Applications & Pathways
Study of the Permeation Flowrate of an Innovative Way to Store Hydrogen in Vehicles
Oct 2021
Publication
With the global warming of the planet new forms of energy are being sought as an alternative to fossil fuels. Currently hydrogen (H2) is seen as a strong alternative for fueling vehicles. However the major challenge in the use of H2 arises from its physical properties. An earlier study was conducted on the storage of H2 used as fuel in road vehicles powered by spark ignition engines or stacks of fuel cells stored under high pressure inside small spheres randomly packed in an envelope tank. Additionally the study evaluated the performance of this new storage system and compared it with other storage systems already applied by automakers in their vehicles. The current study aims to evaluate the H2 leaks from the same storage system when inserted in any road vehicle parked in conventional garages and to show the compliance of these leaks with European Standards provided that an appropriate choice of materials is made. The system’s compliance with safety standards was proved. Regarding the materials of each component of the storage system the best option from the pool of materials chosen consists of aluminum for the liner of the spheres and the envelope tank CFEP for the structural layer of the spheres and Si for the microchip.
Varying Load Distribution Impacts on the Operation of a Hydrogen Generator Plant
Oct 2021
Publication
This study advances several methods to evaluate the operation of a hydrogen generator plant. The model developed helps customize plants that contain multiple generators of varying powers using a decision module which determines the most efficient plant load distribution. Evaluation indices to assess individual devices within the plant are proposed and system flexibility maximizes the amount of renewable energy stored. Three case studies examined the variable load distribution of an electrolysis system connected to a 40 MW wind farm for energy storage purposes and incorporated a “night-valley” operational strategy. These methods facilitate the selection of the proper plant configuration and provide estimates for individual device effectiveness within the system.
Combustion Characteristics of Diesel-hydrogen Dual Fuel Engine at Low Load
May 2013
Publication
In the present study hydrogen utilization as diesel engine fuel at low load operation was investigated. Hydrogen cannot be used directly in a diesel engine due to its auto ignition temperature higher than that of diesel fuel. One alternative method is to use hydrogen in enrichment or induction. To investigate the combustion characteristics of this dual fuel engine a single cylinder diesel research engine was converted to utilize hydrogen as fuel. Hydrogen was introduced to the intake manifold using a mixer before entering the combustion chamber. The engine was run at a constant speed of 2000 rpm and 10 Nm load. Hydrogen was introduced at the flow rate of 21.4 36.2 and 49.6 liter/minute. Specific energy consumption indicated efficiency and cylinder pressure were investigated. At this low load the hydrogen enrichment reduced the cylinder peak pressure and the engine efficiency. The reaction progress variable and combustion rate of reaction were slower as shown by the CFD calculation.
Hydrogen as an Energy Vector to Optimize the Energy Exploitation of a Self-consumption Solar Photovoltaic Facility in a Dwelling House
Nov 2019
Publication
Solar photovoltaic (PV) plants coupled with storage for domestic self-consumption purposes seem to be a promising technology in the next years as PV costs have decreased significantly and national regulations in many countries promote their installation in order to relax the energy requirements of power distribution grids. However electrochemical storage systems are still unaffordable for many domestic users and thus the advantages of self-consumption PV systems are reduced. Thus in this work the adoption of hydrogen systems as energy vectors between a PV plant and the energy user is proposed. As a preliminary study in this work the design of a PV and hydrogen-production self-consumption plant for a single dwelling is described. Then a technical and economic feasibility study conducted by modeling the facility within the Homer Energy Pro energy systems analysis tool is reported. The proposed system will be able to provide back not only electrical energy but also thermal energy through a fuel cell or refined water covering the fundamental needs of the householders (electricity heat or cooling and water). Results show that although the proposed system effectively increases the energy local use of the PV production and reduces significantly the energy injections or demands into/from the power grid avoiding power grid congestions and increasing the nano-grid resilience operation and maintenance costs may reduce its economic attractiveness for a single dwelling.
The Implications of Ambitious Decarbonisation of Heat and Road Transport for Britain’s Net Zero Carbon Energy Systems
Oct 2021
Publication
Decarbonisation of heating and road transport are regarded as necessary but very challenging steps on the pathway to net zero carbon emissions. Assessing the most efficient routes to decarbonise these sectors requires an integrated view of energy and road transport systems. Here we describe how a national gas and electricity transmission network model was extended to represent multiple local energy systems and coupled with a national energy demand and road transport model. The integrated models were applied to assess a range of technologies and policies for heating and transport where the UK’s 2050 net zero carbon emissions target is met. Overall annual primary energy use is projected to reduce by between 25% and 50% by 2050 compared to 2015 due to ambitious efficiency improvements within homes and vehicles. However both annual and peak electricity demands in 2050 are more than double compared with 2015. Managed electric vehicle charging could save 14TWh/year in gas-fired power generation at peak times and associated emissions whilst vehicle-to-grid services could provide 10GW of electricity supply during peak hours. Together managed vehicle charging and vehicle-to-grid supplies could result in a 16% reduction in total annual energy costs. The provision of fast public charging facilities could reduce peak electricity demand by 17GW and save an estimated £650 million annually. Although using hydrogen for heating and transport spreads the hydrogen network costs between homeowners and motorists it is still estimated to be more costly overall compared to an all-electric scenario. Bio-energy electricity generation plants with carbon capture and storage are required to drive overall energy system emissions to net zero utilisation of which is lowest when heating is electrified and road transport consists of a mix of electric and hydrogen fuel-cell vehicles. The analysis demonstrates the need for an integrated systems approach to energy and transport policies and for coordination between national and local governments.
A Review of Hydrogen Direct Injection for Internal Combustion Engines: Towards Carbon-Free Combustion
Nov 2018
Publication
A paradigm shift towards the utilization of carbon-neutral and low emission fuels is necessary in the internal combustion engine industry to fulfil the carbon emission goals and future legislation requirements in many countries. Hydrogen as an energy carrier and main fuel is a promising option due to its carbon-free content wide flammability limits and fast flame speeds. For spark-ignited internal combustion engines utilizing hydrogen direct injection has been proven to achieve high engine power output and efficiency with low emissions. This review provides an overview of the current development and understanding of hydrogen use in internal combustion engines that are usually spark ignited under various engine operation modes and strategies. This paper then proceeds to outline the gaps in current knowledge along with better potential strategies and technologies that could be adopted for hydrogen direct injection in the context of compression-ignition engine applications—topics that have not yet been extensively explored to date with hydrogen but have shown advantages with compressed natural gas.
Experimental Investigation of the Effect of Hydrogen Addition on Combustion Performance and Emissions Characteristics of a Spark Ignition High Speed Gasoline Engine
Sep 2014
Publication
Considering energy crises and pollution problems today much work has been done for alternative fuels for fossil fuels and lowering the toxic components in the combustion products. Expert studies proved that hydrogen one of the prominent alternative energy source which has many excellent combustion properties that can be used for improving combustion and emissions performance of gasoline-fuelled spark ignition (SI) engines. This article experimentally investigated the performance and emission characteristics of a high speed single cylinder SI engine operating with different hydrogen gasoline blends. For this purpose the conventional carburetted high speed SI engine was modified into an electronically controllable engine with help of electronic control unit (ECU) which dedicatedly used to control the injection timings and injection durations of gasoline. Various hydrogen enrichment levels were selected to investigate the effect of hydrogen addition on engine brake mean effective pressure (Bmep) brake thermal efficiency volumetric efficiency and emission characteristics. The test results demonstrated that combustion performances fuel consumption and brake mean effective pressure were eased with hydrogen enrichment. The experimental results also showed that the brake thermal efficiency was higher than that for the pure gasoline operation. Moreover HC and CO emissions were all reduced after hydrogen enrichment.
