Publications
Optical, Electrical and Structural Study of Mg/Ti Bilayer Thin Film for Hydrogen Storage Applications
Apr 2021
Publication
Bilayer Mg/Ti (200 nm) thin films were successfully prepared by using D.C. magnetron sputtering unit. These films were vacuum annealed at 573 K temperature for one hour to obtain homogeneous and intermixed structure of bilayer. Hydrogenation of these thin film structures was made at different hydrogen pressure (15 30 & 45 psi) for 30 min to visualize the effect of hydrogen on film structure. The UV–Vis absorption spectra I-V characteristics and Raman spectroscopy were carried out to study the effect of hydrogen on optical electrical and structural properties of Mg/Ti bilayer thin films. The annealed thin film represents the semiconductor nature with the conductivity of the order of 10-5 Ώ−1-m−1 and it decreases as hydrogen pressure increases. The nonlinear dependence of resistivity on hydrogen pressure reveals inhomogeneous distribution of hydrogen in the thin film. Raman spectroscopy confirmed the presence of hydrogen in thin film where the intensity of peaks was found to be decreased with hydrogen pressure.
Tensile and Fatigue Properties of 17-4PH Martensitic Stainless Steels in Presence of Hydrogen
Dec 2019
Publication
Effects of hydrogen on slow-strain-rate tensile (SSRT) and fatigue-life properties of 17-4PH H1150 martensitic stainless steel having an ultimate tensile strength of ~1GPa were investigated. Smooth and circumferentially-notched axisymmetric specimens were used for the SSRT and fatigue-life tests respectively. The fatigue-life tests were done to investigate the hydrogen effect on fatigue crack growth (FCG) properties. The specimens tested in air at ambient temperature were precharged by exposure to hydrogen gas at pressures of 35 and 100 MPa at 270°C for 200 h. The SSRT properties of the H-charged specimens were degraded by hydrogen showing a relative reduction in area (RRA) of 0.31 accompanied by mixed fracture surfaces composed of quasi-cleavage (QC) and intergranular cracking (IG). The fatigue-life tests conducted under wide test frequencies ranging from 10-3 Hz to 10 Hz revealed three distinct characteristics in low- and high-cycle regimes and at the fatigue limit. The fatigue limit was not degraded by hydrogen. In the high-cycle regime the hydrogen caused FCG acceleration with an upper bound ratio of 30 accompanied by QC surfaces. In the low-cycle regime the hydrogen caused FCG acceleration with a ratio of ~100 accompanied by QC and IG. The ordinary models such as process competition and superposition models hardly predicted the H-assisted FCG acceleration; therefore an interaction model successfully reproducing the experimental FCG acceleration was newly introduced.
HyDeploy2: Summary of Procedures for the Trial Network
Jun 2021
Publication
The assessment of appropriate operational procedures to govern the injection of a hydrogen/natural gas blend into Northern Gas Networks’ (NGN) Winlaton gas distribution network was a key requirement of the HyDeploy2 project. To perform this assessment the review was broken down into two areas procedures upstream of the emergency control valve (owned by NGN) and procedures downstream of the Emergency Control Valve (procedures which would be performed by Gas Safe registered individuals). Assessment of the upstream procedures was led by NGN (own and carry out all upstream procedures on NGN’s gas network) and assessment of the downstream procedures was led by Blue Flame Associates (an industry expert on downstream gas procedures).<br/>Methodologies were adopted to be able to highlight procedures that could potentially be used on the Winlaton trial network during the hydrogen blended gas injection period and if they were impacted by the changing of the gas within the network from natural gas to hydrogen blended gas. This method determined that for downstream gas procedures a total of 56 gas procedures required expert review resulting in 80 technical questions to be assessed and for the upstream gas procedures a total of 80 gas procedures required expert review resulting in 266 technical questions to be assessed.<br/>The operational procedures assessment has led to a determination as to whether a change is or is not required for relevant operational procedures where a basis of concern existed with respect to the injection of hydrogen blended gas. Any requirements to modify an existing procedure has been given in this report referencing the source as to where the detailed analysis for the change/no change recommendation has been given.<br/>The assessment took into account the associated experimental and research carried out as part of the HyDeploy and HyDeploy2 projects such as the assessment of gas characteristics materials impact appliance survey of assets on the Winlaton network and impact of hydrogen blended gas on gas detection equipment references to these studies have been given accordingly to associated impacted operational procedures.<br/>The conclusion of the assessment is that for upstream gas procedures there are some operational procedures that are unchanged some that require an increase in the frequency as to how often they are performed and some procedures which require a technical modification. For downstream domestic gas procedures all procedures applicable to a domestic gas installation were deemed to not be detrimentally affected by the introduction of a 20 mol% hydrogen blend.<br/>For upstream gas procedures an appropriate training package will be built off the back of the results presented in this report and disseminated accordingly to all relevant Operatives that will be responsible for the safety operation and maintenance of the Winlaton network during the hydrogen blend injection period. For downstream gas procedures the Gas Safe community have been fully engaged and informed about the trial.<br/>Click on the supplements tab to view the other documents from this report
Multi-Objective Optimization of a Hydrogen Hub for the Decarbonization of a Port Industrial Area
Feb 2022
Publication
Green hydrogen is addressed as a promising solution to decarbonize industrial and mobility sectors. In this context ports could play a key role not only as hydrogen users but also as suppliers for industrial plants with which they have strong commercial ties. The implementation of hydrogen technologies in ports has started to be addressed as a strategy for renewable energy transition but still requires a detailed evaluation of the involved costs which cannot be separated from the correct design and operation of the plant. Hence this study proposes the design and operation optimization of a hydrogen production and storage system in a typical Italian port. Multi-objective optimization is performed to determine the optimal levelized cost of hydrogen in environmental and techno-economic terms. A Polymer Electrolyte Membrane (PEM) electrolyzer powered by a grid-integrated photovoltaic (PV) plant a compression station and two-pressure level storage systems are chosen to provide hydrogen to a hydrogen refueling station for a 20-car fleet and satisfy the demand of the hydrogen batch annealing in a steel plant. The results report that a 341 kWP PV plant 89 kW electrolyzer and 17 kg hydrogen storage could provide hydrogen at 7.80 €/kgH2 potentially avoiding about 153 tCO2eq/year (120 tCO2eq/year only for the steel plant).
Experimental Investigations Relevant for Hydrogen and Fission Product Issues Raised by the Fukushima Accident
Jan 2015
Publication
The accident at Japan's Fukushima Daiichi nuclear power plant in March 2011 caused by an earthquake and a subsequent tsunami resulted in a failure of the power systems that are needed to cool the reactors at the plant. The accident progression in the absence of heat removal systems caused Units 1-3 to undergo fuel melting. Containment pressurization and hydrogen explosions ultimately resulted in the escape of radioactivity from reactor containments into the atmosphere and ocean. Problems in containment venting operation leakage from primary containment boundary to the reactor building improper functioning of standby gas treatment system (SGTS) unmitigated hydrogen accumulation in the reactor building were identified as some of the reasons those added-up in the severity of the accident. The Fukushima accident not only initiated worldwide demand for installation of adequate control and mitigation measures to minimize the potential source term to the environment but also advocated assessment of the existing mitigation systems performance behavior under a wide range of postulated accident scenarios. The uncertainty in estimating the released fraction of the radionuclides due to the Fukushima accident also underlined the need for comprehensive understanding of fission product behavior as a function of the thermal hydraulic conditions and the type of gaseous aqueous and solid materials available for interaction e.g. gas components decontamination paint aerosols and water pools. In the light of the Fukushima accident additional experimental needs identified for hydrogen and fission product issues need to be investigated in an integrated and optimized way. Additionally as more and more passive safety systems such as passive autocatalytic recombiners and filtered containment venting systems are being retrofitted in current reactors and also planned for future reactors identified hydrogen and fission product issues will need to be coupled with the operation of passive safety systems in phenomena oriented and coupled effects experiments. In the present paper potential hydrogen and fission product issues raised by the Fukushima accident are discussed. The discussion focuses on hydrogen and fission product behavior inside nuclear power plant containments under severe accident conditions. The relevant experimental investigations conducted in the technical scale containment THAI (thermal hydraulics hydrogen aerosols and iodine) test facility (9.2 m high 3.2 m in diameter and 60 m3 volume) are discussed in the light of the Fukushima accident.
