Production & Supply Chain
Everything About Hydrogen Podcast: Going "Green"
May 2021
Publication
Founded in 2007 and based in Denmark Green Hydrogen Systems designs and manufactures efficient standardized and modular electrolysers for the production of green hydrogen with renewable energy. Niels-Arne Baden has led the company to the upper echelons of the electrolysis sector and he now leads the company's strategy and and public-facing initiatives as the Vice President for Strategy and Public Affairs. On this episode of the Everything About Hydrogen podcast the EAH team sits down with Niels to talk about the journey of the clean hydrogen sector over the recent decades and its rise to prominence in the transition to a decarbonized energy future and how modular electrolysis fits into that picture.
The podcast can be found on their website
The podcast can be found on their website
Hydrogen Production Technologies Overview
Jan 2019
Publication
Hydrogen energy became the most significant energy as the current demand gradually starts to increase. Hydrogen energy is an important key solution to tackle the global temperature rise. The key important factor of hydrogen production is the hydrogen economy. Hydrogen production technologies are commercially available while some of these technologies are still under development. This paper reviews the hydrogen production technologies from both fossil and non-fossil fuels such as (steam reforming partial oxidation auto thermal pyrolysis and plasma technology). Additionally water electrolysis technology was reviewed. Water electrolysis can be combined with the renewable energy to get eco-friendly technology. Currently the maximum hydrogen fuel productions were registered from the steam reforming gasification and partial oxidation technologies using fossil fuels. These technologies have different challenges such as the total energy consumption and carbon emissions to the environment are still too high. A novel non-fossil fuel method [ammonia NH3] for hydrogen production using plasma technology was reviewed. Ammonia decomposition using plasma technology without and with a catalyst to produce pure hydrogen was considered as compared case studies. It was showed that the efficiency of ammonia decomposition using the catalyst was higher than ammonia decomposition without the catalyst. The maximum hydrogen energy efficiency obtained from the developed ammonia decomposition system was 28.3% with a hydrogen purity of 99.99%. The development of ammonia decomposition processes is continues for hydrogen production and it will likely become commercial and be used as a pure hydrogen energy source.
Outlook of Fermentative Hydrogen Production Techniques: An Overview of Dark, Photo and Integrated Dark-photo Fermentative Approach to Biomass
Jan 2019
Publication
Biomass can be a sustainable choice for bioenergy production worldwide. Biohydrogen production using fermentative conversion of biomass has gained great interest during the last decade. Besides being an efficient transportation fuel biohydrogen can also be also be a low-carbon source of heat and electricity. Microbes assisted conversion (bioconversion) can be take place either in presence or absence of light. This is called photofermentation or dark-fermentation respectively. This review provides an overview of approaches of fermentative hydrogen production. This includes: dark photo and integrated fermentative modes of hydrogen production; the molecular basis behind its production and diverse range of its applicability industrially. Mechanistic understanding of the metabolic pathways involved in biomass-based fermentative hydrogen production are also reviewed.
Everything About Hydrogen Podcast: Building an Integrated Clean Hydrogen Infrastructure from the Ground Up
Nov 2021
Publication
On this episode of EAH we are joined by Andrew Clennett Co-Founder and CEO of Hiringa Energy. Hiringa is headquartered in New Zealand where they are building clean hydrogen production projects using renewable energy to displace the use of fossil fuels for transport and industrial feedstock across New Zealand. We are delighted to have Andrew with us today to speak about how Hiringa are using hydrogen to change the energy and carbon landscape of New Zealand.
This podcast can be found on their website
This podcast can be found on their website
Distinct facets to enhance the process of hydrogen production via methanol steam reforming—A review
Jan 2022
Publication
Methanol steam reforming manifests great potential for generating hydrogen owing to its lower reaction temperature (200–300 °C) and higher hydrogen/carbon ratio comparing with ethanol and methane reforming. In this case methanol steam reforming is applied in various renewable energy systems to assist the energy conversion and improve the system efficiency. The performance of methanol steam reforming reaction strongly depends on the catalysts and reactor structure. In this paper the development of the copper-based the noble metal–based and the nanomaterial catalysts were summarized by analyzing the effects of different modification methods which indicates that cutting the cost and simplifying the manufacturing process are the future goal of catalyst modification. Moreover the reaction mechanism of different catalyst type was discussed. For the reactor performance conventional miniature micro and membrane reactors were discussed and compared where conventional reactor with high CO tolerance is more suitable for industrial application while membrane reactor with high H2 purity and compact structure is ideal for fuel cell technology. The integration of the methanol steam reforming system into renewable power systems was reviewed as well. Methanol steam reforming technology is of great potential in exhaust heat recovery cogeneration system and other renewable energy field where more comprehensive research should be performed.
