Publications
Microwave Absorption of Aluminum/Hydrogen Treated Titanium Dioxide Nanoparticles
Dec 2018
Publication
Interactions between incident electromagnetic energy and matter are of critical importance for numerous civil and military applications such as photocatalysis solar cells optics radar detection communications information processing and transport et al. Traditional mechanisms for such interactions in the microwave frequency mainly rely on dipole rotations and magnetic domain resonance. In this study we present the first report of the microwave absorption of Al/H2 treated TiO2 nanoparticles where the Al/H2 treatment not only induces structural and optical property changes but also largely improves the microwave absorption performance of TiO2 nanoparticles. Moreover the frequency of the microwave absorption can be finely controlled with the treatment temperature and the absorption efficiency can reach optimal values with a careful temperature tuning. A large reflection loss of −58.02 dB has been demonstrated with 3.1 mm TiO2 coating when the treating temperature is 700 °C. The high efficiency of microwave absorption is most likely linked to the disordering-induced property changes in the materials. Along with the increased microwave absorption properties are largely increased visible-light and IR absorptions and enhanced electrical conductivity and reduced skin-depth which is likely related to the interfacial defects within the TiO2 nanoparticles caused by the Al/H2 treatment.
Pathway to Net Zero Emissions
Oct 2021
Publication
A feasible path to limit planetary warming to 1.5°C requires certain countries and sectors to go below net zero and to do so well before the middle of the century according to new analysis from the authors of the Energy Transition Outlook. DNV’s pathway to net zero says North America and Europe must be carbon neutral by 2042 whereas Indian Subcontinent is set to be a net emitter by 2050 Net zero report says carbon capture storage and use is required as energy production will not be carbon neutral by 2050 Aim to halve emissions by 2030 is out of reach but massive early action is needed if we are to have any chance of reaching a 1.5°C future DNV’s new report “Pathway to Net Zero Emissions” describes a feasible way to limit global warming to 1.5°C Policy makers are set to meet in Glasgow for the COP 26 summit with an eye on achieving zero emissions by 2050. For this to happen North America and Europe must be carbon neutral by 2042 and then carbon negative thereafter according to DNV’s pathway to net zero. The pathway also finds that Greater China must reduce emissions by 98% from 2019 levels by 2050. There are regions that cannot realistically transition completely away from fossil fuels in the same timeframe such as the Indian Subcontinent which will reduce emissions by 64%. Pathway to Net Zero Emissions also lays out the pace at which different industry sectors need to decarbonize. The so-called hard-to-abate sectors will take longer to decarbonize and even if sectors like maritime (-90% CO2 emissions in 2050) and iron and steel production (-82%) scale up the introduction of greener technologies they will still be net emitters by 2050.
Hydrogen Power Focus Shifts from Cars to Heavy Vehicles
Oct 2020
Publication
Hydrogen has been hailed as a promising energy carrier for decades. But compared to the thriving success of hybrid and plug-in electric cars the prospects for cars powered by hydrogen fuel cells have recently diminished mostly due to challenges in bringing down the costs of fuel cells and developing a broad network of fuelling stations.<br/>Beginning in March 2020 three major auto manufacturers—Daimler AG] Volkswagen and General Motors (GM)]—followed the April 2019 move by Honda to back out of the hydrogen-powered passenger car market. Instead these companies and others are looking to develop the technology as an emission-free solution to power heavy commercial and military vehicles with refuelling taking place at centralized locations.