100% Renewable Energy in Japan
Feb 2022
Publication
Low-cost solar photovoltaics and wind offer a reliable and affordable pathway to deep decarbonization of energy which accounts for three quarters of global emissions. However large-scale deployment of solar photovoltaics and wind requires space and may be challenging for countries with dense population and high per capita energy consumption. This study investigates the future role of renewable energy in Japan as a case study. A 40-year hourly energy balance model is presented of a hypothetical 100% renewable Japanese electricity system using representative demand data and historical meteorological data. Pumped hydro energy storage high voltage interconnection and dispatchable capacity (existing hydro and biomass and hydrogen energy produced from curtailed electricity) are included to balance variable generation and demand. Differential evolution is used to find the least-cost solution under various constraints. This study shows that Japan has 14 times more solar and offshore wind resources than needed to supply 100% renewable electricity and vast capacity for off-river pumped hydro energy storage. Assuming significant cost reductions of solar photovoltaics and offshore wind towards global norms in the coming decades driven by large-scale deployment locally and global convergence of renewable generation costs the levelized cost of electricity is found to be US$86/Megawatt-hour for a solar-dominated system and US$110/Megawatt-hour for a wind-dominated system. These costs can be compared with 2020 average system prices on the spot market in Japan of US$102/Megawatt-hour. Cost of balancing 100% renewable electricity in Japan ranges between US$20–27/Megawatt-hour for a range of scenarios. In summary Japan can be self-sufficient for electricity supply at competitive costs provided that the barriers to the mass deployment of solar photovoltaics and offshore wind in Japan are overcome.
Estimation of Hydrogen Production using Wind Energy in Algeria
Aug 2015
Publication
In response to problems involved in the current crisis of petrol in Algeria with the decrease in the price of the oil barrel the rate of growth in domestic electricity demand and with an associated acceleration of global warming as a result of significantly increased greenhouse gas (GHG) emissions renewable energy seems today as a clean and strategic substitution for the next decades. However the greatest obstacles which face electric energy comes from renewable energy systems are often referred to the intermittency of these sources as well as storage and transport problems the need for their conversion into a versatile energy carrier in its use storable transportable and environmentally acceptable are required. Among all the candidates answering these criteria hydrogen presents the best answer. In the present work particular attention is paid to the production of hydrogen from wind energy. The new wind map of Algeria shows that the highest potential wind power was found in Adrar Hassi-R'Mel and Tindouf regions. The data obtained from these locations have been analyzed using Weibull probability distribution function. The wind energy produced in these locations is exploited for hydrogen production through water electrolysis. The objective of this paper is to realize a technological platform allowing the evaluation of emergent technologies of hydrogen production from wind energy using four wind energy conversion systems of 600 1250 1500 and 2000 kW rated capacity. The feasibility study shows that using wind energy in the selected sites is a promising solution. It is shown that the turbine " De Wind D7" is sufficient to supply the electricity and hydrogen with a least cost and a height capacity factor. The minimum cost of hydrogen production of 1.214 $/kgH2 is obtained in Adrar.
Standalone Renewable Energy and Hydrogen in an Agricultural Context: A Demonstrative Case
Feb 2019
Publication
Standalone renewable energy is widely used to power irrigation systems. However in agricultural facilities electricity from the grid and diesel are also consumed. The design and sizing of renewable generation involves difficulties derived from the different seasonal profiles of production and demand. If the generation is 100% renewable a considerable energy surplus is usually included. This paper is focused on a renewable energy system which has been installed in a vineyard located in the northeast of Spain. With energy from the photovoltaic fields the wastewater treatment plant of the winery a drip irrigation system and other ancillary consumptions are fed. The favourable effect of combining consumptions with different seasonal profiles is shown. The existence of some deferrable loads and the energy management strategy result in an aggregate consumption curve that is well suited to production. Besides the required energy storage is relatively small. The surplus energy is used for the on-site production of hydrogen by the electrolysis of water. The hydrogen refuels a hybrid fuel cell electric vehicle used for the mobility of workers in the vineyard. In summary electricity and hydrogen are produced on-site (to meet the energy needs) from 100% renewable sources and without operating emissions.
HyDeploy2 : Trial Management
May 2021
Publication
The trial management philosophy of the Winlaton trial within HyDeploy2 has been developed to enable the overall objectives of the project to be achieved; the safe demonstration of operating a Gas Distribution Network (GDN) on a blend of natural gas and hydrogen. The approach taken to develop the management philosophy of the Winlaton trial has been to continue the trial management strategies deployed for the Keele trial under HyDeploy albeit with site specific modifications where necessary. This document provides an overview of the management and governance processes associated with the trial itself.<br/>Click on the supplement tab to view the other documents from this report
Quantifying the Potential of Renewable Natural Gas to Support a Reformed Energy Landscape: Estimates for New York State
Jun 2021
Publication
Public attention to climate change challenges our locked-in fossil fuel-dependent energy sector. Natural gas is replacing other fossil fuels in our energy mix. One way to reduce the greenhouse gas (GHG) impact of fossil natural gas is to replace it with renewable natural gas (RNG). The benefits of utilizing RNG are that it has no climate change impact when combusted and utilized in the same applications as fossil natural gas. RNG can be injected into the gas grid used as a transportation fuel or used for heating and electricity generation. Less common applications include utilizing RNG to produce chemicals such as methanol dimethyl ether and ammonia. The GHG impact should be quantified before committing to RNG. This study quantifies the potential production of biogas (i.e. the precursor to RNG) and RNG from agricultural and waste sources in New York State (NYS). It is unique because it is the first study to provide this analysis. The results showed that only about 10% of the state’s resources are used to generate biogas of which a small fraction is processed to RNG on the only two operational RNG facilities in the state. The impact of incorporating a second renewable substitute for fossil natural gas “green” hydrogen is also analyzed. It revealed that injecting RNG and “green” hydrogen gas into the pipeline system can reduce up to 20% of the state’s carbon emissions resulting from fossil natural gas usage which is a significant GHG reduction. Policy analysis for NYS shows that several state and federal policies support RNG production. However the value of RNG can be increased 10-fold by applying a similar incentive policy to California’s Low Carbon Fuel Standard (LCFS).
Comparison of Two Energy Management Strategies Considering Power System Durability for PEMFC-LIB Hybrid Logistics Vehicle
Jun 2021
Publication
For commercial applications the durability and economy of the fuel cell hybrid system have become obstacles to be overcome which are not only affected by the performance of core materials and components but also closely related to the energy management strategy (EMS). This paper takes the 7.9 t fuel cell logistics vehicle as the research object and designed the EMS from two levels of qualitative and quantitative analysis which are the composite fuzzy control strategy optimized by genetic algorithm and Pontryagin’s minimum principle (PMP) optimized by objective function respectively. The cost function was constructed and used as the optimization objective to prolong the life of the power system as much as possible on the premise of ensuring the fuel economy. The results indicate that the optimized PMP showed a comprehensive optimal performance the hydrogen consumption was 3.481 kg/100 km and the cost was 13.042 $/h. The major contribution lies in that this paper presents a method to evaluate the effect of different strategies on vehicle performance including fuel economy and durability of the fuel cell and battery. The comparison between the two totally different strategies helps to find a better and effective solution to reduce the lifetime cost.
Effects of the Injector Direction on the Temperature Distribution During Filling of Hydrogen Tanks
Sep 2017
Publication
The development of the temperature field in hydrogen tanks during the filling process has been investigated with Computational Fluid Dynamics (CFD). Measurements from experiments undertaken at the JRC GasTef facility have been used to develop and validate the CFD modelling strategy; by means of the CFD calculations the effect of the injector direction on the temperature distribution has been analysed. It has been found that the dynamics of the temperature field including the development of potentially detrimental phenomena like thermal stratification and temperature inhomogeneity e.g. hot spots can be significantly affected by the injector orientation.