Molten Carbonate Fuel Cells for Simultaneous CO2 Capture, Power Generation, and H2 Generation
Mar 2022
Publication
This article presents a new technology for the generation of power and steam or other process heat with very low CO2 emissions. It is well known that cogeneration of electricity and steam is highly efficient and that amine units can be used to remove CO2 from combustion flue gas but that the amine unit consumes a significant amount of steam and power reducing the overall system efficiency. In this report the use of molten carbonate fuel cells (MCFCs) to capture CO2 from cogen units is investigated and shown to be highly efficient due to the additional power that they produce while capturing the CO2. Furthermore the MCFCs are capable of reforming methane to hydrogen simultaneous to the power production and CO2 capture. This hydrogen can either be recycled as fuel for consumption by the cogen or MCFCs or exported to an independent combustion unit as low carbon fuel thereby decarbonizing that unit as well. The efficiency of MCFCs for CO2 capture is higher than use of amines in all cases studied often by a substantial margin while at the same time the MCFCs avoid more CO2 than the amine technology. As one example the use of amines on a cogeneration unit can avoid 87.6% of CO2 but requires 4.91 MJ/kg of additional primary energy to do so. In contrast the MCFCs avoid 89.4% of CO2 but require only 1.37 MJ/kg of additional primary energy. The high thermal efficiency and hydrogen export option demonstrate the potential of this technology for widespread deployment in a low carbon energy economy.
Everything About Hydrogen Podcast: Hydrogen from Waste
Mar 2021
Publication
On this episode of EAH the team is joined by Tim Yeo Chairman of Powerhouse Energy to talk about the work they are doing in the waste-to-energy space and how they see the sector evolving in the coming years.
The podcast can be found on their website
The podcast can be found on their website
Cost-optimized Design Point and Operating Strategy of Polymer Electrolyte Membrane Electrolyzers
Nov 2022
Publication
Green hydrogen is a key solution for reducing CO2 emissions in various industrial applications but high production costs continue to hinder its market penetration today. Better competitiveness is linked to lower investment costs and higher efficiency of the conversion technologies among which polymer electrolyte membrane electrolysis seems to be attractive. Although new manufacturing techniques and materials can help achieve these goals a less frequently investigated approach is the optimization of the design point and operating strategy of electrolyzers. This means in particular that the questions of how often a system should be operated and which cell voltage should be applied must be answered. As existing techno-economic models feature gaps which means that these questions cannot be adequately answered a modified model is introduced here. In this model different technical parameters are implemented and correlated to each other in order to simulate the lowest possible levelized cost of hydrogen and extract the required designs and strategies from this. In each case investigated the recommended cost-based cell voltage that should be applied to the system is surprisingly low compared to the assumptions made in previous publications. Depending on the case the cell voltage is in a range between 1.6 V and 1.8 V with an annual operation of 2000e8000 h. The wide range of results clearly indicate how individual the design and operation must be but with efficiency gains of several percent the effect of optimization will be indispensable in the future.
Is Hydrogen the Future of Nuclear Energy?
Jan 2008
Publication
The traditionally held belief is that the future of nuclear energy is electricity production. However another possible future exists: nuclear energy used primarily for the production of hydrogen. The hydrogen in turn would be used to meet our demands for transport fuels (including liquid fuels) materials such as steel and fertilizer and peak-load electricity production. Hydrogen would become the replacement for fossil fuels in these applications that consume more than half the world’s energy. Such a future would follow from several factors: (a) concerns about climatic change that limit the use of fossil fuels (b) the fundamental technological differences between hydrogen and electricity that may preferentially couple different primary energy sources with either hydrogen or electricity and (c) the potential for other technologies to competitively produce electricity but not hydrogen. Electricity (movement of electrons) is not fundamentally a large-scale centralized technology that requires centralized methods of production distribution or use. In contrast hydrogen (movement of atoms) is intrinsically a large-scale centralized technology. The large-scale centralized characteristics of nuclear energy as a primary energy source hydrogen production systems and hydrogen storage systems naturally couple these technologies. This connection suggests that serious consideration be given to hydrogen as the ultimate product of nuclear energy and that nuclear systems be designed explicitly for hydrogen production.