Assessment of the Economic Efficiency of the Operation of Low-Emission and Zero-Emission Vehicles in Public Transport in the Countries of the Visegrad Group
Nov 2021
Publication
Transport is one of the key sectors of the European economy. However the intensive development of transport caused negative effects in the form of an increase in the emission of harmful substances. The particularly dramatic situation took place in the V4 countries. This made it necessary to implement solutions reducing emissions in transport including passenger transport. Such activities can be implemented in the field of implementation of low-emission and zero-emission vehicles for use. That is why the European Union and the governments of the Visegrad Group countries have developed numerous recommendations communications laws and strategies that order carriers to implement low- and zero-emission mobility. Therefore transport organizers and communication operators faced the choice of the type of buses. From an economic point of view each entrepreneur is guided by the economic efficiency of the vehicles used. Hence the main aim of the article was to conduct an economic evaluation of the operational efficiency of ecological vehicles. As more than 70% of vehicles in use in the European Union are still diesel driven the economic efficiency assessment was also made for vehicles with traditional diesel drive. To conduct the research the method of calculating the total cost of ownership of vehicles in operation was used. As a result of the research it was found that electric buses are the cheapest in the entire period of use (15 years) and then those powered by CNG. On the other hand the cost of using hydrogen buses is the highest. This is due to the high purchase prices of these vehicles. However the EU as well as the governments of individual countries support enterprises and communication operators by offering them financing for investments. The impact of the forecasted fuel and energy prices and the planned inflation on operating costs was also examined. In this case the analyses showed that the forecasted changes in fuel and energy prices as well as the expected inflation will significantly affect the costs of vehicle operation and the economic efficiency of using various types of drives. These changes will have a positive impact on the implementation of zero-emission vehicles into exploitation. Based on the analyses it was found that in 2035 hydrogen buses will have the lowest operating costs.
Preliminary Design of a Self-Sufficient Electrical Storage System Based on Electrolytic Hydrogen for Power Supply in a Residential Application
Oct 2021
Publication
The use of renewable energy and hydrogen technology is a sustainable solution for the intermittent feature of renewable energies. Hence the aim of the present work is to design a self-sufficient system for a one-family house by coupling a solar photovoltaic array and an anion exchange membrane water electrolyzer (AEMWE). The first step is the selection of the photovoltaic panel by using PV-SYST 7.0 software. Then the hydrogen production system is calculated by coupling the electrolyzer and photovoltaic panel current–potential curves. A fuel cell is selected to use the hydrogen produced when solar energy is not available. Finally the hydrogen storage tank is also estimated to store hydrogen for a design basis of four consecutive cloudy days according to the hydrogen consumption of the fuel cell. The whole system is designed by a simple procedure for a specific location in Ciudad Real (Spain) for January which is known as the coldest month of the year. The simple procedure described in this work could be used elsewhere and demonstrated that the hydrogen production at low scale is a suitable technology to use renewable energy for self-energy supporting in a residential application without any connection to the grid.
Integration Design and Operation Strategy of Multi-Energy Hybrid System Including Renewable Energies, Batteries and Hydrogen
Oct 2020
Publication
In some areas the problem of wind and solar power curtailment is prominent. Hydrogen energy has the advantage of high storage density and a long storage time. Multi-energy hybrid systems including renewable energies batteries and hydrogen are designed to solve this problem. In order to reduce the power loss of the converter an AC-DC hybrid bus is proposed. A multi-energy experiment platform is established including a wind turbine photovoltaic panels a battery an electrolyzer a hydrogen storage tank a fuel cell and a load. The working characteristics of each subsystem are tested and analyzed. The multi-energy operation strategy is based on state monitoring and designed to enhance hydrogen utilization energy efficiency and reliability of the system. The hydrogen production is guaranteed preferentially and the load is reliably supplied. The system states are monitored such as the state of charge (SOC) and the hydrogen storage level. The rated and ramp powers of the battery and fuel cell and the pressure limit of the hydrogen storage tank are set as safety constraints. Eight different operation scenarios comprehensively evaluate the system’s performance and via physical experiments the proposed operation strategy of the multi-energy system is verified as effective and stable.
The Role of Renewable Hydrogen and Inter-seasonal Storage in Decarbonising Heat – Comprehensive Optimisation of Future Renewable Energy Value Chains
Nov 2018
Publication
Demands for space and water heating constitute a significant proportion of the total energy demands in Great Britain and are predominantly satisfied through natural gas which makes the heat sector a large emitter of carbon dioxide. Renewable hydrogen which can be injected into the gas grid or used directly in processes for generating heat and/or electricity is being considered as a low-carbon alternative energy carrier to natural gas because of its suitability for large-scale long- and short-term storage and low transportation losses all of which help to overcome the intermittency and seasonal variations in renewables. This requires new infrastructures for production storage transport and utilisation of renewable hydrogen – a hydrogen value chain – the design of which involves many interdependent decisions such as: where to locate wind turbines; where to locate electrolysers close to wind generation or close to demands; whether to transport energy as electricity or hydrogen and how; where to locate storage facilities; etc. This paper presents the Value Web Model a novel and comprehensive spatio-temporal mixed-integer linear programming model that can simultaneously optimise the design planning and operation of integrated energy value chains accounting for short-term dynamics inter-seasonal storage and investments out to 2050. It was coupled with GIS modelling to identify candidate sites for wind generation and used to optimise a number of scenarios for the production of hydrogen from onshore and offshore wind turbines in order to satisfy heat demands. The results show that over a wide range of scenarios the optimal pathway to heat is roughly 20% hydrogen and 80% electricity. Hydrogen storage both in underground caverns and pressurised tanks is a key enabling technology.
Optimization of Hydrogen Cost and Transport Technology in France and Germany for Various Production and Demand Scenarios
Jan 2021
Publication
Green hydrogen for mobility represents an alternative to conventional fuel to decarbonize the transportation sector. Nevertheless the thermodynamic properties make the transport and the storage of this energy carrier at standard conditions inefficient. Therefore this study deploys a georeferenced optimal transport infrastructure for four base case scenarios in France and Germany that differs by production distribution based on wind power potential and demand capacities for the mobility sector at different penetration shares for 2030 and 2050. The restrained transport network to the road infrastructure allows focusing on the optimum combination of trucks operating at different states of aggregations and storage technologies and its impact on the annual cost and hydrogen flow using linear programming. Furthermore four other scenarios with production cost investigate the impact of upstream supply chain cost and eight scenarios with daily transport and storage optimization analyse the modeling method sensitivity. The results show that compressed hydrogen gas at a high presser level around 500 bar was on average a better option. However at an early stage of hydrogen fuel penetration substituting compressed gas at low to medium pressure levels by liquid organic hydrogen carrier minimizes the transport and storage costs. Finally in France hydrogen production matches population distribution in contrast to Germany which suffers from supply and demand disparity.