Optimal Development of Alternative Fuel Station Networks Considering Node Capacity Restrictions
Jan 2020
Publication
A potential solution to reduce greenhouse gas (GHG) emissions in the transport sector is the use of alternative fuel vehicles (AFV). As global GHG emission standards have been in place for passenger cars for several years infrastructure modelling for new AFV is an established topic. However as the regulatory focus shifts towards heavy-duty vehicles (HDV) the market diffusion of AFV-HDV will increase as will planning the relevant AFV infrastructure for HDV. Existing modelling approaches need to be adapted because the energy demand per individual refill increases significantly for HDV and there are regulatory as well as technical limitations for alternative fuel station (AFS) capacities at the same time. While the current research takes capacity restrictions for single stations into account capacity limits for locations (i.e. nodes) – the places where refuelling stations are built such as highway entries exits or intersections – are not yet considered. We extend existing models in this respect and introduce an optimal development for AFS considering (station) location capacity restrictions. The proposed method is applied to a case study of a potential fuel cell heavy-duty vehicle AFS network. We find that the location capacity limit has a major impact on the number of stations required station utilization and station portfolio variety.
Development of a Realistic Hydrogen Flammable Atmosphere Inside a 4-m3 Enclosure
Sep 2017
Publication
To define a strategy of mitigation for containerized hydrogen systems (fuel cells for example) against explosion the main characteristics of flammable atmosphere (size concentration turbulence…) shall be well-known. This article presents an experimental study on accidental hydrogen releases and dispersion into an enclosure of 4 m3 (2 m x 2 m x 1 m). Different release points are studied: two circular releases of 1 and 3 mm and a system to create ring-shaped releases. The releases are operated with a pressure between 10 and 40 bars in order to be close to the process conditions. Different positions of the release inside the enclosure i.e. centred on the floor or along a wall are also studied. A specific effort is made to characterize the turbulence in the enclosure during the releases. The objectives of the experimental study are to understand and quantify the mechanisms of formation of the explosive atmosphere taking into account the geometry and position of the release point and the confinement. Those experimental data are analyzed and compared with existing models and could bring some new elements to improve them.
Model of 3D Conjugate Heat Transfer and Mechanism of Compressed Gas Storage Failure in a Fire
Sep 2017
Publication
The 3D model of conjugate heat transfer from a fire to compressed gas storage cylinder is described. The model predictions of temperature outside and inside the cylinder as well as pressure increase during a fire are compared against a fire test experiment. The simulation reproduced measured in test temperatures and pressures. The original failure criterion of the cylinder in a fire has been applied in the model. This allowed for the prediction of the cylinder catastrophic rupture time with acceptable engineering accuracy. The significance of 3D modelling is demonstrated and recommendations to improve safety of high-pressure composite tanks are given.
Fire Tests Carried Out in FCH JU FIRECOMP Project, Recommendations and Application to Safety of Gas Storage Systems
Sep 2017
Publication
In the event of a fire composite pressure vessels behave very differently from metallic ones: the material is degraded potentially leading to a burst without significant pressure increase. Hence such objects are when necessary protected from fire by using thermally-activated devices (TPRD) and standards require testing cylinder and TPRD together. The pre-normative research project FireComp aimed at understanding better the conditions which may lead to burst through testing and simulation and proposed an alternative way of assessing the fire performance of composite cylinders. This approach is currently used by Air Liquide for the safety of composite bundles carrying large amounts of hydrogen gas.
Clean Energy and Fuel Storage
Aug 2019
Publication
Clean energy and fuel storage is often required for both stationary and automotive applications. Some of the clean energy and fuel storage technologies currently under extensive research and development are hydrogen storage direct electric storage mechanical energy storage solar-thermal energy storage electrochemical (batteries and supercapacitors) and thermochemical storage. The gravimetric and volumetric storage capacity energy storage density power output operating temperature and pressure cycle life recyclability and cost of clean energy or fuel storage are some of the factors that govern efficient energy and fuel storage technologies for potential deployment in energy harvesting (solar and wind farms) stations and on-board vehicular transportation. This Special Issue thus serves the need to promote exploratory research and development on clean energy and fuel storage technologies while addressing their challenges to a practical and sustainable infrastructure.
Conceptual Design of Pyrolytic Oil Upgrading Process Enhanced by Membrane-Integrated Hydrogen Production System
May 2019
Publication
Hydrotreatment is an efficient method for pyrolytic oil upgrading; however the trade-off between the operational cost on hydrogen consumption and process profit remains the major challenge for the process designs. In this study an integrated process of steam methane reforming and pyrolytic oil hydrotreating with gas separation system was proposed conceptually. The integrated process utilized steam methane reformer to produce raw syngas without further water–gas-shifting; with the aid of a membrane unit the hydrogen concentration in the syngas was adjusted which substituted the water–gas-shift reactor and improved the performance of hydrotreater on both conversion and hydrogen consumption. A simulation framework for unit operations was developed for process designs through which the dissipated flow in the packed-bed reactor along with membrane gas separation unit were modelled and calculated in the commercial process simulator. The evaluation results showed that the proposed process could achieve 63.7% conversion with 2.0 wt% hydrogen consumption; the evaluations of economics showed that the proposed process could achieve 70% higher net profit compared to the conventional plant indicating the potentials of the integrated pyrolytic oil upgrading process.
End of Life of Fuel Cells and Hydrogen Products: From Technologies to Strategies
Feb 2019
Publication
End-of-Life (EoL) technologies and strategies are needed to support the deployment of fuel cells and hydrogen (FCH) products. This article explores current and novel EoL technologies to recover valuable materials from the stacks of proton exchange membrane fuel cells and water electrolysers alkaline water electrolysers and solid oxide fuel cells. Current EoL technologies are mainly based on hydrometallurgical and pyro-hydrometallurgical methods for the recovery of noble metals while novel methods attempt to recover additional materials through efficient safe and cost-competitive pathways. Strengths weaknesses opportunities and threats of the reviewed EoL technologies are identified under techno-economic environmental and regulatory aspects. Beyond technologies strategies for the EoL of FCH stacks are defined mainly based on the role of manufacturers and recovery centres in the short- mid- and long-term. In this regard a dual role manufacturer/recovery centre would characterise long-term scenarios within a potential context of a well-established hydrogen economy.
Simulation of the Combustion Process for a CI Hydrogen Engine in an Argon-oxygen Atmosphere
May 2018
Publication
Hydrogen combustion in a noble gas atmosphere increases the combustion chamber temperature and the high specific heat ratio of the gas increases the thermal efficiency. In this study nitrogen was replaced by argon as the intake air along with pure oxygen to supply the engine. The objectives of this study are to determine the effects of different engine parameters on combustion and to analyse the emissions from hydrogen combustion in an argon-oxygen atmosphere. This research was conducted through simulations using CONVERGE 2.2.0 software and the YANMAR engine NF19SK model was used to determine the basic parameters. Changing the injector location affects the pressure and temperature in the combustion chamber. With increasing compression ratio the pressure increases more rapidly than the temperature. However combustion at high compression ratios decreases the maximum heat release rate and increases the combustion duration. Hydrogen combustion at ambient temperatures below 1200 K follows the Arrhenius equation.
Scale-up of Milling in a 100 L Device for Processing of TiFeMn Alloy for Hydrogen Storage Applications: Procedure and characterization
Feb 2019
Publication
In this work the mechanical milling of a FeTiMn alloy for hydrogen storage purposes was performed in an industrial milling device. The TiFe hydride is interesting from the technological standpoint because of the abundance and the low cost of its constituent elements Ti and Fe as well as its high volumetric hydrogen capacity. However TiFe is difficult to activate usually requiring a thermal treatment above 400 °C. A TiFeMn alloy milled for just 10 min in a 100 L industrial milling device showed excellent hydrogen storage properties without any thermal treatment. The as-milled TiFeMn alloy did not need any activation procedure and showed fast kinetic behavior and good cycling stability. Microstructural and morphological characterization of the as-received and as-milled TiFeMn alloys revealed that the material presents reduced particle and crystallite sizes even after such short time of milling. The refined microstructure of the as-milled TiFeMn is deemed to account for the improved hydrogen absorption-desorption properties.