Energy-Efficient Distributed Carbon Capture in Hydrogen Production from Natural Gas
Apr 2011
Publication
Lowering the energy penalty associated with CO2 capture is one of the key issues of Carbon Capture and Storage (CCS) technologies. The efficiency of carbon capture must be improved to reduce the energy penalty because capture stage is the most energy-consuming stage in the entire process of CCS. Energy-efficient distributed carbon capture in hydrogen production has been demonstrated with an advanced membrane reformer system. We have already developed and operated an advanced 40 Nm3 /h-class membrane reformer system and demonstrated its high hydrogen production efficiency of 81.4% (HHV) which is the world highest efficiency in terms of hydrogen production from natural gas. The system has another significant feature that the CO2 concentration in the reactor off-gas is as high as 70~90% and CO2 can be liquefied and separated easily with little energy loss. An apparatus for CO2 capture was combined to the membrane reformer system and over 90% of CO2 in the reactor off-gas was captured by cryogenic separation. The total energy efficiency of hydrogen production even with CO2 capture was still as high as 78.6% (HHV) which is 510% higher than the conventional reforming technologies. The total CO2 emission from hydrogen production was decreased by 50% with only a 3% energy loss. A sensitivity analysis was also carried out to evaluate the effects of the operating conditions of the system on hydrogen production efficiency and CO2 reduction rate.
Renewable Hydrogen Production from Butanol Steam Reforming over Nickel Catalysts Promoted by Lanthanides
Oct 2021
Publication
Hydrogen is mainly produced by steam reforming of natural gas a non-renewable resource. Alternative and renewable routes for hydrogen production play an important role in reducing dependence on oil and minimizing the emission of greenhouse gases. In this work butanol a model compound of bio-oil was employed for hydrogen production by steam reforming. The reaction was evaluated for 30 h in a tubular quartz reactor at 500 ◦C atmospheric pressure GHSV of 500000 h−1 and an aqueous solution feed of 10% v/v butanol. For this reaction catalysts with 20 wt.% NiO were prepared by wet impregnation using three supports: γ-alumina and alumina modified with 10 wt.% of cerium and lanthanum oxides. Both promoters increased the reduction degree of the catalysts and decreased catalyst acidity which is closely related to coke formation and deactivation. Ni/La2O3– Al2O3 presented a higher nickel dispersion (14.6%) which combined with other properties led to a higher stability higher mean hydrogen yield (71%) and lower coke formation per mass (56%). On the other hand the nonpromoted catalyst suffered a significant deactivation associated with coke formation favored by its highest acidity (3.1 µmol m−2 ).
Everything About Hydrogen Podcast: Hydrogen: The Next Generation
May 2021
Publication
This is the inaugural episode of the EAH: Deep Dive podcast mini-series! Our first episode features the co-founders of Enapter Vaitea Cowan and Jan Justus-Schmidt. Enapter is a young company that has made a big splash in the hydrogen space with their modular scalable AEM electrolyzer technology. Last year they made headlines with their successful public offering on the DAX and the company is expected to be a the forefront of the hydrogen sector again in 2021 as they begin construction of their mass production facility in Germany and announce the upcoming Generation Hydrogen event on May 19 2021.
The podcast can be found on their website
The podcast can be found on their website
Implementation of Transition Metal Phosphides as Pt-Free Catalysts for PEM Water Electrolysis
Mar 2022
Publication
Proton Exchange Membrane (PEM) water electrolysis (WE) produces H2 with a high degree of purity requiring only water and energy. If the energy is provided from renewable energy sources it releases “Green H2” a CO2 -free H2 . PEMWE uses expensive and rare noble metal catalysts which hinder their use at a large industrial scale. In this work the electrocatalytic properties of Transition Metal Phosphides (TMP) catalysts supported on Carbon Black (CB) for Hydrogen Evolution Reaction (HER) were investigated as an alternative to Platinum Group Metals. The physico-chemical properties and catalytic performance of the synthesized catalysts were characterized. In the ex situ experiments the 25% FeP/CB 50% FeP/CB and 50% CoP/CB with overpotentials of −156.0 −165.9 and −158.5 mV for a current density of 100 mA cm−2 showed the best catalytic properties thereby progressing to the PEMWE tests. In those tests the 50% FeP/CB required an overpotential of 252 mV for a current density of 10 mA cm−2 quite close to the 220 mV of the Pt catalyst. This work provides a proper approach to the synthesis and characterization of TMP supported on carbon materials for the HER paving the way for further research in order to replace the currently used PGM in PEMWE.
Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies
Oct 2020
Publication
A common sustainability issue arising in production systems is the efficient use of resources for providing goods or services. With the increased interest in a hydrogen (H2) economy the life-cycle environmental performance of H2 production has special significance for assisting in identifying opportunities to improve environmental performance and to guide challenging decisions and select between technology paths. Life cycle impact assessment methods are rapidly evolving to analyze multiple environmental impacts of the production of products or processes. This study marks the first step in developing process-based streamlined life cycle analysis (LCA) of several H2 production pathways combining life cycle impacts at the midpoint (17 problem-oriented) and endpoint (3 damage-oriented) levels using the state-of-the-art impact assessment method ReCiPe 2016. Steam reforming of natural gas coal gasification water electrolysis via proton exchange membrane fuel cell (PEM) solid oxide electrolyzer cell (SOEC) biomass gasification and reforming and dark fermentation of lignocellulosic biomass were analyzed. An innovative aspect is developed in this study is an analysis of water consumption associated with H2 production pathways by life-cycle stage to provide a better understanding of the life cycle water-related impacts on human health and natural environment. For water-related scope Water scarcity footprint (WSF) quantified using Available Water Remaining (AWARE) method was applied as a stand-alone indicator. The paper discusses the strengths and weaknesses of each production pathway identify the drivers of environmental impact quantify midpoint environmental impact and its influence on the endpoint environmental performance. The findings of this study could serve as a useful theoretical reference and practical basis to decision-makers of potential environmental impacts of H2 production systems.
Comprehensive Investigation of Solar-based Hydrogen and Electricity Production in Iran
Jun 2021
Publication
Hydrogen is a clean and environmentally friendly energy vector that can play an important role in meeting the world’s futureenergy needs. Therefore a comprehensive study of the potential for hydrogen production from solar energy could greatlyfacilitate the transition to a hydrogen economy. Because by knowing the exact amount of potential for solar hydrogenproduction the cost-effectiveness of its production can be compared with other methods of hydrogen production. Consideringthe above it can be seen that so far no comprehensive study has been done on finding the exact potential of solar hydrogenproduction in different stations of Iran and finding the most suitable station. Therefore in the present work for the first timeusing the HOMER and ArcGIS softwares the technical-economic study of solar hydrogen production at home-scale was done.The results showed that Jask station with a levelized cost of energy equal to $ 0.172 and annual production of 83.8 kg ofhydrogen is the best station and Darab station with a levelized cost of energy equal to $ 0.286 and annual production of 50.4 kgof hydrogen is the worst station. According to the results other suitable stations were Bushehr and Deyr and other unsuitablestations were Anzali and Khalkhal. Also in 102 under study stations 380 MW of solar electricity equivalent to 70.2 tons ofhydrogen was produced annually. Based on the geographic information system map it is clear that the southern half of Iranespecially the coasts of the Persian Gulf and the sea of Oman is suitable for hydrogen production and the northernnortheastern northwestern and one region in southern of Iran are unsuitable for hydrogen production. The authors of thisarticle hope that the results of the present work will help the energy policymakers to create strategic frameworks and a roadmapfor the production of solar hydrogen in Iran.
Everything About Hydrogen Podcast: Giga-watt it Takes to Scale Green Hydrogen (and Ammonia)
Feb 2021
Publication
How do we get green hydrogen (and green ammonia) production to scale and make it cost competitive? It's a great question and we ask it all the time on the show. Well Alicia Eastman Co-founder & Managing Director of InterContinental Energy (ICE) may be one of the best authorities in the world on this topic and she joins us on this episode of EAH to tell the team all about her and ICE's work developing the Asian Renewable Energy Hub (AREH). Located in Western Australia the AREH when completed will be the largest renewable energy project by total generation capacity on the planet. At 26 GW it surpasses even the likes of the Three Gorges Dam and will act as a central production and distribution point for huge quantities of clean hydrogen and ammonia for offtakers and customers across APAC and beyond. The AREH is a truly massive project that has global implications for the global energy landscape of the future.
The podcast can be found on their website.
The podcast can be found on their website.