Renewable Hydrogen for the Chemical Industry
Aug 2020
Publication
Hydrogen is often touted as the fuel of the future but hydrogen is already an important feedstock for the chemical industry. This review highlights current means for hydrogen production and use and the importance of progressing R&D along key technologies and policies to drive a cost reduction in renewable hydrogen production and enable the transition of chemical manufacturing toward green hydrogen as a feedstock and fuel. The chemical industry is at the core of what is considered a modern economy. It provides commodities and important materials e.g. fertilizers synthetic textiles and drug precursors supporting economies and more broadly our needs. The chemical sector is to become the major driver for oil production by 2030 as it entirely relies on sufficient oil supply. In this respect renewable hydrogen has an important role to play beyond its use in the transport sector. Hydrogen not only has three times the energy density of natural gas and using hydrogen as a fuel could help decarbonize the entire chemical manufacturing but also the use of green hydrogen as an essential reactant at the basis of many chemical products could facilitate the convergence toward virtuous circles. Enabling the production of green hydrogen at cost could not only enable new opportunities but also strengthen economies through a localized production and use of hydrogen. Herein existing technologies for the production of renewable hydrogen including biomass and water electrolysis and methods for the effective storage of hydrogen are reviewed with an emphasis on the need for mitigation strategies to enable such a transition.
Advanced Sizing Methodology for a Multi-Mode eVTOL UAV Powered by a Hydrogen Fuel Cell and Battery
Jan 2022
Publication
A critical drawback of battery-powered eVTOL UAVs is their limited range and endurance and this drawback could be solved by using a combination of hydrogen fuel cells and batteries. The objective of this paper is to develop a sizing methodology for the lift+cruise-type eVTOL UAV powered by a hydrogen fuel cell and battery. This paper presents the constraints analysis method for forward flight/VTOL multi-mode UAV the regression model for electric propulsion system sizing a sizing method for an electric propulsion system and hydrogen fuel cell system and a transition analysis method. The total mass of the UAV is iteratively calculated until convergence and the optimization method is used to ensure that the sizing results satisfy the design requirements. The sizing results are the UAV’s geometry mass and power data. To verify the accuracy of the proposed sizing methodology the sizing and the conceptual design phase results of a 25 kg hydrogen fuel-cell-powered UAV are compared. All parameters had an error within 10% and satisfied the design requirements.
Review on the Influence of Temperature upon Hydrogen Effects in Structural Alloys
Mar 2021
Publication
It is well-documented experimentally that the influence of hydrogen on the mechanical properties of structural alloys like austenitic stainless steels nickel superalloys and carbon steels strongly depends on temperature. A typical curve plotting any hydrogen-affected mechanical property as a function of temperature gives a temperature THEmax where the degradation of this mechanical property reaches a maximum. Above and below this temperature the degradation is less. Unfortunately the underlying physico-mechanical mechanisms are not currently understood to the level of detail required to explain such temperature effects. Though this temperature effect is important to understand in the context of engineering applications studies to explain or even predict the effect of temperature upon the mechanical properties of structural alloys could not be identified. The available experimental data are scattered significantly and clear trends as a function of chemistry or microstructure are difficult to see. Reported values for THEmax are in the range of about 200–340 K which covers the typical temperature range for the design of structural components of about 230–310 K (from −40 to +40 °C). That is the value of THEmax itself as well as the slope of the gradient might affect the materials selection for a dedicated application. Given the current lack of scientific understanding a statistical approach appears to be a suitable way to account for the temperature effect in engineering applications. This study reviews the effect of temperature upon hydrogen effects in structural alloys and proposes recommendations for test temperatures for gaseous hydrogen applications
Blended Hydrogen: The UK Public’s Perspective
Nov 2019
Publication
Hydrogen is increasingly being positioned as an important component of the UK’s Net Zero ambitions and commitments. In particular hydrogen could be an appropriate way to decarbonise the heat produced for domestic and industrial buildings. It is possible that hydrogen could replace natural gas in the UK gas network achieving key carbon emissions reduction targets while enabling homes to be heated to a similar level and standard as they currently are.<br/>In the interim small amounts of hydrogen will soon be blended into current natural gas supplies. The premise of this idea is to blend hydrogen into the existing gas network in small enough quantities to not require any adjustments to domestic cookers boilers and other gas-fired appliances but in large enough quantities to generate significant immediate reductions in carbon emissions. Three trials will take place between 2019 and 2022 as part of the HyDeploy project with the aim of demonstrating that hydrogen blending can occur at scale with no safety implications and no disruption to users.<br/>Public perceptions and acceptance of hydrogen will be pivotal in this scenario. At present there is very little indication of how acceptable hydrogen will be for heating homes and questions around safety cost and performance are only beginning to be understood and addressed.<br/>This report investigates public perceptions of blended hydrogen as a fuel for UK homes. In March 2019 we administered a survey to a sample (n=742) representative of the UK adult population in terms of age sex ethnicity and personal income. Our survey covered initial perceptions values and knowledge of hydrogen; the possibilities and pitfalls of hydrogen blending; public trust; and participants’ overall support for hydrogen. Key Findings and Conclusions and Recommendations for Policy and Practice follow immediately with the full report beginning on p.6.