A Comparison Study into Low Leak Rate Buoyant Gas Dispersion in a Small Fuel Cell Enclosure Using Plain and Louvre Vent Passive Ventilation Schemes
Sep 2017
Publication
The development of a ‘Hydrogen Economy’ will see hydrogen fuel cells used in transportation and the generation of power for buildings as part of a decentralised grid with low power units used in domestic and commercial environmental situations. Low power fuel cells will be housed in small protective enclosures which must be ventilated to prevent a build-up of hydrogen gas produced during normal fuel cell operation or a supply pipework leak. Hydrogen’s flammable range (4-75%) is a significant safety concern. With poor enclosure ventilation a low-level leak (below 10 lpm) could quickly create a flammable mixture with potential for an explosion. Mechanical ventilation is effective at managing enclosure hydrogen concentrations but drains fuel cell power and is vulnerable to failure. In many applications (e.g. low power and remote installation) this is undesirable and reliable passive ventilation systems are preferred. Passive ventilation depends upon buoyancy driven flow with the size and shape of ventilation openings critical for producing predictable flows and maintaining low buoyant gas concentrations. Environmentally installed units use louvre vents to protect the fuel cell but the performance of these vents compared to plain vertical vents is not clear. Comparison small enclosure tests of ‘same opening area’ louvre and plain vents with leak rates from 1 to 10 lpm were conducted. A displacement ventilation arrangement was installed on the test enclosure with upper and lower opposing openings. Helium gas was released from a 4mm nozzle at the base of the enclosure to simulate a hydrogen leak. The tests determined that louvre vents increased average enclosure hydrogen concentrations by approximately 10% across the leak range tested but regulated the flow. The test data was used in a SolidWorks CFD simulation model validation exercise. The model provided a good qualitative representation of the flow behaviour but under predicted average concentrations.
Application of Hydrides in Hydrogen Storage and Compression: Achievements, Outlook and Perspectives
Feb 2019
Publication
José Bellosta von Colbe,
Jose-Ramón Ares,
Jussara Barale,
Marcello Baricco,
Craig Buckley,
Giovanni Capurso,
Noris Gallandat,
David M. Grant,
Matylda N. Guzik,
Isaac Jacob,
Emil H. Jensen,
Julian Jepsen,
Thomas Klassen,
Mykhaylo V. Lototskyy,
Kandavel Manickam,
Amelia Montone,
Julian Puszkiel,
Martin Dornheim,
Sabrina Sartori,
Drew Sheppard,
Alastair D. Stuart,
Gavin Walker,
Colin Webb,
Heena Yang,
Volodymyr A. Yartys,
Andreas Züttel and
Torben R. Jensen
Metal hydrides are known as a potential efficient low-risk option for high-density hydrogen storage since the late 1970s. In this paper the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units i. e. for stationary applications.<br/>With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004 the use of metal hydrides for hydrogen storage in mobile applications has been established with new application fields coming into focus.<br/>In the last decades a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more partly less extensively characterized.<br/>In addition based on the thermodynamic properties of metal hydrides this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles.<br/>In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage” different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.
Analysis of Out-of-spec Events During Refueling of On-board Hydrogen Tanks
Sep 2017
Publication
For refuelling on-board hydrogen tanks table-based or formula based protocols are commonly used. These protocols are designed to achieve a tank filling close to 100% SOC (State of Charge) in s safe way: without surpassing temperature (-40°C to 85°C) and pressure limits (125% Nominal Working Pressure NWP). The ambient temperature the initial pressure and the volume category of the (compressed hydrogen storage system CHSS are used as inputs to determine the final target pressure and the pressure ramp rate (which controls the filling duration). However abnormal out-of-spec events (e.g. misinformation of storage system status and characteristics of the storage tanks) may occur and result in a refuelling in which the safety boundaries are surpassed. In the present article the possible out of specification (out-of-spec) events in a refuelling station have been analyzed. The associated hazards when refuelling on-board hydrogen tanks have been studied. Experimental results of out-of-spec event tests performed on a type 3 tank are presented. The results show that on the type 3 tank the safety temperature limit of 85°C was only surpassed under a combination of events; e.g. an unnoticed stop of the cooling of the gas combined with a wrong input of ambient temperature at a very warm environment. On the other hand under certain events (e.g. cooling the gas below the target temperature) and in particular under cold environmental conditions the 100% SOC limit established in the fuelling protocols has been surpassed. Hydrogen safety on-board tanks refuelling protocols out-of-spec events.
Health and safety in the new energy economy
Dec 2010
Publication
Over the next decade and beyond the UK is set to take significant steps towards a new energy economy. This will be an economy where the technologies meeting<br/>our electricity heat and fuel needs have to deliver against three key criteria: sustainability security and affordability.<br/><br/>In this context a wide range of emerging energy technologies are expected to play an important role in reshaping the way we satisfy our energy requirements. The extent to which they do so however will depend fundamentally on their ability to be harnessed safely.<br/><br/>Compiled by HSE’s Emerging Energy Technologies Programme this report provides a current assessment of the health and safety hazards that key emerging energy technologies could pose both to workers and to the public at large. (Nuclear energy technologies fall outside the scope of this report.) But it also highlights how an appropriate framework can be and is being put in place to help ensure that these hazards are managed and controlled effectively – an essential<br/>element in enabling the technologies to make a major contribution to the UK’s energy future.
A Comparative CFD Assessment Study of Cryogenic Hydrogen and Liquid Natural Gas Dispersion
Sep 2017
Publication
The introduction of hydrogen to the commercial market as alternative fuel brings up safety concerns. Its storage in liquid or cryo-compressed state to achieve volumetric efficiency involves additional risks and their study is crucial. This work aims to investigate the behaviour of cryogenic hydrogen release and to study factors that affect the vapor dispersion. We focus on the effect of ambient humidity and air's components (nitrogen and oxygen) freezing in order to identify the conditions under which these factors have considerable influence. The study reveals that the level of influence depends highly on the release conditions and that humidity can reduce conspicuously the longitudinal distance of the Lower Flammability Limit (LFL). Low Froude (Fr) number (<1000) at the release allows the generated by the humidity phase change buoyancy to affect the dispersion while for higher Fr number - that usually are met in cryo-compressed releases - the momentum forces are the dominant forces and the buoyancy effect is trivial. Simulations with liquid methane release have been also performed and compared to the liquid hydrogen simulations in order to detect the differences in the behaviour of the two fuels as far as the humidity effect is concerned. It is shown that in methane spills the buoyancy effect in presence of humidity is smaller than in hydrogen spills and it can be considered almost negligible.
Highly Resolve Large Eddy Simulations of a Transitional Air-helium Buoyant Jet in a Two Vented Enclosure: Validation Against Particle Image Velocimetry Experiments
Sep 2017
Publication
The article deals with LES simulations of an air-helium buoyant jet in a two vented enclosure and their validation against particle image velocimetry experiments. The main objective is to test the ability of LES models to simulate such scenarios. These types of scenarios are of first interest considering safety studies for new hydrogen systems. Three main challenges are identified. The two first are the ability of the LES model to account for a rapid laminar-to-turbulence transition mainly due to the buoyancy accelerations and the Rayleigh-Taylor instabilities that can develop due to sharp density gradients. The third one is the outlet boundary conditions to be imposed on the vent surfaces. The influence of the classical pressure boundary condition is studied by comparing the simulations results when an exterior region is added in the simulations. The comparisons against particle image velocimetry experiments show that the use of an exterior domain gives more accurate results than the classical pressure boundary condition. This result and the description of the phenomena involved are the main outlets of the article.