Everything About Hydrogen Podcast: ITM Power
Sep 2019
Publication
On this weeks show we discuss with Graham Cooley the CEO of ITM Power how his company has expanded from a research company on AIM in the early 2000’s to one of the largest electrolyser manufacturers in the world. On the show we also ask Graham to talk about how the hydrogen market has evolved where he sees the potential growth trajectory for the industry and how ITM sees its role within this space.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Hydrogen, Net Zero and Circularity a Perfect Syzygy!
Jul 2020
Publication
On this week's show we speak with Trevor Best CEO of Syzygy Plasmonics a Houston area startup who is a pioneer in the field of photocatalytic based hydrogen production. The company has recently closed its series A funding round. We discuss with Trevor the potential applications of the Syzygy approach and where they are aiming to engage the market first as well as his view of the evolution of the hydrogen market today. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Catching up on the State of Scale in PEM Electrolysis
Feb 2022
Publication
This episode of EAH is a chance for the team to catch up with one of our early guests on the show Graham Cooley - CEO of ITM Power. For the past twenty years ITM Power PLC has been designing and manufacturing electrolyser systems that generate hydrogen based on proton exchange membrane (PEM) technology. As the first hydrogen related company to be listed on the London Stock Exchange ITM are globally recognised experts in the field of electrolysis. In 2021 the company opened its first Gigafactory in Bessemer Park Sheffield: the world’s largest electrolyser production factory.
The podcast can be found on their website
The podcast can be found on their website
Analysis of Trends and Emerging Technologies in Water Electrolysis Research Based on a Computational Method: A Comparison with Fuel Cell Research
Feb 2018
Publication
Water electrolysis for hydrogen production has received increasing attention especially for accumulating renewable energy. Here we comprehensively reviewed all water electrolysis research areas through computational analysis using a citation network to objectively detect emerging technologies and provide interdisciplinary data for forecasting trends. The results show that all research areas increase their publication counts per year and the following two areas are particularly increasing in terms of number of publications: “microbial electrolysis” and “catalysts in an alkaline water electrolyzer (AWE) and in a polymer electrolyte membrane water electrolyzer (PEME).”. Other research areas such as AWE and PEME systems solid oxide electrolysis and the whole renewable energy system have recently received several review papers although papers that focus on specific technologies and are cited frequently have not been published within the citation network. This indicates that these areas receive attention but there are no novel technologies that are the center of the citation network. Emerging technologies detected within these research areas are presented in this review. Furthermore a comparison with fuel cell research is conducted because water electrolysis is the reverse reaction to fuel cells and similar technologies are employed in both areas. Technologies that are not transferred between fuel cells and water electrolysis are introduced and future water electrolysis trends are discussed.
Dedicated Large-scale Floating Offshore Wind to Hydrogen: Assessing Design Variables in Proposed Typologies
Mar 2022
Publication
To achieve the Net-Zero Emissions goal by 2050 a major upscale in green hydrogen needs to be achieved; this will also facilitate use of renewable electricity as a source of decarbonised fuel in hard-to-abate sectors such as industry and transport. Nearly 80% of the world’s offshore wind resource is in waters deeper than 60 m where bottom-fixed wind turbines are not feasible. This creates a significant opportunity to couple the high capacity factor floating offshore wind and green hydrogen. In this paper we consider dedicated large-scale floating offshore wind farms for hydrogen production with three coupling typologies; (i) centralised onshore electrolysis (ii) decentralised offshore electrolysis and (iii) centralised offshore electrolysis. The typology design is based on variables including for: electrolyser technology; floating wind platform; and energy transmission vector (electrical power or offshore hydrogen pipelines). Offshore hydrogen pipelines are assessed as economical for large and distant farms. The decentralised offshore typology employing a semi-submersible platform could accommodate a proton exchange membrane electrolyser on deck; this would negate the need for an additional separate structure or hydrogen export compression and enhance dynamic operational ability. It is flexible; if one electrolyser (or turbine) fails hydrogen production can easily continue on the other turbines. It also facilities flexibility in further expansion as it is very much a modular system. Alternatively less complexity is associated with the centralised offshore typology which may employ the electrolysis facility on a separate offshore platform and be associated with a farm of spar-buoy platforms in significant water depth locations.