Comprehensive Analysis of the Combustion of Low Carbon Fuels (Hydrogen, Methane and Coke Oven Gas) in a Spark Ignition Engine through CFD Modeling
Nov 2021
Publication
The use of low carbon fuels (LCFs) in internal combustion engines is a promising alternative to reduce pollution while achieving high performance through the conversion of the high energy content of the fuels into mechanical energy. However optimizing the engine design requires deep knowledge of the complex phenomena involved in combustion that depend on the operating conditions and the fuel employed. In this work computational fluid dynamics (CFD) simulation tools have been used to get insight into the performance of a Volkswagen Polo 1.4L port-fuel injection spark ignition engine that has been fueled with three different LCFs coke oven gas (COG) a gaseous by-product of coke manufacture H2 and CH4. The comparison is made in terms of power pressure temperature heat release flame growth speed emissions and volumetric efficiency. Simulations in Ansys® Forte® were validated with experiments at the same operating conditions with optimal spark advance wide open throttle a wide range of engine speed (2000–5000 rpm) and air-fuel ratio (λ) between 1 and 2. A sensitivity analysis of spark timing has been added to assess its impact on combustion variables. COG with intermediate flame growth speed produced the greatest power values but with lower pressure and temperature values at λ = 1.5 reducing the emissions of NO and the wall heat transfer. The useful energy released with COG was up to 16.5% and 5.1% higher than CH4 and H2 respectively. At richer and leaner mixtures (λ = 1 and λ = 2) similar performances were obtained compared to CH4 and H2 combining advantages of both pure fuels and widening the λ operation range without abnormal combustion. Therefore suitable management of the operating conditions maximizes the conversion of the waste stream fuel energy into useful energy while limiting emissions.
Challenges and Prospects of Renewable Hydrogen-based Strategies for Full Decarbonization of Stationary Power Applications
Oct 2021
Publication
The exponentially growing contribution of renewable energy sources in the electricity mix requires large systems for energy storage to tackle resources intermittency. In this context the technologies for hydrogen production offer a clean and versatile alternative to boost renewables penetration and energy security. Hydrogen production as a strategy for the decarbonization of the energy sources mix has been investigated since the beginning of the 1990s. The stationary sector i.e. all parts of the economy excluding the transportation sector accounts for almost three-quarters of greenhouse gases (GHG) emissions (mass of CO2-eq) in the world associated with power generation. While several publications focus on the hybridization of renewables with traditional energy storage systems or in different pathways of hydrogen use (mainly power-to-gas) this study provides an insightful analysis of the state of art and evolution of renewable hydrogen-based systems (RHS) to power the stationary sector. The analysis started with a thorough review of RHS deployments for power-to-power stationary applications such as in power generation industry residence commercial building and critical infrastructure. Then a detailed evaluation of relevant techno-economic parameters such as levelized cost of energy (LCOE) hydrogen roundtrip efficiency (HRE) loss of power supply probability (LPSP) self-sufficiency ratio (SSR) or renewable fraction (fRES) is provided. Subsequently lab-scale plants and pilot projects together with current market trends and commercial uptake of RHS and fuel cell systems are examined. Finally the future techno-economic barriers and challenges for short and medium-term deployment of RHS are identified and discussed.
Energy Management Strategies for a Zero-emission Hybrid Domestic Ferry
Oct 2021
Publication
The paper presents three approaches for the sizing and control of a maritime hybrid power-plant equipped with proton exchange membrane fuel cells and batteries. The study focuses on three different power-plant configurations including the energy management strategy and the power-plant component sizing. The components sizing is performed following the definition of the energy management strategy using the sequential optimization approach. These configurations are tested using a dynamic model developed in Simulink. The simulations are carried out to validate the technical feasibility of each configuration for maritime use. Each energy management strategy is developed to allow for the optimization of a chosen set of parameters such as hydrogen consumption and fuel cell degradation. It is observed that in the hybrid power-plant optimization there are always trade-offs and the optimization should be carried out by prioritizing primary factors the ship owner considers most important for day-to-day operations.
What Will Fuel Transport Systems of the Future?
Nov 2011
Publication
This paper seeks to decry the notion of a single solution or “silver bullet” to replace petroleum products with renewable transport fuel. At different times different technological developments have been in vogue as the panacea for future transport needs: for quite some time hydrogen has been perceived as a transport fuel that would be all encompassing when the technology was mature. Liquid biofuels have gone from exalted to unsustainable in the last ten years. The present flavor of the month is the electric vehicle. This paper examines renewable transport fuels through a review of the literature and attempts to place an analytical perspective on a number of technologies.
Well to Wheel Analysis of Low Carbon Alternatives for Road Traffic
Sep 2015
Publication
Several alternative fuel–vehicle combinations are being considered for replacement of the internal combustion engine (ICE) vehicles to reduce greenhouse gas (GHG) emissions and the dependence on fossil fuels. The International Energy Agency has proposed the inclusion of low carbon alternatives such as electricity hydrogen and biofuels in the transport sector for reducing the GHG emissions and providing a sustainable future. This paper compares the use of these alternative fuels viz. electricity hydrogen and bio-ethanol in combination with battery electric vehicle (BEV) and fuel cell electric vehicle (FCEV) technologies on the basis of their overall efficiency and GHG emissions involved in the conversion of the primary energy source to the actual energy required at wheels through a well-to-wheel analysis. The source of energy for electricity production plays a major role in determining the overall efficiency and the GHG emissions of a BEV. Hence electricity production mix of Germany (60% fossil fuel energy) France (76% nuclear energy) Sweden and Austria (60 and 76% renewable energy respectively) the European Union mix (48% fossil fuel energy) and the United States of America (68% fossil fuel energy) are considered for the BEV analysis. In addition to the standard hydrogen based FCEVs CNG and bio-ethanol based FCEVs are analysed. The influence of a direct ethanol fuel cell (DEFC) on GHG emissions and overall chain efficiency is discussed. In addition to the standard sources of bio-ethanol (like sugarcane corn etc.) sources like wood waste and wheat straw are included in the analysis. The results of this study suggest that a BEV powered by an electricity production mix dominated by renewable energy and bio-ethanol based DEFC electric vehicles offer the best solution in terms of GHG emissions efficiency and fossil fuel dependency. Bio-ethanol as a fuel has the additional advantage to be implemented readily in ICE vehicles followed by advancements through reformer based FCEVs and DEFC electric vehicles. Although important this analysis does not include the health effects of the alternative vehicles. Bio-ethanol used in an ICE may lead to increased emission of acetaldehydes which however might not be the case if it is used in fuel cells.
Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect
Jun 2019
Publication
The hazardous effects of pollutants from conventional fuel vehicles have caused the scientific world to move towards environmentally friendly energy sources. Though we have various renewable energy sources the perfect one to use as an energy source for vehicles is hydrogen. Like electricity hydrogen is an energy carrier that has the ability to deliver incredible amounts of energy. Onboard hydrogen storage in vehicles is an important factor that should be considered when designing fuel cell vehicles. In this study a recent development in hydrogen fuel cell engines is reviewed to scrutinize the feasibility of using hydrogen as a major fuel in transportation systems. A fuel cell is an electrochemical device that can produce electricity by allowing chemical gases and oxidants as reactants. With anodes and electrolytes the fuel cell splits the cation and the anion in the reactant to produce electricity. Fuel cells use reactants which are not harmful to the environment and produce water as a product of the chemical reaction. As hydrogen is one of the most efficient energy carriers the fuel cell can produce direct current (DC) power to run the electric car. By integrating a hydrogen fuel cell with batteries and the control system with strategies one can produce a sustainable hybrid car
Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy
Jan 2021
Publication
Climate change is one of the major problems that people face in this century with fossil fuel combustion engines being huge contributors. Currently the battery powered electric vehicle is considered the predecessor while hydrogen vehicles only have an insignificant market share. To evaluate if this is justified different hydrogen power train technologies are analyzed and compared to the battery powered electric vehicle. Even though most research focuses on the hydrogen fuel cells it is shown that despite the lower efficiency the often-neglected hydrogen combustion engine could be the right solution for transitioning away from fossil fuels. This is mainly due to the lower costs and possibility of the use of existing manufacturing infrastructure. To achieve a similar level of refueling comfort as with the battery powered electric vehicle the economic and technological aspects of the local small-scale hydrogen production are being investigated. Due to the low efficiency and high prices for the required components this domestically produced hydrogen cannot compete with hydrogen produced from fossil fuels on a larger scale
H2 Green Hydrogen Discussion Paper: Victorian Hydrogen Investment Program
Nov 2019
Publication
This discussion paper is for stakeholders who would like to shape the development of Victoria’s emerging green hydrogen sector identifying competitive advantages and priority focus areas for industry and the Victorian Government.<br/>The Victorian Government is using this paper to focus on the economic growth and sector development opportunities emerging for a Victorian hydrogen industry powered by renewable energy also known as ‘green’ hydrogen. In addition this paper seeks input from all stakeholders on how where and when the Victorian Government can act to establish a thriving green hydrogen economy.<br/>Although green hydrogen is the only type of hydrogen production within the scope of this discussion paper the development of the VHIP aligns with the policies projects and initiatives which support these other forms of hydrogen production. The VHIP is considering the broad policy landscape and actively coordinating with related hydrogen programs policies and strategies under development including the Council of Australian Governments (COAG) Energy Council’s National Hydrogen Strategy to ensure a complementary approach. In Victoria there are several programs and strategies in development and underway that have linkages with hydrogen and the VHIP.