Compact Heat Integrated Reactor System of Steam Reformer, Shift Reactor and Combustor for Hydrogen Production from Ethanol
Jun 2020
Publication
A compact heat integrated reactor system (CHIRS) of a steam reformer a water gas shift reactor and a combustor were designed for stationary hydrogen production from ethanol. Different reactor integration concepts were firstly studied using Aspen Plus. The sequential steam reformer and shift reactor (SRSR) was considered as a conventional system. The efficiency of the SRSR could be improved by more than 12% by splitting water addition to the shift reactor (SRSR-WS). Two compact heat integrated reactor systems (CHIRS) were proposed and simulated by using COMSOL Multiphysics software. Although the overall efficiency of the CHIRS was quite a bit lower than the SRSR-WS the compact systems were properly designed for portable use. CHIRS (I) design combining the reactors in a radial direction was large in reactor volume and provided poor temperature control. As a result the ethanol steam reforming and water gas shift reactions were suppressed leading to lower hydrogen selectivity. On the other hand CHIRS (II) design combining the process in a vertical direction provided better temperature control. The reactions performed efficiently resulting in higher hydrogen selectivity. Therefore the high performance CHIRS (II) design is recommended as a suitable stationary system for hydrogen production from ethanol.
Hydrogen - A Pipeline to the Future
Sep 2020
Publication
Scotland’s Achievements and Ambitions for Clean Hydrogen - a joint webinar between the Scottish Hydrogen and Fuel Cell Association and the Pipeline Industries Guild (Scottish branch).
Nigel Holmes. CEO Scottish Hydrogen & Fuel Cell Association provides an update on Scotland’s ambitions backed up by progress in key areas. This will show the potential for hydrogen at scale to support the delivery of policy targets highlighting areas of key strengths for Scotland.
You will also hear about the need to build up scale for hydrogen production and supply in tandem with hydrogen pipeline and distribution networks in order to meet demand for low carbon energy and achieve key milestones on the pathway to Net Zero by 2045.
Nigel Holmes. CEO Scottish Hydrogen & Fuel Cell Association provides an update on Scotland’s ambitions backed up by progress in key areas. This will show the potential for hydrogen at scale to support the delivery of policy targets highlighting areas of key strengths for Scotland.
You will also hear about the need to build up scale for hydrogen production and supply in tandem with hydrogen pipeline and distribution networks in order to meet demand for low carbon energy and achieve key milestones on the pathway to Net Zero by 2045.
Isotopic Tracing of Hydrogen Transport and Trapping in Nuclear Materials
Jun 2017
Publication
Some illustrations of the use of deuterium or tritium for isotopic tracing of hydrogen absorption transport and trapping in nuclear materials are presented. Isotopic tracing of hydrogen has been shown to be successful for the determination of the boundaries conditions for hydrogen desorption or absorption in a material exposed to a hydrogen source. Also the unique capabilities of isotopic tracing and related techniques to characterize H interactions with point defects and dislocations acting as moving traps has been demonstrated. Such transport mechanisms are considered to play a major role in some stress corrosion cracking and hydrogen embrittlement mechanisms.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
Economic Viability and Environmental Efficiency Analysis of Hydrogen Production Processes for the Decarbonization of Energy Systems
Aug 2019
Publication
The widespread penetration of hydrogen in mainstream energy systems requires hydrogen production processes to be economically competent and environmentally efficient. Hydrogen if produced efficiently can play a pivotal role in decarbonizing the global energy systems. Therefore this study develops a framework which evaluates hydrogen production processes and quantifies deficiencies for improvement. The framework integrates slack-based data envelopment analysis (DEA) with fuzzy analytical hierarchy process (FAHP) and fuzzy technique for order of preference by similarity to ideal solution (FTOPSIS). The proposed framework is applied to prioritize the most efficient and sustainable hydrogen production in Pakistan. Eleven hydrogen production alternatives were analyzed under five criteria including capital cost feedstock cost O&M cost hydrogen production and CO2 emission. FAHP obtained the initial weights of criteria while FTOPSIS determined the ultimate weights of criteria for each alternative. Finally slack-based DEA computed the efficiency of alternatives. Among the 11 three alternatives (wind electrolysis PV electrolysis and biomass gasification) were found to be fully efficient and therefore can be considered as sustainable options for hydrogen production in Pakistan. The rest of the eight alternatives achieved poor efficiency scores and thus are not recommended.
How Hydrogen Empowers the Energy Transition
Jan 2017
Publication
This report commissioned by the Hydrogen Council and announced in conjunction with the launch of the initiative at the World Economic Forum in January 2017 details the future potential that hydrogen is ready to provide and sets out the vision of the Council and the key actions it considers fundamental for policy makers to implement to fully unlock and empower the contribution of hydrogen to the energy transition.
In this paper we explore the role of hydrogen in the energy transition including its potential recent achievements and challenges to its deployment. We also offer recommendations to ensure that the proper conditions are developed to accelerate the deployment of hydrogen technologies with the support of policymakers the private sector and society.
You can download the full report from the Hydrogen Council website here
In this paper we explore the role of hydrogen in the energy transition including its potential recent achievements and challenges to its deployment. We also offer recommendations to ensure that the proper conditions are developed to accelerate the deployment of hydrogen technologies with the support of policymakers the private sector and society.
You can download the full report from the Hydrogen Council website here
What Role for Hydrogen in Turkey’s Energy Future?
Nov 2021
Publication
Since early 2020 Turkey has been considering the role of hydrogen in its energy future with a view to producing a hydrogen strategy in the next few months. Unlike many other countries considering the role of hydrogen Turkey has only recently (October 2021) ratified the Paris Agreement addressing climate change and its interest is driven more by geopolitical strategic and energy security concerns. Specifically with concerns about the high share of imported energy particularly gas from Russia it sees hydrogen as part of a policy to increase indigenous energy production. Turkey already has a relatively high share of renewable power generation particularly hydro and recent solar auctions have resulted in low prices leading to a focus on potential green hydrogen production. However it still generates over half of its electricity from fossil fuel including over 25% from coal and lignite. Against that background it provides an interesting case study on some of the key aspects that a country needs to consider when looking to incorporate low-carbon hydrogen into the development of their energy economy.
The research paper can be found on their website
The research paper can be found on their website
Concepts for Improving Hydrogen Storage in Nanoporous Materials
Feb 2019
Publication
Hydrogen storage in nanoporous materials has been attracting a great deal of attention in recent years as high gravimetric H2 capacities exceeding 10 wt% in some cases can be achieved at 77 K using materials with particularly high surface areas. However volumetric capacities at low temperatures and both gravimetric and volumetric capacities at ambient temperature need to be improved before such adsorbents become practically viable. This article therefore discusses approaches to increasing the gravimetric and volumetric hydrogen storage capacities of nanoporous materials and maximizing the usable capacity of a material between the upper storage and delivery pressures. In addition recent advances in machine learning and data science provide an opportunity to apply this technology to the search for new materials for hydrogen storage. The large number of possible component combinations and substitutions in various porous materials including Metal-Organic Frameworks (MOFs) is ideally suited to a machine learning approach; so this is also discussed together with some new material types that could prove useful in the future for hydrogen storage applications.
Promotion Effect of Proton-conducting Oxide BaZr0.1Ce0.7Y0.2O3−δ on the Catalytic Activity of Ni Towards Ammonia Synthesis from Hydrogen and Nitrogen
Aug 2018
Publication
In this report for the first time it has been observed that proton-conducting oxide BaZr0.1Ce0.7Y0.2O3−δ (BZCY) has significant promotion effect on the catalytic activity of Ni towards ammonia synthesis from hydrogen and nitrogen. Renewable hydrogen can be used for ammonia synthesis to save CO2 emission. By investigating the operating parameters of the reaction the optimal conditions for this catalyst were identified. It was found that at 620 °C with a total flow rate of 200 mL min−1 and a H2/N2 mol ratio of 3 an activity of approximately 250 μmol g−1 h−1 can be achieved. This is ten times larger than that for the unpromoted Ni catalyst under the same conditions although the stability of both catalysts in the presence of steam was not good. The specific activity of Ni supported on proton-conducting oxide BZCY is approximately 72 times higher than that of Ni supported on non-proton conductor MgO-CeO2. These promotion effects were suspected to be due to the proton conducting nature of the support. Therefore it is proposed that the use of proton conducting support materials with highly active ammonia synthesis catalysts such as Ru and Fe will provide improved activity of at lower temperatures.