Solar Energy: Applications, Trends Analysis, Bibliometric Analysis and Research Contribution to Sustainable Development Goals (SDGs)
Jan 2023
Publication
Over the past decade energy demand has witnessed a drastic increase mainly due to huge development in the industry sector and growing populations. This has led to the global utilization of renewable energy resources and technologies to meet this high demand as fossil fuels are bound to end and are causing harm to the environment. Solar PV (photovoltaic) systems are a renewable energy technology that allows the utilization of solar energy directly from the sun to meet electricity demands. Solar PV has the potential to create a reliable clean and stable energy systems for the future. This paper discusses the different types and generations of solar PV technologies available as well as several important applications of solar PV systems which are “Large-Scale Solar PV” “Residential Solar PV” “Green Hydrogen” “Water Desalination” and “Transportation”. This paper also provides research on the number of solar papers and their applications that relate to the Sustainable Development Goals (SDGs) in the years between 2011 and 2021. A total of 126513 papers were analyzed. The results show that 72% of these papers are within SDG 7: Affordable and Clean Energy. This shows that there is a lack of research in solar energy regarding the SDGs especially SDG 1: No Poverty SDG 4: Quality Education SDG 5: Gender Equality SDG 9: Industry Innovation and Infrastructure SDG 10: Reduced Inequality and SDG 16: Peace Justice and Strong Institutions. More research is needed in these fields to create a sustainable world with solar PV technologies.
Renewable Power-to-Gas: A Technological and Economic Review
Aug 2015
Publication
The Power-to-Gas (PtG) process chain could play a significant role in the future energy system. Renewable electric energy can be transformed into storable methane via electrolysis and subsequent methanation. This article compares the available electrolysis and methanation technologies with respect to the stringent requirements of the PtG chain such as low CAPEX high efficiency and high flexibility. Three water electrolysis technologies are considered: alkaline electrolysis PEM electrolysis and solid oxide electrolysis. Alkaline electrolysis is currently the cheapest technology; however in the future PEM electrolysis could be better suited for the PtG process chain. Solid oxide electrolysis could also be an option in future especially if heat sources are available. Several different reactor concepts can be used for the methanation reaction. For catalytic methanation typically fixed-bed reactors are used; however novel reactor concepts such as three-phase methanation and micro reactors are currently under development. Another approach is the biochemical conversion. The bioprocess takes place in aqueous solutions and close to ambient temperatures. Finally the whole process chain is discussed. Critical aspects of the PtG process are the availability of CO2 sources the dynamic behaviour of the individual process steps and especially the economics as well as the efficiency.
Design of an Architectural Element Generating Hydrogen Energy by Photosynthesis—Model Case of the Roof and Window
Jun 2022
Publication
As is well known the realization of a zero-waste society is strongly desired in a sustainable society. In particular architectural elements that provide an energy-neutral living environment are attractive. This article presents the novel environmentally friendly architectural elements that generate hydrogen energy by the photosystem II (PSII) solution extracted from waste vegetables. In the present work as an architectural element the window (PSII window panel) and roof (PSII roof panel) were fabricated by injecting a PSII solution into a transparent double-layer panel and the aging properties of the power generation and the appearance of these PSII panels are investigated. It was found that the PSII roof can generate energy for 18 days under the sun shining and can actually drive the electronic device. In addition the PSII window for which light intensity is weaker than that for the PSII roof can maintain power generation for 40 days. These results indicate that the PSII roof and PSII window become the architectural elements generating energy although the lifespan depends on the total light intensity. Furthermore as an additional advantage the roof and window panels composed of the semitransparent PSII panel yield an interior space with the natural color of the leaf which gradually changes over time from green to yellow. Further it was also found that the thermal fluctuation of the PSII window is smaller than that of the typical glass window. These results indicate that the roof and window panels composed of the PSII solution extracted from waste vegetables can be used as the actual architectural elements to produce not only the electrical energy but also the beautiful transparent natural green/yellow spaces.
Pulsed-Supplied Water Electrolysis via Two-Switch Converter for PV Capacity Firming
Mar 2022
Publication
Hydrogen constitutes the only carbon-free fuel that can be used for energy conversion producing water as the only by-product. With water being one of the most abundant and inexhaustible raw materials in the world and the required electricity input being provided by renewable resources the produced hydrogen via water electrolysis constitutes a green pathway towards sustainability. In this work a hybrid PV power-to-hydrogen storage and fuel cell system is proposed to satisfy the domestic load of a residential building. Identifying alkaline as a mandatory electrolysis technology the performance of alkaline electrolysis cells is assessed considering the inclusion of a two-switch buck-boost converter. Following a comprehensive formulation with respect to each distinguished system component the balance condition at DC and AC buses is determined. The proposed configuration is evaluated taking into account PV systems of different ratings namely 3 kW 5 kW and 7 kW. Based on actual data relating to both PV generation and domestic load for the year 2020 the obtained results from the annual simulations are compared with feed-in tariff and net-metering schemes. According to the results PV capacity firming is achieved creating great opportunities for autonomy enhancement not only for electricity but also in other energy sectors.
