using existing infrastructure. Furthermore formate salts are readily regenerated at moderate pressures using the same catalyst as for the H2 release. There have been several studies focused on increasing the activity of catalysts to release H2 at moderate temperatures i.e. < 80 °C below the operating temperature of a proton exchange membrane (PEM) fuel cell. One significant challenge to enable the use of aqueous formate salts as hydrogen carriers is the deactivation of the catalyst under operating conditions. In this work we provide a review of the most efficient heterogeneous catalysts that have been described in the literature their proposed modes of deactivation and the strategies reported to reactivate them. We discuss potential pathways that may lead to deactivation and strategies to mitigate it in a variety of H2 carrier applications. We also provide an example of a potential use case employing formate salts solutions using a fixed bed reactor for seasonal storage of energy for a microgrid application.
Techno-Economic Analysis of Hydrogen and Electricity Production by Biomass Calcium Looping Gasification
Feb 2022
Publication
Combined cycle biomass calcium looping gasification is proposed for a hydrogen and electricity production (CLGCC–H) system. The process simulation Aspen Plus is used to conduct techno-economic analysis of the CLGCC–H system. The appropriate detailed models are set up for the proposed system. Furthermore a dual fluidized bed is optimized for hydrogen production at 700 °C and 12 bar. For comparison calcium looping gasification with the combined cycle for electricity (CLGCC) is selected with the same parameters. The system exergy and energy efficiency of CLGCC–H reached as high as 60.79% and 64.75% while the CLGCC system had 51.22% and 54.19%. The IRR and payback period of the CLGCC–H system based on economic data are calculated as 17.43% and 7.35 years respectively. However the CLGCC system has an IRR of 11.45% and a payback period of 9.99 years respectively. The results show that the calcium looping gasification-based hydrogen and electricity coproduction system has a promising market prospect in the near future.
What Will Fuel Transport Systems of the Future?
Nov 2011
Publication
This paper seeks to decry the notion of a single solution or “silver bullet” to replace petroleum products with renewable transport fuel. At different times different technological developments have been in vogue as the panacea for future transport needs: for quite some time hydrogen has been perceived as a transport fuel that would be all encompassing when the technology was mature. Liquid biofuels have gone from exalted to unsustainable in the last ten years. The present flavor of the month is the electric vehicle. This paper examines renewable transport fuels through a review of the literature and attempts to place an analytical perspective on a number of technologies.
Flare Gas Monetization and Greener Hydrogen Production via Combination with Crypto Currency Mining and Carbon Dioxide Capture
Jan 2022
Publication
In view of the continuous debates on the environmental impact of blockchain technologies in particular crypto currency mining accompanied by severe carbon dioxide emissions a technical solution has been considered assuming direct monetization of associated petroleum gas currently being flared. The proposed approach is based on the technology of low-temperature steam reforming of hydrocarbons which allows flare gas conditioning towards the requirements for fuel for gas piston and gas turbine power plants. The generation of electricity directly at the oil field and its use for on-site crypto currency mining transforms the process of wasteful flaring of valuable hydrocarbons into an economically attractive integrated processing of natural resources. The process is not carbon neutral and is not intended to compete zero-emission technologies but its combination with technologies for carbon dioxide capture and re-injection into the oil reservoir can both enhance the oil recovery and reduce carbon dioxide emissions into the atmosphere. The produced gas can be used for local transport needs while the generated heat and electricity can be utilized for on-site food production and biological carbon dioxide capture in vertical greenhouse farms. The suggested approach allows significant decrease in the carbon dioxide emissions at oil fields and although it may seem paradoxically on-site cryptocurrency mining actually may lead to a decrease in the carbon footprint. The amount of captured CO2 could be transformed into CO2 emission quotas which can be spent for the production of virtually “blue” hydrogen by steam reforming of natural gas in locations where the CO2 capture is technically impossible and/or unprofitable.