Emerging, Hydrogen-driven Electrochemical Water Purification
Jan 2022
Publication
Energy-efficient technologies for the remediation of water and generation of drinking water is a key towards sustainable technologies. Electrochemical desalination technologies are promising alternatives towards established methods such as reverse osmosis or ultrafiltration. In the last few years hydrogen-driven electrochemical water purification has emerged. This review article explores the concept of desalination fuel cells and capacitive-Faradaic fuel cells for ion separation.
Innovating Transport Across Australia: Inquiry into Automated Mass Transit
Mar 2019
Publication
Automated and electric mass transit will play a significant role in the connectivity of our cities and regions. But automated mass transit must be placed within the wider context of the optimum transport needs of those cities and regions— transport networks based on shared and multi-modal mobility. Realising the full potential of these networks will require sustained policy development and investment.<br/>This report examines current and future developments in the use of automation and new energy sources in land-based mass transit including rail and road mass transit point-to-point transport using automated vehicles and the role and responsibilities of the Commonwealth in the development of these technologies. It will analyse the opportunities and challenges presented by automation and new energy sources and the role the Australian Government has to play in managing this transport revolution.
Industrial Energy Use and Carbon Emissions Reduction in the Chemicals Sector: A UK Perspective
Aug 2017
Publication
The opportunities and challenges to reducing industrial energy demand and carbon dioxide (CO2 ) emissions in the Chemicals sector are evaluated with a focus on the situation in the United Kingdom (UK) although the lessons learned are applicable across much of the industrialised world. This sector can be characterised as being heterogeneous; embracing a diverse range of products (including advanced materials cleaning fluids composites dyes paints pharmaceuticals plastics and surfactants). It sits on the boundary between energy-intensive (EI) and non-energy-intensive (NEI) industrial sectors. The improvement potential of various technological interventions has been identified in terms of their energy use and greenhouse gas (GHG) emissions. Currently-available best practice technologies (BPTs) will lead to further short-term energy and CO2 emissions savings in chemicals processing but the prospects for the commercial exploitation of innovative technologies by mid-21st century are far more speculative. A set of industrial decarbonisation ‘technology roadmaps’ out to the mid-21st Century are also reported based on various alternative scenarios. These yield low-carbon transition pathways that represent future projections which match short-term and long-term (2050) targets with specific technological solutions to help meet the key energy saving and decarbonisation goals. The roadmaps’ contents were built up on the basis of the improvement potentials associated with various processes employed in the chemicals industry. They help identify the steps needed to be undertaken by developers policy makers and other stakeholders in order to ensure the decarbonisation of the UK chemicals industry. The attainment of significant falls in carbon emissions over this period will depends critically on the adoption of a small number of key technologies [e.g. carbon capture and storage (CCS) energy efficiency techniques and bioenergy] alongside a decarbonisation of the electricity supply.
An Integrated Hydrogen Fuel Cell to Distribution Network System: Challenging and Opportunity for D-STATCOM
Oct 2021
Publication
The electric power industry sector has become increasingly aware of how counterproductive voltage sag affects distribution network systems (DNS). The voltage sag backfires disastrously at the demand load side and affects equipment in DNS. To settle the voltage sag issue this paper achieved its primary purpose to mitigate the voltage sag based on integrating a hydrogen fuel cell (HFC) with the DNS using a distribution static synchronous compensator (D-STATCOM) system. Besides this paper discusses the challenges and opportunities of D-STATCOM in DNS. In this paper using HFC is well-designed modeled and simulated to mitigate the voltage sag in DNS with a positive impact on the environment and an immediate response to the issue of the injection of voltage. Furthermore this modeling and controller are particularly suitable in terms of cost-effectiveness as well as reliability based on the adaptive network fuzzy inference system (ANFIS) fuzzy logic system (FLC) and proportional–integral (P-I). The effectiveness of the MATLAB simulation is confirmed by implementing the system and carrying out a DNS connection obtaining efficiencies over 94.5% at three-phase fault for values of injection voltage in HFC D-STATCOM using a P-I controller. Moreover the HFC D-STATCOM using FLC proved capable of supporting the network by 97.00%. The HFC D-STATCOM based ANFIS proved capable of supporting the network by 98.00% in the DNS.
Decarbonization of Australia’s Energy System: Integrated Modelling of the Transformation of Electricity, Transportation, and Industrial Sectors
Jul 2020
Publication
To achieve the Paris Agreement’s long-term temperature goal current energy systems must be transformed. Australia represents an interesting case for energy system transformation modelling: with a power system dominated by fossil fuels and specifically with a heavy coal component there is at the same time a vast potential for expansion and use of renewables. We used the multi-sectoral Australian Energy Modelling System (AUSeMOSYS) to perform an integrated analysis of implications for the electricity transport and selected industry sectors to the mid-century. The state-level resolution allows representation of regional discrepancies in renewable supply and the quantification of inter-regional grid extensions necessary for the physical integration of variable renewables. We investigated the impacts of different CO2 budgets and selected key factors on energy system transformation. Results indicate that coal-fired generation has to be phased out completely by 2030 and a fully renewable electricity supply achieved in the 2030s according to the cost-optimal pathway implied by the 1.5 °C Paris Agreement-compatible carbon budget. Wind and solar PV can play a dominant role in decarbonizing Australia’s energy system with continuous growth of demand due to the strong electrification of linked energy sectors.
A Review of Synthetic Fuels for Passenger Vehicles
May 2019
Publication
Synthetic fuels produced with renewable surplus electricity depict an interesting solution for the decarbonization of mobility and transportation applications which are not suited for electrification. With the objective to compare various synthetic fuels an analysis of all the energy conversion steps is conducted from the electricity source i.e. wind- solar- or hydro-power to the final application i.e. a vehicle driving a certain number of miles. The investigated fuels are hydrogen methane methanol dimethyl ether and Diesel. While their production process is analyzed based on literature the usage of these fuels is analyzed based on chassis dynanometer measurement data of various EURO-6b passenger vehicles. Conventional and hybrid power-trains as well as various carbon dioxide sources are investigated in two scenarios. The first reference scenario considers market-ready technology only while the second future scenario considers technology which is currently being developed in industry and assumed to be market-ready in near future. With the results derived in this study and with consideration of boundary conditions i.e. availability of infrastructure storage technology of gaseous fuels energy density requirements etc. the most energy efficient of the corresponding suitable synthetic fuels can be chosen.