A Preliminary Assessment of the Potential of Low Percentage Green Hydrogen Blending in the Italian Natural Gas Network
Oct 2020
Publication
The growing rate of electricity generation from renewables is leading to new operational and management issues on the power grid because the electricity generated exceeds local requirements and the transportation or storage capacities are inadequate. An interesting option that is under investigation by several years is the opportunity to use the renewable electricity surplus to power electrolyzers that split water into its component parts with the hydrogen being directly injected into natural gas pipelines for both storage and transportation. This innovative approach merges together the concepts of (i) renewable power-to-hydrogen (P2H) and of (ii) hydrogen blending into natural gas networks. The combination of renewable P2H and hydrogen blending into natural gas networks has a huge potential in terms of environmental and social benefits but it is still facing several barriers that are technological economic legislative. In the framework of the new hydrogen strategy for a climate-neutral Europe Member States should design a roadmap moving towards a hydrogen ecosystem by 2050. The blending of “green hydrogen” that is hydrogen produced by renewable sources in the natural gas network at a limited percentage is a key element to enable hydrogen production in a preliminary and transitional phase. Therefore it is urgent to evaluate at the same time (i) the potential of green hydrogen blending at low percentage (up to 10%) and (ii) the maximum P2H capacity compatible with low percentage blending. The paper aims to preliminary assess the green hydrogen blending potential into the Italian natural gas network as a tool for policy makers grid and networks managers and energy planners.
Hydrogen Europe's Position Paper on the Sustainable and Smart Mobility Strategy
Dec 2020
Publication
The document highlights the role of hydrogen in the decarbonisation of the transport sector. It also provides a series of policy recommendations covering all modes of transport hydrogen distribution and infrastructure and hydrogen as a fuel.
Pipeline to 2050 - Building the Foundations for a Harmonised Heat Strategy
Nov 2020
Publication
Following up on our report Uncomfortable Home Truths: why Britain urgently needs a low carbon heat strategy Pipeline to 2050 sets out recommendations for BEIS’ forthcoming Heat and Buildings Strategy. Based on the findings of five roundtables held between January and July 2020 with cross-party parliamentarians policy-makers and experts from industry academia and non-governmental organisations the publication calls for a joined-up approach that simultaneously addresses all aspects of heat decarbonisation.<br/>The report highlights that today there is a patchwork of heat policy initiatives. Although they might incentivise positive development in themselves are nevertheless too dispersed and not enough to drive the level of coordinated action that is needed given the complexity of heat decarbonisation. Setting out propositions to tackle challenges associated with the transition to low carbon heat in the areas of governance funding innovation and public engagement; the publication calls for a Heat and Buildings Strategy that shows a step change in terms of ambition for heat decarbonisation.<br/>The report recommends that the Heat and Buildings Strategy needs to put forward a systematic approach that joins up all policy aspects and principles needed for the transition to low carbon heat. Moreover given the cross-sectoral engagement needed between consumers industry research and various levels of the government it argues that the Strategy has to be constructed in a way that simultaneously catalyses action from all stakeholders that are needed to take part in the process for effective heat decarbonisation.