Rational Design and Application of Covalent Organic Frameworks for Solar Fuel Production
Jul 2021
Publication
Harnessing solar energy and converting it into renewable fuels by chemical processes such as water splitting and carbon dioxide (CO2 ) reduction is a highly promising yet challenging strategy to mitigate the effects arising from the global energy crisis and serious environmental concerns. In recent years covalent organic framework (COF)-based materials have gained substantial research interest because of their diversified architecture tunable composition large surface area and high thermal and chemical stability. Their tunable band structure and significant light absorption with higher charge separation efficiency of photoinduced carriers make them suitable candidates for photocatalytic applications in hydrogen (H2) generation CO2 conversion and various organic transformation reactions. In this article we describe the recent progress in the topology design and synthesis method of COF-based nanomaterials by elucidating the structure-property correlations for photocatalytic hydrogen generation and CO2 reduction applications. The effect of using various kinds of 2D and 3D COFs and strategies to control the morphology and enhance the photocatalytic activity is also summarized. Finally the key challenges and perspectives in the field are highlighted for the future development of highly efficient COF-based photocatalysts.
Efficient Renewable-to-Hydrogen Conversion via Decoupled Electrochemical Water Splitting
Aug 2020
Publication
Water electrolysis powered by renewables provides a green approach to hydrogen production to support the ‘‘hydrogen economy.’’ However the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are tightly coupled in both time and space in traditional water electrolysis which brings inherent operational challenges such as the mixture of H2/O2 and the limited HER rate caused by the sluggish kinetics of OER. Against this background decoupling H2 and O2 production in water electrolysis by using the auxiliary redox mediator was first proposed in 2013 in which O2 and H2 are produced at different times rates and/or locations. The decoupling strategy offers not only a new way to facilitate renewables to H2 but it can also be applied in other chemical or electrochemical processes. This review describes recent efforts to develop high-performance redox mediators optimized strategies in decoupled water electrolysis the design of electrolyzer configuration the challenges faced and the prospective directions.
Research Progress of Cryogenic Materials for Storage and Transportation of Liquid Hydrogen
Jul 2021
Publication
Liquid hydrogen is the main fuel of large-scale low-temperature heavy-duty rockets and has become the key direction of energy development in China in recent years. As an important application carrier in the large-scale storage and transportation of liquid hydrogen liquid hydrogen cryogenic storage and transportation containers are the key equipment related to the national defense security of China’s aerospace and energy fields. Due to the low temperature of liquid hydrogen (20 K) special requirements have been put forward for the selection of materials for storage and transportation containers including the adaptability of materials in a liquid hydrogen environment hydrogen embrittlement characteristics mechanical properties and thermophysical properties of liquid hydrogen temperature which can all affect the safe and reliable design of storage and transportation containers. Therefore it is of great practical significance to systematically master the types and properties of cryogenic materials for the development of liquid hydrogen storage and transportation containers. With the wide application of liquid hydrogen in different occasions the requirements for storage and transportation container materials are not the same. In this paper the types and applications of cryogenic materials commonly used in liquid hydrogen storage and transportation containers are reviewed. The effects of low-temperature on the mechanical properties of different materials are introduced. The research progress of cryogenic materials and low-temperature performance data of materials is introduced. The shortcomings in the research and application of cryogenic materials for liquid hydrogen storage and transportation containers are summarized to provide guidance for the future development of container materials. Among them stainless steel is the most widely used cryogenic material for liquid hydrogen storage and transportation vessel but different grades of stainless steel also have different applications which usually need to be comprehensively considered in combination with its low temperature performance corrosion resistance welding performance and other aspects. However with the increasing demand for space liquid hydrogen storage and transportation the research on high specific strength cryogenic materials such as aluminum alloy titanium alloy or composite materials is also developing. Aluminum alloy liquid hydrogen storage and transportation containers are widely used in the space field while composite materials have significant advantages in being lightweight. Hydrogen permeation is the key bottleneck of composite storage and transportation containers. At present there are still many technical problems that have not been solved.