A General Vision for Reduction of Energy Consumption and CO2 Emissions from the Steel Industry
Aug 2020
Publication
The 2018 IPCC (The Intergovernmental Panel on Climate Change’s) report defined the goal to limit global warming to 1.5 ◦C by 2050. This will require “rapid and far-reaching transitions in land energy industry buildings transport and cities”. The challenge falls on all sectors especially energy production and industry. In this regard the recent progress and future challenges of greenhouse gas emissions and energy supply are first briefly introduced. Then the current situation of the steel industry is presented. Steel production is predicted to grow by 25–30% by 2050. The dominant iron-making route blast furnace (BF) especially is an energy-intensive process based on fossil fuel consumption; the steel sector is thus responsible for about 7% of all anthropogenic CO2 emissions. In order to take up the 2050 challenge emissions should see significant cuts. Correspondingly specific emissions (t CO2/t steel) should be radically decreased. Several large research programs in big steelmaking countries and the EU have been carried out over the last 10–15 years or are ongoing. All plausible measures to decrease CO2 emissions were explored here based on the published literature. The essential results are discussed and concluded. The specific emissions of “world steel” are currently at 1.8 t CO2/t steel. Improved energy efficiency by modernizing plants and adopting best available technologies in all process stages could decrease the emissions by 15–20%. Further reductions towards 1.0 t CO2/t steel level are achievable via novel technologies like top gas recycling in BF oxygen BF and maximal replacement of coke by biomass. These processes are however waiting for substantive industrialization. Generally substituting hydrogen for carbon in reductants and fuels like natural gas and coke gas can decrease CO2 emissions remarkably. The same holds for direct reduction processes (DR) which have spread recently exceeding 100 Mt annual capacity. More radical cut is possible via CO2 capture and storage (CCS). The technology is well-known in the oil industry; and potential applications in other sectors including the steel industry are being explored. While this might be a real solution in propitious circumstances it is hardly universally applicable in the long run. More auspicious is the concept that aims at utilizing captured carbon in the production of chemicals food or fuels e.g. methanol (CCU CCUS). The basic idea is smart but in the early phase of its application the high energy-consumption and costs are disincentives. The potential of hydrogen as a fuel and reductant is well-known but it has a supporting role in iron metallurgy. In the current fight against climate warming H2 has come into the “limelight” as a reductant fuel and energy storage. The hydrogen economy concept contains both production storage distribution and uses. In ironmaking several research programs have been launched for hydrogen production and reduction of iron oxides. Another global trend is the transfer from fossil fuel to electricity. “Green” electricity generation and hydrogen will be firmly linked together. The electrification of steel production is emphasized upon in this paper as the recycled scrap is estimated to grow from the 30% level to 50% by 2050. Finally in this review all means to reduce specific CO2 emissions have been summarized. By thorough modernization of production facilities and energy systems and by adopting new pioneering methods “world steel” could reach the level of 0.4–0.5 t CO2/t steel and thus reduce two-thirds of current annual emissions.
An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications
Sep 2021
Publication
Biofuel a cost-effective safe and environmentally benign fuel produced from renewable sources has been accepted as a sustainable replacement and a panacea for the damaging effects of the exploration for and consumption of fossil-based fuels. The current work examines the classification generation and utilization of biofuels particularly in internal combustion engine (ICE) applications. Biofuels are classified according to their physical state technology maturity the generation of feedstock and the generation of products. The methods of production and the advantages of the application of biogas bioalcohol and hydrogen in spark ignition engines as well as biodiesel Fischer– Tropsch fuel and dimethyl ether in compression ignition engines in terms of engine performance and emission are highlighted. The generation of biofuels from waste helps in waste minimization proper waste disposal and sanitation. The utilization of biofuels in ICEs improves engine performance and mitigates the emission of poisonous gases. There is a need for appropriate policy frameworks to promote commercial production and seamless deployment of these biofuels for transportation applications with a view to guaranteeing energy security.
Fuel Cell Cars in a Microgrid for Synergies Between Hydrogen and Electricity Networks
Nov 2016
Publication
Fuel cell electric vehicles convert chemical energy of hydrogen into electricity to power their motor. Since cars are used for transport only during a small part of the time energy stored in the on-board hydrogen tanks of fuel cell vehicles can be used to provide power when cars are parked. In this paper we present a community microgrid with photovoltaic systems wind turbines and fuel cell electric vehicles that are used to provide vehicle-to-grid power when renewable power generation is scarce. Excess renewable power generation is used to produce hydrogen which is stored in a refilling station. A central control system is designed to operate the system in such a way that the operational costs are minimized. To this end a hybrid model for the system is derived in which both the characteristics of the fuel cell vehicles and their traveling schedules are considered. The operational costs of the system are formulated considering the presence of uncertainty in the prediction of the load and renewable energy generation. A robust minmax model predictive control scheme is developed and finally a case study illustrates the performance of the designed system.
Design Challenges in Hydrogen-Fueled Rotary Engine-A Review
Jan 2023
Publication
The rotary engine (RE) is a potential power plant for unmanned aerial vehicles (UAVs) and automobiles because of its structural and design merits. However it has some serious drawbacks such as frequent maintenance requirements and excessive fuel consumption. This review paper presents the current status of hydrogen-fueled rotary engine (HRE) technology and identifies the existing research and development gaps in combustion efficiency and performance of this engine that might benefit transportation sector. Focusing primarily on the research from past ten years the crucial challenges encountered in hydrogen-powered rotary engines have been reviewed in terms of knock hydrocarbon (HC) emissions and seal leakages. The paper identifies the recent advances in design concepts and production approaches used in hydrogen-fueled rotary engines such as geometric models of trochoid profiles port configurations fuel utilization systems and currently available computational fluid dynamics (CFD) tools. This review article is an attempt to collect and organize literature on existing design methods up to date and provide recommendations for further improvements in RE technology.
Hydrogen for Australia’s Future
Aug 2018
Publication
The Hydrogen Strategy Group chaired by Australia’s Chief Scientist Dr Alan Finkel has today released a briefing paper on the potential domestic and export opportunities of a hydrogen industry in Australia.
Like natural gas hydrogen can be used to heat buildings and power vehicles. Unlike natural gas or petrol when hydrogen is burned there are no CO2 emissions. The only by-products are water vapour and heat.
Hydrogen is the most abundant element in the universe not freely available as a gas on Earth but bound into many common substances including water and fossil fuels.
Hydrogen was first formally presented as a credible alternative energy source in the early 1970s but never proved competitive at scale as an energy source – until now. We find that the worldwide demand for hydrogen is set to increase substantially over coming decades driven by Japan’s decision to put imported hydrogen at the heart of its economy. Production costs are falling technologies are progressing and the push for non-nuclear low-emissions fuels is building momentum. We conclude that Australia is remarkably well-positioned to benefit from the growth of hydrogen industries and markets.
Like natural gas hydrogen can be used to heat buildings and power vehicles. Unlike natural gas or petrol when hydrogen is burned there are no CO2 emissions. The only by-products are water vapour and heat.
Hydrogen is the most abundant element in the universe not freely available as a gas on Earth but bound into many common substances including water and fossil fuels.
Hydrogen was first formally presented as a credible alternative energy source in the early 1970s but never proved competitive at scale as an energy source – until now. We find that the worldwide demand for hydrogen is set to increase substantially over coming decades driven by Japan’s decision to put imported hydrogen at the heart of its economy. Production costs are falling technologies are progressing and the push for non-nuclear low-emissions fuels is building momentum. We conclude that Australia is remarkably well-positioned to benefit from the growth of hydrogen industries and markets.