Improved Monitoring and Diagnosis of Transformer Solid Insulation Using Pertinent Chemical Indicators
Jul 2021
Publication
Transformers are generally considered to be the costliest assets in a power network. The lifetime of a transformer is mainly attributable to the condition of its solid insulation which in turn is measured and described according to the degree of polymerization (DP) of the cellulose. Since the determination of the DP index is complex and time-consuming and requires the transformer to be taken out of service utilities prefer indirect and non-invasive methods of determining the DP based on the byproduct of cellulose aging. This paper analyzes solid insulation degradation by measuring the furan concentration recently introduced methanol and dissolved gases like carbon oxides and hydrogen in the insulating oil. A group of service-aged distribution transformers were selected for practical investigation based on oil samples and different kinds of tests. Based on the maintenance and planning strategy of the power utility and a weighted combination of measured chemical indicators a neural network was also developed to categorize the state of the transformer in certain classes. The method proved to be able to improve the diagnostic capability of chemical indicators thus providing power utilities with more reliable maintenance tools and avoiding catastrophic failure of transformers.
Towards a Climate-neutral Energy System in the Netherlands
Jan 2022
Publication
This paper presents two different scenarios for the energy system of the Netherlands that achieve the Dutch government’s national target of near net-zero greenhouse gas emissions in 2050. Using the system optimisation model OPERA the authors have analysed the technology sector and cost implications of the assumptions underlying these scenarios. While the roles of a number of key energy technology and emission mitigation options are strongly dependent on the scenario and cost assumptions the analysis yields several common elements that appear in both scenarios and that consistently appear under differing cost assumptions. For example one of the main options for the decarbonisation of the Dutch energy system is electrification of energy use in end-use sectors and for the production of renewable hydrogen with electrolysers. As a result the level of electricity generation in 2050 will be three to four times higher than present generation levels. Ultimately renewable energy – particularly from wind turbines and solar panels – is projected to account for the vast majority of electricity generation around 99% in 2050. Imbalances between supply and demand resulting from this variable renewable electricity production can be managed via flexibility options including demand response and energy storage. Hydrogen also becomes an important energy carrier notably for transportation and in industry. If import prices are lower than costs of domestic production from natural gas with CCS or through electrolysis from renewable electricity (2.4–2.7 €/kgH2) the use of hydrogen increases especially in the built environment.
Green Hydrogen: A Guide to Policy Making
Nov 2020
Publication
Hydrogen produced with renewable energy sources – or “green” hydrogen – has emerged as a key element to achieve net-zero emissions from heavy industry and transport. Along with net-zero commitments by growing numbers of governments green hydrogen has started gaining momentum based on low-cost renewable electricity ongoing technological improvements and the benefits of greater power-system flexibility.
Hydrogen-based fuels previously attracted interest mainly as an alternative to shore up oil supply. However green hydrogen as opposed to the “grey” (fossil-based) or “blue” (hybrid) varieties also help to boost renewables in the energy mix and decarbonise energy-intensive industries.
This report from the International Renewable Energy Agency (IRENA) outlines the main barriers that inhibiting green hydrogen uptake and the policies needed to address these. It also offers insights on how to kickstart the green hydrogen sector as a key enabler of the energy transition at the national or regional level.
Key pillars of green hydrogen policy making include:
Hydrogen-based fuels previously attracted interest mainly as an alternative to shore up oil supply. However green hydrogen as opposed to the “grey” (fossil-based) or “blue” (hybrid) varieties also help to boost renewables in the energy mix and decarbonise energy-intensive industries.
This report from the International Renewable Energy Agency (IRENA) outlines the main barriers that inhibiting green hydrogen uptake and the policies needed to address these. It also offers insights on how to kickstart the green hydrogen sector as a key enabler of the energy transition at the national or regional level.
Key pillars of green hydrogen policy making include:
- National hydrogen strategy. Each country needs to define its level of ambition for hydrogen outline the amount of support required and provide a reference on hydrogen development for private investment and finance.
- Setting policy priorities. Green hydrogen can support a wide range of end-uses. Policy makers should identify and focus on applications that provide the highest value.
- Guarantees of origin. Carbon emissions should be reflected over the whole lifecycle of hydrogen. Origin schemes need to include clear labels for hydrogen and hydrogen products to increase consumer awareness and facilitate claims of incentives.
- Governance system and enabling policies. As green hydrogen becomes mainstream policies should cover its integration into the broader energy system. Civil society and industry must be involved to maximise the benefits.