Well to Wheel Analysis of Low Carbon Alternatives for Road Traffic
Sep 2015
Publication
Several alternative fuel–vehicle combinations are being considered for replacement of the internal combustion engine (ICE) vehicles to reduce greenhouse gas (GHG) emissions and the dependence on fossil fuels. The International Energy Agency has proposed the inclusion of low carbon alternatives such as electricity hydrogen and biofuels in the transport sector for reducing the GHG emissions and providing a sustainable future. This paper compares the use of these alternative fuels viz. electricity hydrogen and bio-ethanol in combination with battery electric vehicle (BEV) and fuel cell electric vehicle (FCEV) technologies on the basis of their overall efficiency and GHG emissions involved in the conversion of the primary energy source to the actual energy required at wheels through a well-to-wheel analysis. The source of energy for electricity production plays a major role in determining the overall efficiency and the GHG emissions of a BEV. Hence electricity production mix of Germany (60% fossil fuel energy) France (76% nuclear energy) Sweden and Austria (60 and 76% renewable energy respectively) the European Union mix (48% fossil fuel energy) and the United States of America (68% fossil fuel energy) are considered for the BEV analysis. In addition to the standard hydrogen based FCEVs CNG and bio-ethanol based FCEVs are analysed. The influence of a direct ethanol fuel cell (DEFC) on GHG emissions and overall chain efficiency is discussed. In addition to the standard sources of bio-ethanol (like sugarcane corn etc.) sources like wood waste and wheat straw are included in the analysis. The results of this study suggest that a BEV powered by an electricity production mix dominated by renewable energy and bio-ethanol based DEFC electric vehicles offer the best solution in terms of GHG emissions efficiency and fossil fuel dependency. Bio-ethanol as a fuel has the additional advantage to be implemented readily in ICE vehicles followed by advancements through reformer based FCEVs and DEFC electric vehicles. Although important this analysis does not include the health effects of the alternative vehicles. Bio-ethanol used in an ICE may lead to increased emission of acetaldehydes which however might not be the case if it is used in fuel cells.
The Benefit of Collaboration in the North European Electricity System Transition—System and Sector Perspectives
Dec 2019
Publication
This work investigates the connection between electrification of the industry transport and heat sector and the integration of wind and solar power in the electricity system. The impact of combining electrification of the steel industry passenger vehicles and residential heat supply with flexibility provision is evaluated from a systems and sector perspective. Deploying a parallel computing approach to the capacity expansion problem the impact of flexibility provision throughout the north European electricity system transition is investigated. It is found that a strategic collaboration between the electricity system an electrified steel industry an electrified transport sector in the form of passenger electric vehicles (EVs) and residential heat supply can reduce total system cost by 8% in the north European electricity system compared to if no collaboration is achieved. The flexibility provision by new electricity consumers enables a faster transition from fossil fuels in the European electricity system and reduces thermal generation. From a sector perspective strategic consumption of electricity for hydrogen production and EV charging and discharging to the grid reduces the number of hours with very high electricity prices resulting in a reduction in annual electricity prices by up to 20%.
Energy Transition Outlook 2021: Technology Progress Report
Jun 2021
Publication
This report is part of DNV’s suite of Energy Transition Outlook publications for 2021. It focuses on how key energy transition technologies will develop compete and interact in the coming five years.
Debate and uncertainty about the energy transition tend to focus on what technology can and can’t do. All too often such discussions involve wishful thinking advocacy of a favoured technology or reference to outdated information. Through this report we bring insights derived from our daily work with the world’s leading energy players including producers transporters and end users. Each of the ten chapters that follow are written by our experts in the field – or in the case of maritime technologies on the ocean.
Because the pace of the transition is intensifying describing any given technology is like painting a fast-moving train. We have attempted to strike a balance between technical details and issues of safety efficiency cost and competitiveness. Transition technologies are deeply interlinked and in some cases interdependent; any discussion on green hydrogen for example must account for developments in renewable electricity hydrogen storage and transport systems and end-use technologies such as fuels cells.
Our selection of ten technologies is not exhaustive but each of these technologies is of particular interest for the pace and direction of the energy transition. They range from relatively mature technologies like solar PV to technologies like nuclear fusion which are some distance from commercialization but which have current R&D and prototyping worth watching. Together they cover most but not all key sectors. We describe expected developments for the coming five years which to a large extent will determine how the energy transition unfolds through to mid-century. As such this Technology Progress report is an essential supplement to our main Energy Transition Outlook forecast.
Our aim is to make an objective and realistic assessment of the status of these technologies and evaluate how they contribute to the energy transition ahead. Attention to progress in these technologies will be critical for anyone concerned with energy.
Debate and uncertainty about the energy transition tend to focus on what technology can and can’t do. All too often such discussions involve wishful thinking advocacy of a favoured technology or reference to outdated information. Through this report we bring insights derived from our daily work with the world’s leading energy players including producers transporters and end users. Each of the ten chapters that follow are written by our experts in the field – or in the case of maritime technologies on the ocean.
Because the pace of the transition is intensifying describing any given technology is like painting a fast-moving train. We have attempted to strike a balance between technical details and issues of safety efficiency cost and competitiveness. Transition technologies are deeply interlinked and in some cases interdependent; any discussion on green hydrogen for example must account for developments in renewable electricity hydrogen storage and transport systems and end-use technologies such as fuels cells.