Optimal Dispatch Model for PV-electrolysis Plants in Self-consumption Regime to Produce Green Hydrogen: A Spanish Case Study
May 2022
Publication
The production of green hydrogen from renewable energy by means of water electrolysis is a promising approach to support energy sector decarbonization. This paper presents a techno-economic model of plants with PV sources connected to electrolysis in self-consumption regime that considers the dynamics of electrolysis systems. The model calculates the optimal hourly dispatch of the electrolysis system including the operational states (production standby and idle) the load factor in production and the energy imports and exports to the electricity grid. Results indicate that the model is a useful decision support tool to operate electrolysis plants connected to PV plants in self-consumption regimes with the target of reducing hydrogen production costs.
Review of Thermochemical Technologies for Water and Energy Integration Systems: Energy Storage and Recovery
Jun 2022
Publication
Thermochemical technologies (TCT) enable the promotion of the sustainability and the operation of energy systems as well as in industrial sites. The thermochemical operations can be applied for energy storage and energy recovery (alternative fuel production from water/wastewater in particular green hydrogen). TCTs are proven to have a higher energy density and long-term storage compared to standard thermal storage technologies (sensible and latent). Nonetheless these require further research on their development for the increasing of the technology readiness level (TRL). Since TCTs operate with the same input/outputs streams as other thermal storages (for instance wastewater and waste heat streams) these may be conceptually analyzed in terms of the integration in Water and Energy Integration System (WEIS). This work is set to review the techno-economic and environmental aspects related to thermochemical energy storage (sorption and reaction-based) and wastewater-to-energy (particular focus on thermochemical water splitting technology) aiming also to assess their potential into WEIS. The exploited technologies are in general proved to be suitable to be installed within the conceptualization of WEIS. In the case of TCES technologies these are proven to be significantly more potential analogues to standard TES technologies on the scope of the conceptualization of WEIS. In the case of energy recovery technologies although a conceptualization of a pathway to produce usable heat with an input of wastewater further study has to be performed to fully understand the use of additional fuel in combustion-based processes.
Gasification of Solid Fuels (Coal, Biomass and MSW): Overview, Challenges and Mitigation Strategies
Jun 2022
Publication
Currently hydrogen energy is the most promising energy vector while gasification is one of the major routes for its production. However gasification suffers from various issues including slower carbon conversion poor syngas quality lower heating value and higher emissions. Multiple factors affect gasification performance such as the selection of gasifiers feedstock’s physicochemical properties and operating conditions. In this review the status of gasification key gasifier technologies and the effect of solid-fuel (i.e. coal biomass and MSW) properties on gasification performance are reviewed critically. Based on the current review the co-gasification of coal biomass and solid waste along with a partial utilisation of CO2 as a reactant are suggested. Furthermore a technological breakthrough in carbon capture and sequestration is needed to make it industrially viable
A Review of Ni Based Powder Catalyst for Urea Oxidation in Assisting Water Splitting Reaction
Jan 2022
Publication
Water splitting has been regarded as a sustainable and environmentally-friendly technique to realize green hydrogen generation while more energy is consumed due to the high overpotentials required for the anode oxygen evolution reaction. Urea electrooxidation an ideal substitute is thus received increasing attention in assisting water-splitting reactions. Note that highly efficient catalysts are still required to drive urea oxidation and the facile generation of high valence state species is significant in the reaction based on the electrochemical-chemical mechanisms. The high cost and rareness make the noble metal catalysts impossible for further consideration in large-scale application. Ni-based catalysts are very promising due to their cheap price facile structure tuning good compatibility and easy active phase formation. In the light of the significant advances made recently herein we reviewed the recent advances of Ni-based powder catalysts for urea oxidation in assisting water-splitting reaction. The fundamental of urea oxidation is firstly presented to clarify the mechanism of urea-assisted water splitting and then the prevailing evaluation indicators are briefly expressed based on the electrochemical measurements. The catalyst design principle including synergistic effect electronic effect defect construction and surface reconstruction as well as the main fabrication approaches are presented and the advances of various Ni-based powder catalysts for urea assisted water splitting are summarized and discussed. The problems and challenges are also concluded for the Ni-based powder catalysts fabrication the performance evaluation and their application. Considering the key influence factors for catalytic process and their application attention should be given to structure-property relationship deciphering novel Ni-based powder catalysts development and their construction in the real device; specifically the effort should be directed to the Ni-based powder catalyst with multi-functions to simultaneously promote the fundamental steps and high anti-corrosion ability by revealing the local structure reconstruction as well as the integration in the practical application. We believe the current summarization will be instructive and helpful for the Ni-based powder catalysts development and understanding their catalytic action for urea-assisted hydrogen generation via water splitting technique.