- Subsequent briefs will explore the entire hydrogen value chain providing sector-by-sector guidance on the design and implementation of green hydrogen policies.
Application of the Incremental Step Loading Technique to Small Punch Tests on S420 Steel in Acid Environments
Dec 2020
Publication
The Small Punch test has been recently used to estimate mechanical properties of steels in aggressive environments. This technique very interesting when there is shortage of material consists in using a small plane specimen and punch it until it fails. The type of tests normally used are under a constant load in an aggressive environment with the target to determine the threshold stress. However this is an inaccurate technique which takes time as the tests are quite slow. In this paper the Small Punch tests are combined with the step loading technique collected in the standard ASTM F1624 [1] to obtain the value of threshold stress of an S420 steel in a total time of approximately one week. The ASTM F1624 indicates how to apply constant load steps in hydrogen embrittlement environments increasing them subsequently and adapting their duration until the specimen fails. The environment is created by means of cathodic polarization of cylindrical tensile specimens in an acid electrolyte. A batch of standard tests are performed to validate the methodology.
Electrification Opportunities in the Medium- and Heavy-Duty Vehicle Segment in Canada
Jun 2021
Publication
The medium- and heavy-duty (MD/HD) vehicle sector is a large emitter of greenhouse gases. It will require drastic emissions reductions to realize a net-zero carbon future. This study conducts fourteen short feasibility investigations in the Canadian context to evaluate the merits of battery electric or hydrogen fuel cell alternatives to conventional city buses inter-city buses school buses courier vehicles (step vans) refuse trucks long-haul trucks and construction vehicles. These “clean transportation alternatives” were evaluated for practicality economics and emission reductions in comparison to their conventional counterparts. Conclusions were drawn on which use cases would be best suited for accelerating the transformation of the MD/HD sector.
Recent Advances in Pd-Based Membranes for Membrane Reactors
Jan 2017
Publication
Palladium-based membranes for hydrogen separation have been studied by several research groups during the last 40 years. Much effort has been dedicated to improving the hydrogen flux of these membranes employing different alloys supports deposition/production techniques etc. High flux and cheap membranes yet stable at different operating conditions are required for their exploitation at industrial scale. The integration of membranes in multifunctional reactors (membrane reactors) poses additional demands on the membranes as interactions at different levels between the catalyst and the membrane surface can occur. Particularly when employing the membranes in fluidized bed reactors the selective layer should be resistant to or protected against erosion. In this review we will also describe a novel kind of membranes the pore-filled type membranes prepared by Pacheco Tanaka and coworkers that represent a possible solution to integrate thin selective membranes into membrane reactors while protecting the selective layer. This work is focused on recent advances on metallic supports materials used as an intermetallic diffusion layer when metallic supports are used and the most recent advances on Pd-based composite membranes. Particular attention is paid to improvements on sulfur resistance of Pd based membranes resistance to hydrogen embrittlement and stability at high temperature.
Energy Innovation Needs Assessment: Heating Cooling
Nov 2019
Publication
The Energy Innovation Needs Assessment (EINA) aims to identify the key innovation needs across the UK’s energy system to inform the prioritisation of public sector investment in low-carbon innovation. Using an analytical methodology developed by the Department for Business Energy & Industrial Strategy (BEIS) the EINA takes a systemlevel approach and values innovations in a technology in terms of the system-level benefits a technology innovation provides.1. This whole system modelling in line with BEIS’s EINA methodology was delivered by the Energy Systems Catapult (ESC) using the Energy System Modelling Environment (ESMETM) as the primary modelling tool.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
Thermodynamic Analysis of Hydrogen Production via Chemical Looping Steam Methane Reforming Coupled with In Situ CO2 Capture
Dec 2014
Publication
A detailed thermodynamic analysis of the sorption enhanced chemical looping reforming of methane (SE-CL-SMR) using CaO and NiO as CO2 sorbent and oxygen transfer material (OTM) respectively was conducted. Conventional reforming (SMR) and sorption enhanced reforming (SE-SMR) were also investigated for comparison reasons. The results of the thermodynamic analysis show that there are significant advantages of both sorption enhanced processes compared to conventional reforming. The presence of CaO leads to higher methane conversion and hydrogen purity at low temperatures. Addition of the OTM in the SECL-SMR process concept minimizes the thermal requirements and results in superior performance compared to SE-SMR and SMR in a two-reactor concept with use of pure oxygen as oxidant/sweep gas.