Spontaneous Ignition of Hydrogen- Literature Review
Jan 2008
Publication
Objectives
The aim of this review is to establish which available literature may be of use as part of the HSE funded project which will investigate spontaneous ignition of accidental hydrogen releases (JR02071). It will identify phenomena that have the potential to cause spontaneous ignition of releases of pressured hydrogen and identify literature that may be of use when formulating the experimental program.
Main Findings
The identification of important work that shows conclusive evidence of spontaneous ignition of hydrogen due to the failure of a boundary layer.
The aim of this review is to establish which available literature may be of use as part of the HSE funded project which will investigate spontaneous ignition of accidental hydrogen releases (JR02071). It will identify phenomena that have the potential to cause spontaneous ignition of releases of pressured hydrogen and identify literature that may be of use when formulating the experimental program.
Main Findings
The identification of important work that shows conclusive evidence of spontaneous ignition of hydrogen due to the failure of a boundary layer.
H2FC SUPERGEN- Opportunities for Hydrogen and Fuel Cell Technologies to Contribute to Clean Growth in the UK
May 2020
Publication
Hydrogen is expected to have an important role in decarbonising several parts of the UK energy system. This white paper examines the opportunities for hydrogen and fuel cell technologies (H2FC) to contribute to clean growth in the UK.
We assess the strength of the sector by surveying 196 companies working in the area and using other key metrics (for example publication citations and patents). There is already a nascent fuel cell industry working at the cutting edge of global innovation. The UK has an opportunity to grow this industry and to develop an export-focused hydrogen industry over the next few decades. However this will require public nurturing and support. We make a series of recommendations that include:
We assess the strength of the sector by surveying 196 companies working in the area and using other key metrics (for example publication citations and patents). There is already a nascent fuel cell industry working at the cutting edge of global innovation. The UK has an opportunity to grow this industry and to develop an export-focused hydrogen industry over the next few decades. However this will require public nurturing and support. We make a series of recommendations that include:
- Creating separate national fuel cell and hydrogen strategies. These should take UK energy needs capabilities and export opportunities into account. There is a need to coordinate public R&D support and to manage the consequences if European funding and collaboration opportunities become unavailable due to Brexit.
- Creating a public–private “Hydrogen Partnership” to accelerate a shift to hydrogen energy systems in the UK and to stimulate opportunities for businesses.
- Putting in place infrastructure to underpin nascent fuel cell and hydrogen markets including a national refuelling station network and a green hydrogen standard scheme.
- Study what would constitute critical mass in the hydrogen and fuel cell sectors in terms of industry and academic capacity and the skills and knowledge base and consider how critical mass could be achieved most efficiently.
- Consider creating a “Hydrogen Institute” and an “Electrochemical Centre” to coordinate and underpin national innovation over the next decade.
Installation Permitting Guidance for Hydrogen and Fuel Cell Stationary Applications: UK Version
Jan 2009
Publication
The HYPER project a specific targeted research project (STREP) funded by the European Commission under the Sixth Framework Programme developed an Installation Permitting Guide (IPG) for hydrogen and fuel cell stationary applications. The IPG was developed in response to the growing need for guidance to foster the use and facilitate installation of these systems in Europe. This document presents a modified version of the IPG specifically intended for the UK market. For example reference is made to UK national regulations standards and practices when appropriate as opposed to European ones.<br/>The IPG applies to stationary systems fuelled by hydrogen incorporating fuel cell devices with net electrical output of up to 10 kWel and with total power outputs of the order of 50 kW (combined heat + electrical) suitable for small back up power supplies residential heating combined heat-power (CHP) and small storage systems. Many of the guidelines appropriate for these small systems will also apply to systems up to 100 kWel which will serve small communities or groups of households. The document is not a standard but is a compendium of useful information for a variety of users with a role in installing these systems including design engineers manufacturers architects installers operators/maintenance workers and regulators.<br/>This report and the work it describes were funded by the Health and Safety Executive (HSE). Its contents including any opinions and/or conclusions expressed are those of the authors alone and do not necessarily reflect HSE policy.
Hydrogen Strategy for Canada: Seizing the Opportunities for Hydrogen - A Call to Action
Dec 2020
Publication
For more than a century our nation’s brightest minds have been working on the technology to turn the invisible promise of hydrogen into tangible solutions. Canadian ingenuity and innovation has once again brought us to a pivotal moment. As we rebuild our economy from the impacts of COVID-19 and fight the existential threat of climate change the development of low-carbon hydrogen is a strategic priority for Canada. The time to act is now.<br/>The Hydrogen Strategy for Canada lays out an ambitious framework for actions that will cement hydrogen as a tool to achieve our goal of net-zero emissions by 2050 and position Canada as a global industrial leader of clean renewable fuels. This strategy shows us that by 2050 clean hydrogen can help us achieve our net-zero goal—all while creating jobs growing our economy and protecting our environment. This will involve switching from conventional gasoline diesel and natural gas to zero-emissions fuel sources taking advantage of new regulatory environments and embracing new technologies to give Canadians more choice of zero emission alternatives.<br/>As one of the top 10 hydrogen producers in the world today we are rich in the feedstocks that produce hydrogen. We are blessed with a strong energy sector and the geographic assets that will propel Canada to be a major exporter of hydrogen and hydrogen technologies. Hydrogen might be nature’s smallest molecule but its potential is enormous. It provides new markets for our conventional energy resources and holds the potential to decarbonize many sectors of our economy including resource extraction freight transportation power generation manufacturing and the production of steel and cement. This Strategy is a call to action. It will spur investments and strategic partnerships across the country and beyond our borders. It will position Canada to seize economic and environmental opportunities that exist coast to coast. Expanding our exports. Creating as many as 350000 good green jobs over the next three decades. All while dramatically reducing our greenhouse gas emissions. And putting a net-zero future within our reach.<br/>The importance of Canada’s resource industries and our clean technology sectors has been magnified during the pandemic. We must harness our combined will expertise and financial resources to fully seize the opportunities that hydrogen presents. This strategy is the product of three years of study and analysis including extensive engagement sessions where we heard from more than 1500 of our country’s leading experts and stakeholders. But its release is not the end of a process. This is only the beginning. Together we will use this Strategy to guide our actions and investments. By working with provinces and territories Indigenous partners and the private-sector and by leveraging our many advantages we will create the prosperity we all want protect the planet we all cherish and we will ensure we leave no one behind.
Oxford Energy Podcast – The Role of Ammonia and Hydrogen in Meeting International Maritime Organisation Targets for Decarbonising Shipping
Jul 2021
Publication
The world’s shipping fleet is responsible for approximately 0.9 Gt of CO2 emissions annually around 2.9 per cent of the world’s man-made emissions. Under an IEA ‘business as usual’ scenario this is forecast to rise to almost 1.7 Gt per year by 2050. The industry’s principal regulatory body the International Maritime Organization (IMO) aims to reduce world shipping’s greenhouse gas emissions in line with the 2015 Paris Agreement targeting a 50 per cent reduction compared with 2008 levels by 2050. The cost of achieving these emission targets however is about $1 trillion and will require focus from regulators operators and end consumers who in the end will have to pay. In this podcast David Ledesma talks to Bruce Moore Howe Robinson Partners to discuss these issues and ask in such a fragmented industry what the immediate priorities for the marine sector must be and how can it bring about a mix of commercial incentives and regulatory change that result in tangible emissions reductions.
The podcast can be found on their website
The podcast can be found on their website
A Study on the Effectivity of Hydrogen Leakage Detection for Hydrogen Fuel Cell
Sep 2017
Publication
Unlike four-wheel fuel-cell vehicles fuel-cell motorcycles have little semi-closure space corresponding to the engine compartment of four-wheel fuel-cell vehicles. Furthermore motorcycles may fall while parked or running. We conducted hydrogen concentration measurement and ignition tests to evaluate the feasibility of detecting leaks when hydrogen gas leaked from a fuel-cell motorcycle as well as the risk of ignition. We found that the installation of hydrogen leak detectors is effective because it is possible to detect minute hydrogen leaks by installing leak detectors at appropriate points on the fuel cell motorcycle and risks can be reduced by interrupting the hydrogen leak immediately after detection.