Our selection of ten technologies is not exhaustive but each of these technologies is of particular interest for the pace and direction of the energy transition. They range from relatively mature technologies like solar PV to technologies like nuclear fusion which are some distance from commercialization but which have current R&D and prototyping worth watching. Together they cover most but not all key sectors. We describe expected developments for the coming five years which to a large extent will determine how the energy transition unfolds through to mid-century. As such this Technology Progress report is an essential supplement to our main Energy Transition Outlook forecast.
Our aim is to make an objective and realistic assessment of the status of these technologies and evaluate how they contribute to the energy transition ahead. Attention to progress in these technologies will be critical for anyone concerned with energy.
Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect
Jun 2019
Publication
The hazardous effects of pollutants from conventional fuel vehicles have caused the scientific world to move towards environmentally friendly energy sources. Though we have various renewable energy sources the perfect one to use as an energy source for vehicles is hydrogen. Like electricity hydrogen is an energy carrier that has the ability to deliver incredible amounts of energy. Onboard hydrogen storage in vehicles is an important factor that should be considered when designing fuel cell vehicles. In this study a recent development in hydrogen fuel cell engines is reviewed to scrutinize the feasibility of using hydrogen as a major fuel in transportation systems. A fuel cell is an electrochemical device that can produce electricity by allowing chemical gases and oxidants as reactants. With anodes and electrolytes the fuel cell splits the cation and the anion in the reactant to produce electricity. Fuel cells use reactants which are not harmful to the environment and produce water as a product of the chemical reaction. As hydrogen is one of the most efficient energy carriers the fuel cell can produce direct current (DC) power to run the electric car. By integrating a hydrogen fuel cell with batteries and the control system with strategies one can produce a sustainable hybrid car
Impact Assessment of Hydrogen Transmission on TD1 Parallel Pipeline Separation Distances
Mar 2021
Publication
The recommended minimum separation distances in IGEM/TD/1 were based on a research programme that studied the different ways in which a failure of one buried natural gas transmission pipeline can affect another similar pipeline installed adjacent to the first taking account of the initial pressure wave propagating through the ground the size of the ground crater produced and the threat of escalation from fire if the second pipeline is exposed. The methodology developed from the research was first published in 2010 and is implemented in a software program (“PROPHET”). The distances in IGEM/TD/1 are generally cautious and are essentially determined by the size of the ground crater produced by pipeline ruptures as predicted by the methodology.
To assess the impact of hydrogen transmission on the recommended separation distances the possibility of one pipeline transporting natural gas and the other transporting hydrogen was considered as well as both pipelines transporting hydrogen. The following steps were carried out to assess the impact of hydrogen transmission on parallel pipeline separation distances drawing on existing knowledge only:
To assess the impact of hydrogen transmission on the recommended separation distances the possibility of one pipeline transporting natural gas and the other transporting hydrogen was considered as well as both pipelines transporting hydrogen. The following steps were carried out to assess the impact of hydrogen transmission on parallel pipeline separation distances drawing on existing knowledge only:
- Estimate the ground pressure loading predicted from a hydrogen pipeline rupture.
- Consider the ground pressure effect on a parallel natural gas or hydrogen pipeline.
- Evaluate available ground crater formation models and assess if existing natural gas model is cautious for hydrogen.
- Consider effects of thermal loading due to hydrogen fires where recommended natural gas separation distances are not met.
- Ground pressure loading: The current natural gas methodology is cautious.
- Ground pressure effects: The current natural gas methodology is applicable (no change for hydrogen).
- Ground crater formation: The current natural gas methodology is cautious for ruptures and applicable for punctures (almost no change for hydrogen).
- Thermal loading: The current natural gas methodology is cautious for the thermal loading from ruptures but not necessarily cautious for punctures. Calculations of the minimum flow velocity required to prevent failure of a natural gas pipeline are not cautious for hydrogen.
Prediction of Hydrogen Concentration in Containment During Severe Accidents Using Fuzzy Neural Network
Jan 2015
Publication
Recently severe accidents in nuclear power plants (NPPs) have become a global concern. The aim of this paper is to predict the hydrogen buildup within containment resulting from severe accidents. The prediction was based on NPPs of an optimized power reactor 1000. The increase in the hydrogen concentration in severe accidents is one of the major factors that threaten the integrity of the containment. A method using a fuzzy neural network (FNN) was applied to predict the hydrogen concentration in the containment. The FNN model was developed and verified based on simulation data acquired by simulating MAAP4 code for optimized power reactor 1000. The FNN model is expected to assist operators to prevent a hydrogen explosion in severe accident situations and manage the accident properly because they are able to predict the changes in the trend of hydrogen concentration at the beginning of real accidents by using the developed FNN model.
Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy
Jan 2021
Publication
Climate change is one of the major problems that people face in this century with fossil fuel combustion engines being huge contributors. Currently the battery powered electric vehicle is considered the predecessor while hydrogen vehicles only have an insignificant market share. To evaluate if this is justified different hydrogen power train technologies are analyzed and compared to the battery powered electric vehicle. Even though most research focuses on the hydrogen fuel cells it is shown that despite the lower efficiency the often-neglected hydrogen combustion engine could be the right solution for transitioning away from fossil fuels. This is mainly due to the lower costs and possibility of the use of existing manufacturing infrastructure. To achieve a similar level of refueling comfort as with the battery powered electric vehicle the economic and technological aspects of the local small-scale hydrogen production are being investigated. Due to the low efficiency and high prices for the required components this domestically produced hydrogen cannot compete with hydrogen produced from fossil fuels on a larger scale
Green Synthesis of Olefin-linked Covalent Organic Frameworks for Hydrogen Fuel Cell Applications
Mar 2021
Publication
Green synthesis of crystalline porous materials for energy-related applications is of great significance but very challenging. Here we create a green strategy to fabricate a highly crystalline olefin-linked pyrazine-based covalent organic framework (COF) with high robustness and porosity under solvent-free conditions. The abundant nitrogen sites high hydrophilicity and well-defined one-dimensional nanochannels make the resulting COF an ideal platform to confine and stabilize the H3PO4 network in the pores through hydrogen-bonding interactions. The resulting material exhibits low activation energy (Ea) of 0.06 eV and ultrahigh proton conductivity across a wide relative humidity (10–90 %) and temperature range (25–80 °C). A realistic proton exchange membrane fuel cell using the olefin-linked COF as the solid electrolyte achieve a maximum power of 135 mW cm−2 and a current density of 676 mA cm−2 which exceeds all reported COF materials.
Blue Hydrogen
Apr 2021
Publication
The urgency of reaching net-zero emissions requires a rapid acceleration in the deployment of all emissions reducing technologies. Near-zero emissions hydrogen (clean hydrogen) has the potential to make a significant contribution to emissions reduction in the power generation transportation and industrial sectors.
As part of the Circular Carbon Economy: Keystone to Global Sustainability series with the Center on Global Energy Policy at Columbia University SIPA this report explores the potential contribution of blue hydrogen to climate mitigation.
The report looks at:
As part of the Circular Carbon Economy: Keystone to Global Sustainability series with the Center on Global Energy Policy at Columbia University SIPA this report explores the potential contribution of blue hydrogen to climate mitigation.
The report looks at:
- Cost drivers for renewable hydrogen and hydrogen produced with fossil fuels and CCS;
- Resource requirements and cost reduction opportunities for clean hydrogen; and
- Policy recommendations to drive investment in clean hydrogen production.
- Blue hydrogen is well placed to kickstart the rapid increase in the utilisation of clean hydrogen for climate mitigation purposes but requires strong and sustained policy to incentivise investment at the rate necessary to meet global climate goals.
Synergetic Effect of Multiple Phases on Hydrogen Desorption Kinetics and Cycle Durability in Ball Milled MgH2–PrF3–Al–Ni Composite
Jan 2021
Publication
A new MgH2–PrF3–Al–Ni composite was prepared by ball milling under hydrogen atmosphere. After initial dehydrogenation and rehydrogenation Pr3Al11 MgF2 PrH3 and Mg2NiH4 nanoparticles formed accompanying the main phase MgH2. The hydrogen absorption-desorption properties were measured by using a Sieverts-type apparatus. The results showed that the MgH2–PrF3–Al–Ni composite improved cycle stability and enhanced hydrogen desorption kinetics. The improvement of hydrogen absorption-desorption properties is ascribed to the synergetic effect of the in situ formed Pr3Al11 MgF2 PrH3 and Mg2NiH4 nanoparticles. This work provides an important inspiration for the improvement of hydrogen storage properties in Mg-based materials.
No more items...