Impacts of Variation Management on Cost-optimal Investments in Wind Power and Solar Photovoltaics
Dec 2019
Publication
This work investigates the impacts of variation management on the cost-optimal electricity system compositions in four regions with different pre-requisites for wind and solar generation. Five variation management strategies involving electric boilers batteries hydrogen storage low-cost biomass and demand-side management are integrated into a regional investment model that is designed to account for variability. The variation management strategies are considered one at a time as well as combined in four different system contexts. By investigating how the variation management strategies interact with each other as well as with different electricity generation technologies in a large number of cases this work support policy-makers in identifying variation management portfolios relevant to their context. It is found that electric boilers demand-side management and hydrogen storage increase the cost-optimal variable renewable electricity (VRE) investments if the VRE share is sufficiently large to reduce its marginal system value. However low-cost biomass and hydrogen storage are found to increase cost-optimal investments in wind power in systems with a low initial wind power share. In systems with low solar PV share variation management reduce the cost-optimal solar PV investments. In two of the regions investigated a combination of variation management strategies results in a stronger increase in VRE capacity than the sum of the single variation management efforts.
Hydrogen and Decarbonisation of Gas- False Dawn or Silver Bullet?
Mar 2020
Publication
This Insight continues the OIES series considering the future of gas. The clear message from previous papers is that on the (increasingly certain) assumption that governments in major European gas markets remain committed to decarbonisation targets the existing natural gas industry is under threat. It is therefore important to develop a decarbonisation narrative leading to a low- or zero-carbon gas implementation plan.
Previous papers have considered potential pathways for gas to decarbonise specifically considering biogas and biomethane and power-to-gas (electrolysis) . This paper goes on to consider the potential for production transport and use of hydrogen in the decarbonising energy system. Previous papers predominately focused on Europe which has been leading the way in decarbonisation. Hydrogen is now being considered more widely in various countries around the world so this paper reflects that wider geographical coverage.
Since the term ‘hydrogen economy’ was first used in 1970 there have been a number of ‘false dawns’ with bold claims for the speed of transition to hydrogen. This Insight argues that this time for some applications at least there are grounds for optimism about a future role for decarbonised hydrogen but the lesson from history is that bold claims need to be examined carefully and treated with some caution. There are no easy or low-cost solutions to decarbonisation of the energy system and this is certainly the case for possible deployment of low-carbon hydrogen. A key challenge is to demonstrate the technical commercial economic and social acceptability of various possibilities at scale. Hydrogen will certainly play a role in decarbonisation of the energy system although the size of the role may be more limited than envisaged in some more optimistic projections.
Open document on OIES website
Previous papers have considered potential pathways for gas to decarbonise specifically considering biogas and biomethane and power-to-gas (electrolysis) . This paper goes on to consider the potential for production transport and use of hydrogen in the decarbonising energy system. Previous papers predominately focused on Europe which has been leading the way in decarbonisation. Hydrogen is now being considered more widely in various countries around the world so this paper reflects that wider geographical coverage.
Since the term ‘hydrogen economy’ was first used in 1970 there have been a number of ‘false dawns’ with bold claims for the speed of transition to hydrogen. This Insight argues that this time for some applications at least there are grounds for optimism about a future role for decarbonised hydrogen but the lesson from history is that bold claims need to be examined carefully and treated with some caution. There are no easy or low-cost solutions to decarbonisation of the energy system and this is certainly the case for possible deployment of low-carbon hydrogen. A key challenge is to demonstrate the technical commercial economic and social acceptability of various possibilities at scale. Hydrogen will certainly play a role in decarbonisation of the energy system although the size of the role may be more limited than envisaged in some more optimistic projections.
Open document on OIES website
No more items...