Healthy Power: Reimagining Hospitals as Sustainable Energy Hubs
Oct 2020
Publication
Human health is a key pillar of modern conceptions of sustainability. Humanity pays a considerable price for its dependence on fossil-fueled energy systems which must be addressed for sustainable urban development. Public hospitals are focal points for communities and have an opportunity to lead the transition to renewable energy. We have reimagined the healthcare energy ecosystem with sustainable technologies to transform hospitals into networked clean energy hubs. In this concept design hydrogen is used to couple energy with other on-site medical resource demands and vanadium flow battery technology is used to engage the public with energy systems. This multi-generation system would reduce harmful emissions while providing reliable services tackling the linked issues of human and environmental health.
Life Cycle Assessment Integration into Energy System Models: An Application for Power-to-Methane in the EU
Nov 2019
Publication
As the EU energy system transitions to low carbon the technology choices should consider a broader set of criteria. The use of Life Cycle Assessment (LCA) prevents burden shift across life cycle stages or impact categories while the use of Energy System Models (ESM) allows evaluating alternative policies capacity evolution and covering all the sectors. This study does an ex-post LCA analysis of results from JRC-EU-TIMES and estimates the environmental impact indicators across 18 categories in scenarios that achieve 80–95% CO2 emission reduction by 2050. Results indicate that indirect CO2 emissions can be as large as direct ones for an 80% CO2 reduction target and up to three times as large for 95% CO2 reduction. Impact across most categories decreases by 20–40% as the CO2 emission target becomes stricter. However toxicity related impacts can become 35–100% higher. The integrated framework was also used to evaluate the Power-to-Methane (PtM) system to relate the electricity mix and various CO2 sources to the PtM environmental impact. To be more attractive than natural gas the climate change impact of the electricity used for PtM should be 123–181 gCO2eq/kWh when the CO2 comes from air or biogenic sources and 4–62 gCO2eq/kWh if the CO2 is from fossil fuels. PtM can have an impact up to 10 times larger for impact categories other than climate change. A system without PtM results in ~4% higher climate change impact and 9% higher fossil depletion while having 5–15% lower impact for most of the other categories. This is based on a scenario where 9 parameters favor PtM deployment and establishes the upper bound of the environmental impact PtM can have. Further studies should work towards integrating LCA feedback into ESM and standardizing the methodology.
Problems of Hydrogen Doping in the Methane Fermentation Process and of Energetic Use of the Gas Mixture
Jul 2021
Publication
This article discusses the technology for doping hydrogen into the fermenter to increase methane production and the amount of energy in the mixture. Hydrogen doping is anticipated to enable more carbon to be applied to produce methane. Hydrogen is proposed to be produced by using excess electricity from for example off-peak electricity hours at night. The possibilities of using a mixture of hydrogen and biogas for combustion in boilers and internal combustion engines have been determined. It has been proven that the volumetric addition of hydrogen reduces the heat of combustion of the mixture. Problems arising from hydrogen doping during the methane fermentation process have been identified.
A Modeling Study of Lifetime and Performance Improvements of Solid Oxide Fuel Cell by Reversed Pulse Operation
Jan 2022
Publication
Chromium poisoning of the air electrode is a primary degradation mechanism for solid oxide cells (SOCs) operating under fuel cell mode. Recent experimental findings show that reversed pulse operation for SOCs operated as electrolyser cells can reverse this degradation and extend the lifetime. Here we use a multiphysics model of an SOC to investigate the effects of reversed pulse operation for alleviating chromium poisoning of the air electrode. We study the effects of time fraction of the operation under fuel cell and electrolysis modes cyclic operation starting after a certain duration and fuel cell and electrolysis current densities on the cell lifetime total power and hydrogen production. Our modeling shows that reversed pulse operation enhances cell lifetime and total power for all different cases considered in this study. Moreover results suggest that the cell lifetime total power and hydrogen production can be increased by reversed pulse operation at longer operation times under electrolysis mode cyclic operation starting from the beginning and lower electrolysis current densities. All in all this paper documents and establishes a computational framework that can serve as a platform to assess and quantify the increased profitability of SOCs operating under a co-production operation through reversed pulse operation.
Assessment of a Fuel Cell Based-hybrid Energy System to Generate and Store Electrical Energy
Jan 2022
Publication
Solid oxide fuel cells (SOFC) have significant applications and performance and their integration into coupled and cascading energy systems can improve the overall performance of the process. Furthermore due to the constant time performance of the fuel cell the problem of fuel starvation may arise by changing the amount of load which can adversely affect the overall performance of the process. In the present study the excess heat of the SOFC is converted into electrical energy in two stages using different heat generators. The coupled energy system in the present article has a new configuration in which the relationship of its components is different from the systems reported in the literature. Furthermore since the use of an energy storage system can improve the overall reliability the energy produced by the coupled energy cycle is stored by a storage technology for peak consumption times. The introduced system can generate approximately 580 W of electrical power with an efficiency of 80%. The highest and lowest share in power generation is related to fuel cell with 82% and thermoelectric generator with 5%. The rest of the system power (i.e. 13%) is produced by thermionic generator. In addition the system requires 0.025 kg per hour of hydrogen fuel. It was also found that to operate the system for 5 h a day requires a storage system with a size of 3.3 m3 . Moreover two key issues to enhance the storage system performance are: adjusting the initial pressure of the system to values close to the peak (optimal) value and using turbines and/or pumps with higher efficiencies. With the aim of supplying 5 kWh of electrical energy five different scenarios based on the design of various effective parameters have been presented.
Development of a Pneumatic Actuated Low-pressure Direct Injection Gas Injector for Hydrogen-fueled Internal Combustion Engines
Dec 2022
Publication
Mixture formation is one of the greatest challenges for the development of robust and efficient hydrogen-fueled internal combustion engines. In many reviews and research papers authors pointed out that direct injection (DI) has noteworthy advantages over a port fuel injection (PFI) such as higher power output higher efficiency the possibility of mixture stratification to control NOx-formation and reduce heat losses and above all to mitigate combustion abnormalities such as back-firing and pre-ignitions. When considering pressurized gas tanks for on-vehicle hydrogen storage a low-pressure (LP) injection system is advantageous since the tank capacity can be better exploited accordingly. The low gas density upstream of the injector requires cross-sectional areas far larger than any other injectors for direct injection in today's gasoline or diesel engines. The injector design proposed in this work consists of a flat valve seat to enable the achievement of lifetime requirements in heavy-duty applications. The gas supply pressure is used as the energy source for the actuation of the valve plate by means of a pneumatic actuator. This article describes the design and the performed tests carried out to prove the concept readiness of the new LP-DI-injector.
Optimal Scheduling of a Hydrogen-Based Energy Hub Considering a Stochastic Multi-Attribute Decision-Making Approach
Jan 2023
Publication
Nowadays the integration of multi-energy carriers is one of the most critical matters in smart energy systems with the aim of meeting sustainable energy development indicators. Hydrogen is referred to as one of the main energy carriers in the future energy industry but its integration into the energy system faces different open challenges which have not yet been comprehensively studied. In this paper a novel day-ahead scheduling is presented to reach the optimal operation of a hydrogen-based energy hub based on a stochastic multi-attribute decision-making approach. In this way the energy hub model is first developed by providing a detailed model of Power-to-Hydrogen (P2H) facilities. Then a new multi-objective problem is given by considering the prosumer’s role in the proposed energy hub model as well as the integrated demand response program (IDRP). The proposed model introduces a comprehensive approach from the analysis of the historical data to the final decision-making with the aim of minimizing the system operation cost and carbon emission. Moreover to deal with system uncertainty the scenario-based method is applied to model the renewable energy resources fluctuation. The proposed problem is defined as mixed-integer non-linear programming (MINLP) and to solve this problem a simple augmented e-constrained (SAUGMECON) method is employed. Finally the simulation of the proposed model is performed on a case study and the obtained results show the effectiveness and benefits of the proposed scheme.