Annual Science Review 2018
Mar 2018
Publication
THIS ANNUAL SCIENCE Review showcases the high quality of science evidence and analysis that underpins HSE’s risk-based regulatory regime. To be an effective regulator HSE has to balance its approaches to informing directing advising and enforcing through a variety of activities. For this we need capacity to advance knowledge; to develop and use robust evidence and analysis; to challenge thinking; and to review effectiveness.<br/>In simple terms policy provides the route map to tackling issues. HSE is particularly well placed in terms of the three components of effective policy - “politics” “evidence” and “delivery”. Unlike most regulators and arms-length bodies HSE leads on policy development which draws directly on front line delivery expertise and intelligence; and we are also unusual in having our own world class science and insight capabilities.<br/>The challenge is to ensure we bring these components together to best effect to respond to new risk management and regulatory issues with effective innovative and proportionate approaches.<br/>Many of the articles in this Review relate to new and emerging technologies and the changing world of work and it is important to understand the risks these may pose and how they can be effectively controlled or how they themselves can contribute to improved health and safety in the workplace. Good policy development can support approaches to change that are proportionate relevant persuasive and effective. For example work described in these pages is: to help understand changing workplace exposures; to provide robust evidence to those negotiating alternatives to unduly prescriptive standards; to understand how best to influence duty<br/>holder behaviors in the changing world of work; to inform possible legislative changes to allow different modes of safe gas transmission; to change administrative processes for Appointed Doctors; and to support our position as a model modern regulator by further focusing our inspection activity where it matters most.<br/>The vital interface between HSE science and policy understand how best to influence duty holder behaviors in the changing world of work; to inform possible legislative changes to allow different modes of safe gas transmission; to change administrative processes for Appointed Doctors; and to support our position as a model modern regulator by further focusing our inspection activity where it matters most.<br/>We work well together and it is important we maintain this engagement as a conscious collaboration.
Annual Science Review 2020
Mar 2020
Publication
HSE maintains a national network of doctors appointed doctors and approved medical examiners of divers who are appointed to deliver certain vital functions under our regulatory framework.1 Over the last year or so we have been reaching out to them and offering training and networking opportunities so that we can learn from each other. Their intelligence from real workplaces helps ensure that our medical approach is grounded by what actually happens and this helped us ensure that our health and work strategy took account of their views. I think that it is increasingly important to share our approaches and our research outcomes on the global stage in an attempt to learn from other researchers around the world. A good example is the work described in this report on the artificial stone issue. I have been lucky enough to work with the Australian research group who identified an epidemic of silicosis from this exposure in their country and helped to facilitate some cross-comparison of materials with our hygienists and measurement scientists. The dialogue continues and I hope that by doing so we can help to prevent such an epidemic from occurring in the UK.<br/>All HSE research findings are published as soon as we are able to do this and this demonstrates both my and Andrew Curran’s commitment to ensure that we publish the evidence we generate to make workplaces healthier for all.
Hydrogen Scaling Up: A Sustainable Pathway for the Global Energy Transition
Nov 2017
Publication
Deployed at scale hydrogen could account for almost one-fifth of total final energy consumed by 2050. This would reduce annual CO2 emissions by roughly 6 gigatons compared to today’s levels and contribute roughly 20% of the abatement required to limit global warming to two degrees Celsius.
On the demand side the Hydrogen Council sees the potential for hydrogen to power about 10 to 15 million cars and 500000 trucks by 2030 with many uses in other sectors as well such as industry processes and feedstocks building heating and power power generation and storage. Overall the study predicts that the annual demand for hydrogen could increase tenfold by 2050 to almost 80 EJ in 2050 meeting 18% of total final energy demand in the 2050 two-degree scenario. At a time when global populations are expected to grow by two billion people by 2050 hydrogen technologies have the potential to create opportunities for sustainable economic growth.
“The world in the 21st century must transition to widespread low carbon energy use” said Takeshi Uchiyamada Chairman of Toyota Motor Corporation and co-chair of the Hydrogen Council. “Hydrogen is an indispensable resource to achieve this transition because it can be used to store and transport wind solar and other renewable electricity to power transportation and many other things. The Hydrogen Council has identified seven roles for hydrogen which is why we are encouraging governments and investors to give it a prominent role in their energy plans. The sooner we get the hydrogen economy going the better and we are all committed to making this a reality.”
Achieving such scale would require substantial investments; approximately US$20 to 25 billion annually for a total of about US$280 billion until 2030. Within the right regulatory framework – including long-term stable coordination and incentive policies – the report considers that attracting these investments to scale the technology is feasible. The world already invests more than US$1.7 trillion in energy each year including US$650 billion in oil and gas US$300 billion in renewable electricity and more than US$300 billion in the automotive industry.
“This study confirms the place of hydrogen as a central pillar in the energy transition and encourages us in our support of its large-scale deployment. Hydrogen will be an unavoidable enabler for the energy transition in certain sectors and geographies. The sooner we make this happen the sooner we will be able to enjoy the needed benefits of Hydrogen at the service of our economies and our societies” said Benoît Potier Chairman and CEO Air Liquide. “Solutions are technologically mature and industry players are committed. We need concerted stakeholder efforts to make this happen; leading this effort is the role of the Hydrogen Council.”
The launch of the new roadmap came during the Sustainability Innovation Forum in the presence of 18 senior members of the Hydrogen led by co-chairs Takeshi Uchiyamada Chairman of Toyota and Benoît Potier Chairman and CEO Air Liquide and accompanied by Prof. Aldo Belloni CEO of The Linde Group Woong-chul Yang Vice Chairman of Hyundai Motor Company and Anne Stevens Board Member of Anglo American. During the launch the Hydrogen Council called upon investors policymakers and businesses to join them in accelerating deployment of hydrogen solutions for the energy transition. It was also announced that Woong-chul Yang of Hyundai Motor Company will succeed Takeshi Uchiyamada of Toyota in the rotating role of the Council’s co-chair and preside the group together with Benoit Potier CEO Air Liquide in 2018. Mr Uchiyamada is planning to return as Co-chairman in 2020 coinciding with the Tokyo Olympic and Paalympic Games an important milestone for showcasing hydrogen society and mobility.
You can download the full report from the Hydrogen Council website here
On the demand side the Hydrogen Council sees the potential for hydrogen to power about 10 to 15 million cars and 500000 trucks by 2030 with many uses in other sectors as well such as industry processes and feedstocks building heating and power power generation and storage. Overall the study predicts that the annual demand for hydrogen could increase tenfold by 2050 to almost 80 EJ in 2050 meeting 18% of total final energy demand in the 2050 two-degree scenario. At a time when global populations are expected to grow by two billion people by 2050 hydrogen technologies have the potential to create opportunities for sustainable economic growth.
“The world in the 21st century must transition to widespread low carbon energy use” said Takeshi Uchiyamada Chairman of Toyota Motor Corporation and co-chair of the Hydrogen Council. “Hydrogen is an indispensable resource to achieve this transition because it can be used to store and transport wind solar and other renewable electricity to power transportation and many other things. The Hydrogen Council has identified seven roles for hydrogen which is why we are encouraging governments and investors to give it a prominent role in their energy plans. The sooner we get the hydrogen economy going the better and we are all committed to making this a reality.”
Achieving such scale would require substantial investments; approximately US$20 to 25 billion annually for a total of about US$280 billion until 2030. Within the right regulatory framework – including long-term stable coordination and incentive policies – the report considers that attracting these investments to scale the technology is feasible. The world already invests more than US$1.7 trillion in energy each year including US$650 billion in oil and gas US$300 billion in renewable electricity and more than US$300 billion in the automotive industry.