Alternative Fuels for Internal Combustion Engines
Aug 2020
Publication
The recent transport electrification trend is pushing governments to limit the future use of Internal Combustion Engines (ICEs). However the rationale for this strong limitation is frequently not sufficiently addressed or justified. The problem does not seem to lie within the engines nor with the combustion by themselves but seemingly rather with the rise in greenhouse gases (GHG) namely CO2 rejected to the atmosphere. However it is frequent that the distinction between fossil CO2 and renewable CO2 production is not made or even between CO2 emissions and pollutant emissions. The present revision paper discusses and introduces different alternative fuels that can be burned in IC Engines and would eliminate or substantially reduce the emission of fossil CO2 into the atmosphere. These may be non-carbon fuels such as hydrogen or ammonia or biofuels such as alcohols ethers or esters including synthetic fuels. There are also other types of fuels that may be used such as those based on turpentine or even glycerin which could maintain ICEs as a valuable option for transportation.
Methanol Synthesis Using Captured CO2 as Raw Material: Techno-economic and Environmental Assessment
Aug 2015
Publication
The purpose of this paper is to assess via techno-economic and environmental metrics the production of methanol (MeOH) using H2 and captured CO2 as raw materials. It evaluates the potential of this type of carbon capture and utilisation (CCU) plant on (i) the net reduction of CO2 emissions and (ii) the cost of production in comparison with the conventional synthesis process of MeOH Europe. Process flow modelling is used to estimate the operational performance and the total purchased equipment cost; the flowsheet is implemented in CHEMCAD and the obtained mass and energy flows are utilised as input to calculate the selected key performance indicators (KPIs). CO2 -based metrics are used to assess the environmental impact. The evaluated MeOH plant produces 440 ktMeOH/yr and its configuration is the result of a heat integration process. Its specific capital cost is lower than for conventional plants. However raw materials prices i.e. H2 and captured CO2 do not allow such a project to be financially viable. In order to make the CCU plant financially attractive the price of MeOH should increase in a factor of almost 2 or H2 costs should decrease almost 2.5 times or CO2 should have a value of around 222 €/t under the assumptions of this work. The MeOH CCU-plant studied can utilise about 21.5% of the CO2 emissions of a pulverised coal (PC) power plant that produces 550MWnet of electricity. The net CO2 emissions savings represent 8% of the emissions of the PC plant (mainly due to the avoidance of consuming fossil fuels as in the conventional MeOH synthesis process). The results demonstrate that there is a net but small potential for CO2 emissions reduction; assuming that such CCU plants are constructed in Europe to meet the MeOH demand growth and the quantities that are currently imported the net CO2 emissions reduction could be of 2.71 MtCO2/yr.
Photovoltaic and Hydrogen Plant Integrated with a Gas Heat Pump for Greenhouse Heating: A Mathematical Study
Feb 2018
Publication
Nowadays the traditional energy sources used for greenhouse heating are fossil fuels such as LPG diesel and natural gas. The global energy demand will continue to grow and alternative technologies need to be developed in order to improve the sustainability of crop production in protected environments. Innovative solutions are represented by renewable energy plants such as photovoltaic wind and geothermal integrated systems however these technologies need to be connected to the power grid in order to store the energy produced. On agricultural land power grids are not widespread and stand-alone renewable energy systems should be investigated especially for greenhouse applications. The aim of this research is to analyze by means of a mathematical model the energy efficiency of a photovoltaic (8.2 kW) hydrogen (2.5 kW) and ground source gas heat pump (2.2 kW) integrated in a stand-alone system used for heating an experimental greenhouse tunnel (48 m2 ) during the winter season. A yearlong energy performance analysis was conducted for three different types of greenhouse cover materials a single layer polyethylene film an air inflated-double layer polyethylene film and a double acrylic or polycarbonate. The results of one year showed that the integrated system had a total energy efficiency of 14.6%. Starting from the electric energy supplied by the photovoltaic array the total efficiency of the hydrogen and ground source gas heat pump system was 112% if the coefficient of the performance of the heat pump is equal to 5. The heating system increased the greenhouse air temperatures by 3–9 ◦C with respect to the external air temperatures depending on the greenhouse cover material used.
The Effect of the Temperature and Moisture to the Permeation Properties of PEO-Based Membranes for Carbon-Dioxide Separation
Jun 2021
Publication
An increased demand for energy in recent decades has caused an increase in the emissions of combustion products among which carbon-dioxide is the most harmful. As carbon-dioxide induces negative environmental effects like global warming and the greenhouse effect a decrease of the carbon-dioxide emission has emerged as one of the most urgent tasks in engineering. In this work the possibility for the application of the polymer-based dense mixed matrix membranes for flue gas treatment was tested. The task was to test a potential decrease in the permeability and selectivity of a mixed-matrix membrane in the presence of moisture and at elevated temperature. Membranes are based on two different poly(ethylene oxide)-based polymers filled with two different zeolite powders (ITR and IWS). An additive of detergent type was added to improve the contact properties between the zeolite and polymer matrix. The measurements were performed at three different temperatures (30 60 and 90 °C) under wet conditions with partial pressure of the water equal to the vapor pressure of the water at the given temperature. The permeability of carbon-dioxide hydrogen nitrogen and oxygen was measured and the selectivity of the carbon-dioxide versus other gases was determined. Obtained results have shown that an increase of temperature and partial pressure of the vapor slightly increase both the selectivity and permeability of the synthesized membranes. It was also shown that the addition of the zeolite powder increases the permeability of carbon-dioxide while maintaining the selectivity compared to hydrogen oxygen and nitrogen.
A Review of Fuel Cell Systems for Maritime Applications
Jul 2016
Publication
Progressing limits on pollutant emissions oblige ship owners to reduce the environmental impact of their operations. Fuel cells may provide a suitable solution since they are fuel efficient while they emit few hazardous compounds. Various choices can be made with regard to the type of fuel cell system and logistic fuel and it is unclear which have the best prospects for maritime application. An overview of fuel cell types and fuel processing equipment is presented and maritime fuel cell application is reviewed with regard to efficiency gravimetric and volumetric density dynamic behaviour environmental impact safety and economics. It is shown that low temperature fuel cells using liquefied hydrogen provide a compact solution for ships with a refuelling interval up to a tens of hours but may result in total system sizes up to five times larger than high temperature fuel cells and more energy dense fuels for vessels with longer mission requirements. The expanding infrastructure of liquefied natural gas and development state of natural gas-fuelled fuel cell systems can facilitate the introduction of gaseous fuels and fuel cells on ships. Fuel cell combined cycles hybridisation with auxiliary electricity storage systems and redundancy improvements are identified as topics for further study
Numerical Evaluation of the Effect of Fuel Blending with CO2 and H2 on the Very Early Corona‐Discharge Behavior in Spark Ignited Engines
Feb 2022
Publication
Reducing green‐house gases emission from light‐duty vehicles is compulsory in order to slow down the climate change. The application of High Frequency Ignition systems based on the Corona discharge effect has shown the potential to extend the dilution limit of engine operating conditions promoting lower temperatures and faster combustion events thus higher thermal and indicating efficiency. Furthermore predicting the behavior of Corona ignition devices against new sustainable fuel blends including renewable hydrogen and biogas is crucial in order to deal with the short‐intermediate term fleet electric transition. The numerical evaluation of Corona‐induced discharge radius and radical species under those conditions can be helpful in order to capture local effects that could be reached only with complex and expensive optical investigations. Using an ex‐ tended version of the Corona one‐dimensional code previously published by the present authors the simulation of pure methane and different methane–hydrogen blends and biogas–hydrogen blends mixed with air was performed. Each mixture was simulated both for 10% recirculated exhaust gas dilution and for its corresponding dilute upper limit which was estimated by means of chemical kinetics simulations integrated with a custom misfire detection criterion.