“This study confirms the place of hydrogen as a central pillar in the energy transition and encourages us in our support of its large-scale deployment. Hydrogen will be an unavoidable enabler for the energy transition in certain sectors and geographies. The sooner we make this happen the sooner we will be able to enjoy the needed benefits of Hydrogen at the service of our economies and our societies” said Benoît Potier Chairman and CEO Air Liquide. “Solutions are technologically mature and industry players are committed. We need concerted stakeholder efforts to make this happen; leading this effort is the role of the Hydrogen Council.”
The launch of the new roadmap came during the Sustainability Innovation Forum in the presence of 18 senior members of the Hydrogen led by co-chairs Takeshi Uchiyamada Chairman of Toyota and Benoît Potier Chairman and CEO Air Liquide and accompanied by Prof. Aldo Belloni CEO of The Linde Group Woong-chul Yang Vice Chairman of Hyundai Motor Company and Anne Stevens Board Member of Anglo American. During the launch the Hydrogen Council called upon investors policymakers and businesses to join them in accelerating deployment of hydrogen solutions for the energy transition. It was also announced that Woong-chul Yang of Hyundai Motor Company will succeed Takeshi Uchiyamada of Toyota in the rotating role of the Council’s co-chair and preside the group together with Benoit Potier CEO Air Liquide in 2018. Mr Uchiyamada is planning to return as Co-chairman in 2020 coinciding with the Tokyo Olympic and Paalympic Games an important milestone for showcasing hydrogen society and mobility.
You can download the full report from the Hydrogen Council website here
Experimental Measurements, CFD Simulations and Model for a Helium Release in a Two Vents Enclosure
Sep 2017
Publication
The present work proposes improvements on a model developed by Linden to predict the concentration distribution in a 2 vented cavities. Recent developments on non constant entrainment coefficient from Carazzo et al as well as a non constant pressure distribution at the vents-the vents being vertical-are included in the Linden approach. This model is compared with experimental results from a parametric study on the influence of the height of the release source on the helium dispersion regimes inside a naturally ventilated 2 vents enclosure. The varying parameters of the study were mainly the height of the release the releasing flow rate and the geometry of the vents. At last Large Eddy Simulations of the flow and Particle Image Velocimetry measurements performed on a small 2 vented cavity are presented. The objective is to have a better understanding of the flow structure which is at the origin of the 2 layers concentration distribution described by Linden.
Catalytic Effect of MoS2 on Hydrogen Storage Thermodynamics and Kinetics of an As-milled YMg11Ni Alloy
Jul 2017
Publication
In this study YMg11Ni and YMg11Ni + 5 wt% MoS2 (named YMg11Ni–MoS2) alloys were prepared by mechanical milling to examine the effect of adding MoS2 on the hydrogen storage performance of a Y–Mg–Ni-based alloy. The as-cast and milled alloys were tested to identify their structures by X-ray diffraction and transmission electron microscopy. The isothermal hydrogen storage thermodynamics and dynamics were identified through an automatic Sieverts apparatus and the non-isothermal dehydrogenation performance was investigated by thermogravimetry and differential scanning calorimetry. The dehydrogenation activation energy was calculated by both Arrhenius and Kissinger methods. Results revealed that adding MoS2produces a very slight effect on hydrogen storage thermodynamics but causes an obvious reduction in the hydrogen sorption and desorption capacities because of the deadweight of MoS2. The addition of MoS2significantly enhances the dehydrogenation performance of the alloy such as lowering dehydrogenation temperature and enhancing dehydrogenation rate. Specifically the initial desorption temperature of the alloy hydride lowers from 549.8 K to 525.8 K. The time required to desorb hydrogen at 3 wt% H2 is 1106 456 363 and 180 s corresponding to hydrogen desorption temperatures at 593 613 633 and 653 K for the YMg11Ni alloy and 507 208 125 and 86 s at identical conditions for the YMg11Ni–5MoS2 alloy. The dehydrogenation activation energy (Ea) values with and without added MoS2are 85.32 and 98.01 kJ mol−1. Thus a decrease in Ea value by 12.69 kJ mol−1 occurs and is responsible for the amelioration of the hydrogen desorption dynamics by adding a MoS2 catalyst.
Fuelling the Hydrogen Economy: Scale-up of an Integrated Formic Acid-to-power System
Feb 2019
Publication
Transitioning from fossil fuels to sustainable and green energy sources in mobile applications is a difficult challenge and demands sustained and highly multidisciplinary efforts in R&D. Liquid organic hydrogen carriers (LOHC) offer several advantages over more conventional energy storage solutions but have not been yet demonstrated at scale. Herein we describe the development of an integrated and compact 25 kW formic acid-to-power system by a team of BSc and MSc students. We highlight a number of key engineering challenges encountered during scale-up of the technology and discuss several aspects commonly overlooked by academic researchers. Conclusively we provide a critical outlook and suggest a number of developmental areas currently inhibiting further implementation of the technology.
Hazards of Liquid Hydrogen: Position paper
Jan 2010
Publication
In the long term the key to the development of a hydrogen economy is a full infrastructure to support it which include means for the delivery and storage of hydrogen at the point of use eg at hydrogen refuelling stations for vehicles. As an interim measure to allow the development of refuelling stations and rapid implementation of hydrogen distribution to them liquid hydrogen is considered the most efficient and cost effective means for transport and storage.
The Health and Safety Executive have commissioned the Health and Safety Laboratory to identify and address issues relating to bulk liquid hydrogen transport and storage and update/develop guidance for such facilities. This position paper the first part of the project assesses the features of the transport and storage aspects of the refuelling stations that are now being constructed in the UK compares them to existing guidance highlights gaps in the regulatory regime and identifies outstanding safety issues. The findings together with the results of experiments to improve our understanding of the behaviour of liquid hydrogen will inform the development of the guidance for refuelling facilities
link to Report
The Health and Safety Executive have commissioned the Health and Safety Laboratory to identify and address issues relating to bulk liquid hydrogen transport and storage and update/develop guidance for such facilities. This position paper the first part of the project assesses the features of the transport and storage aspects of the refuelling stations that are now being constructed in the UK compares them to existing guidance highlights gaps in the regulatory regime and identifies outstanding safety issues. The findings together with the results of experiments to improve our understanding of the behaviour of liquid hydrogen will inform the development of the guidance for refuelling facilities
link to Report
Hydrogen Production and Subsequent Adsorption/Desorption Process within a Modified Unitized Regenerative Fuel Cell
Apr 2019
Publication
For sustainable and incremental growth mankind is adopting renewable sources of energy along with storage systems. Storing surplus renewable energy in the form of hydrogen is a viable solution to meet continuous energy demands. In this paper the concept of electrochemical hydrogen storage in a solid multi-walled carbon nanotube (MWCNT) electrode integrated in a modified unitized regenerative fuel cell (URFC) is investigated. The method of solid electrode fabrication from MWCNT powder and egg white as an organic binder is disclosed. The electrochemical testing of a modified URFC with an integrated MWCNT-based hydrogen storage electrode is performed and reported. Galvanostatic charging and discharging was carried out and results analyzed to ascertain the electrochemical hydrogen storage capacity of the fabricated electrode. The electrochemical hydrogen storage capacity of the porous MWCNT electrode is found to be 2.47 wt% which is comparable with commercially available AB5-based hydrogen storage canisters. The obtained results prove the technical feasibility of a modified URFC with an integrated MWCNT-based hydrogen storage electrode which is the first of its kind. This is surelya step forward towards building a sustainable energy economy
Energy Innovation Needs Assessment: Carbon Capture Usage & Storage
Nov 2019
Publication
The Energy Innovation Needs Assessment (EINA) aims to identify the key innovation needs across the UK’s energy system to inform the prioritisation of public sector investment in low-carbon innovation. Using an analytical methodology developed by the Department for Business Energy & Industrial Strategy (BEIS) the EINA takes a system level approach and values innovations in a technology in terms of the system-level benefits a technology innovation provides. This whole system modelling in line with BEIS’s EINA methodology was delivered by the Energy Systems Catapult (ESC) using the Energy System Modelling Environment (ESMETM) as the primary modelling tool.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
No more items...