Optimization of Component Sizing for a Fuel Cell-Powered Truck to Minimize Ownership Cost
Mar 2019
Publication
In this study we consider fuel cell-powered electric trucks (FCETs) as an alternative to conventional medium- and heavy-duty vehicles. FCETs use a battery combined with onboard hydrogen storage for energy storage. The additional battery provides regenerative braking and better fuel economy but it will also increase the initial cost of the vehicle. Heavier reliance on stored hydrogen might be cheaper initially but operational costs will be higher because hydrogen is more expensive than electricity. Achieving the right tradeoff between these power and energy choices is necessary to reduce the ownership cost of the vehicle. This paper develops an optimum component sizing algorithm for FCETs. The truck vehicle model was developed in Autonomie a platform for modelling vehicle energy consumption and performance. The algorithm optimizes component sizes to minimize overall ownership cost while ensuring that the FCET matches or exceeds the performance and cargo capacity of a conventional vehicle. Class 4 delivery truck and class 8 linehaul trucks are shown as examples. We estimate the ownership cost for various hydrogen costs powertrain components ownership periods and annual vehicle miles travelled.
A Hydrogen Fuelled LH2 Tanker Ship Design
May 2021
Publication
This study provides a detailed philosophical view and evaluation of a viable design for a large liquid hydrogen tanker fuelled by liquid hydrogen. Established methods for determining tank sizing ship stability and ship characteristics were used to evaluate the preliminary design and performance of the liquefied hydrogen tanker named ‘JAMILA’ designed specifically to transport liquid hydrogen. JAMILA is designed around four large liquid hydrogen tanks with a total capacity of ∼280000 m3 and uses the boil-off gas for propulsion for the loaded leg of the journey. The ship is 370 m long 75 m wide and draws 10.012 m at full load. It has a fully loaded displacement tonnage of 232000 tonnes to carry 20000 tonnes of hydrogen. Its propulsion system contains a combined-cycle gas turbine of approximately 50 MW. The volume of the hydrogen cargo pressurised to 0.5 MPa primarily determines the size and displacement of the ship.
A 1000 MWth Boiler for Chemical-looping Combustion of Solid Fuels – Discussion of Design and Costs
May 2015
Publication
More than 2000 h of solid-fuel CLC operation in a number of smaller pilot units clearly indicate that the concept works. A scale-up of the technology to 1000 MWth is investigated in terms of mass and heat balances flows solids inventories boiler dimensions and the major differences between a full-scale Circulating Fluidized-Bed (CFB) boiler and a Chemical-Looping Combustion CFB (CLC–CFB). Furthermore the additional cost of CLC–CFB relative to CFB technology is analysed and found to be 20 €/tonne CO2. The largest cost is made up of compression of CO2 which is common to all capture technologies. Although the need for oxygen to manage incomplete conversion is estimated to be only a tenth of that of oxy-fuel combustion oxygen production is nonetheless the second largest cost. Other significant costs include oxygen-carrier material increased boiler cost and steam for fluidization of the fuel reactor.
A Hot Syngas Purification System Integrated with Downdraft Gasification of Municipal Solid Waste
Jan 2019
Publication
Gasification of municipal solid waste (MSW) with subsequent utilization of syngas in gas engines/turbines and solid oxide fuel cells can substantially increase the power generation of waste-to-energy facilities and optimize the utilization of wastes as a sustainable energy resources. However purification of syngas to remove multiple impurities such as particulates tar HCl alkali chlorides and sulfur species is required. This study investigates the feasibility of high temperature purification of syngas from MSW gasification with the focus on catalytic tar reforming and desulfurization. Syngas produced from a downdraft fixed-bed gasifier is purified by a multi-stage system. The system comprises of a fluidized-bed catalytic tar reformer a filter for particulates and a fixed-bed reactor for dechlorination and then desulfurization with overall downward cascading of the operating temperatures throughout the system. Novel nano-structured nickel catalyst supported on alumina and regenerable Ni-Zn desulfurization sorbent loaded on honeycomb are synthesized. Complementary sampling and analysis methods are applied to quantify the impurities and determine their distribution at different stages. Experimental and thermodynamic modeling results are compared to determine the kinetic constraints in the integrated system. The hot purification system demonstrates up to 90% of tar and sulfur removal efficiency increased total syngas yield (14%) and improved cold gas efficiency (12%). The treated syngas is potentially applicable in gas engines/turbines and solid oxide fuel cells based on the dew points and concentration limits of the remaining tar compounds. Reforming of raw syngas by nickel catalyst for over 20 h on stream shows strong resistance to deactivation. Desulfurization of syngas from MSW gasification containing significantly higher proportion of carbonyl sulfide than hydrogen sulfide traces of tar and hydrogen chloride demonstrates high performance of Ni-Zn sorbents.
Optimal Sizing of Storage Elements for a Vehicle Based on Fuel Cells, Supercapacitors, and Batteries
Mar 2019
Publication
To achieve a vehicle-efficient energy management system an architecture composed of a PEM fuel cell as the main energy source and a hybrid storage system based on battery banks and supercapacitors is proposed. This paper introduces a methodology for the optimal component sizing aiming at minimizing the total cost achieving a cheaper system that can achieve the requirements of the speed profiles. The chosen vehicle is an urban transport bus which must meet the Buenos Aires Driving Cycle and the Manhattan Driving Cycle. The combination of batteries and supercapacitors allows a better response to the vehicle’s power demand since it combines the high energy density of the batteries with the high power density of the supercapacitors allowing the best absorption of energy coming from braking. In this way we address the rapid changes in power without reducing the global efficiency of the system. Optimum use of storage systems and fuel cell is analyzed through dynamic programming.
Strategies for Hydrogen-Enriched Methane Flameless Combustion in a Quasi-Industrial Furnace
Jan 2020
Publication
In this present work simulations of 20 kW furnace were carried out with hydrogenenriched methane mixtures to identify optimal geometrical configurations and operating conditions to operate in flameless combustion regime. The objective of this work is to show the advantages of flameless combustion for hydrogen-enriched fuels and the limits of current typical industrial designs for these mixtures. The performances of a semi-industrial combustion chamber equipped with a self-recuperative flameless burner are evaluated with increasing H2 concentrations. For highly H2-enriched mixtures typical burners employed for methane appear to be inadequate to reach flameless conditions. In particular for a typical coaxial injector configuration an equimolar mixture of hydrogen and methane represents the limit for hydrogen enrichment. To achieve flameless conditions different injector geometries and configuration were tested. Fuel dilution with CO2 and H2O was also investigated. Dilution slows the mixing process consequently helping the transition to flameless conditions. CO2 and H2O are typical products of hydrogen generation processes therefore their use in fuel dilution is convenient for industrial applications. Dilution thus allows the use of greater hydrogen percentages in the mixture.
No more items...