Efficient Plasma Technology for the Production of Green Hydrogen from Ethanol and Water
Apr 2022
Publication
This study concerns the production of hydrogen from a mixture of ethanol and water. The process was conducted in plasma generated by a spark discharge. The substrates were introduced in the liquid phase into the reactor. The gaseous products formed in the spark reactor were hydrogen carbon monoxide carbon dioxide methane acetylene and ethylene. Coke was also produced. The energy efficiency of hydrogen production was 27 mol(H2 )/kWh and it was 36% of the theoretical energy efficiency. The high value of the energy efficiency of hydrogen production was obtained with relatively high ethanol conversion (63%). In the spark discharge it was possible to conduct the process under conditions in which the ethanol conversion reached 95%. However this entailed higher energy consumption and reduced the energy efficiency of hydrogen production to 8.8 mol(H2 )/kWh. Hydrogen production increased with increasing discharge power and feed stream. However the hydrogen concentration was very high under all tested conditions and ranged from 57.5 to 61.5%. This means that the spark reactor is a device that can feed fuel cells the power load of which can fluctuate.
A Technical, Economic and Environmental Analysis of Combining Geothermal Energy with Carbon Sequestration for Hydrogen Production
Jul 2014
Publication
Among numerous techniques for the hydrogen production without harmful emissions especially avoiding the carbon dioxide emissions hydrogen technologies driven by geothermal energy represent an attractive solution. This paper is interested in the process by which the electricity generated from geothermal power plant that is operated using CO2 as heat transmission fluid is exploited for hydrogen production through water electrolysis. A numerical simulation is used to evaluate the potential for hydrogen production and to estimate the levelized cost of electrolytic hydrogen. We also present brief analysis of environmental issues including the carbon tax. The results show that the process has a good potential for geothermal hydrogen production is capable of producing about 22 kg/h of electrolytic hydrogen for the geothermal source of carbon dioxide mass flow rate of 40 kg/s and a temperature of 296 K. In economic regard the electric energy system costs are the major component of the total hydrogen production cost (more than 90%). The estimated cost of hydrogen is 8.24 $/kg H2. By including the carbon tax the cost of hydrogen production becomes far more competitive.
High-Purity and Clean Syngas and Hydrogen Production From Two-Step CH4 Reforming and H2O Splitting Through Isothermal Ceria Redox Cycle Using Concentrated Sunlight
Jul 2020
Publication
The thermochemical conversion of methane (CH4) and water (H2O) to syngas and hydrogen via chemical looping using concentrated sunlight as a sustainable source of process heat attracts considerable attention. It is likewise a means of storing intermittent solar energy into chemical fuels. In this study solar chemical looping reforming of CH4 and H2O splitting over non-stoichiometric ceria (CeO2/CeO2−δ) redox cycle were experimentally investigated in a volumetric solar reactor prototype. The cycle consists of (i) the endothermic partial oxidation of CH4 and the simultaneous reduction of ceria and (ii) the subsequent exothermic splitting of H2O and the simultaneous oxidation of the reduced ceria under isothermal operation at ~1000°C enabling the elimination of sensible heat losses as compared to non-isothermal thermochemical cycles. Ceria-based reticulated porous ceramics with different sintering temperatures (1000 and 1400°C) were employed as oxygen carriers and tested with different methane flow rates (0.1–0.4 NL/min) and methane concentrations (50 and 100%). The impacts of operating conditions on the foam-averaged oxygen non-stoichiometry (reduction extent δ) syngas yield methane conversion solar-to-fuel energy conversion efficiency as well as the effects of transient solar conditions were demonstrated and emphasized. As a result clean syngas was successfully produced with H2/CO ratios approaching 2 during the first reduction step while high-purity H2 was subsequently generated during the oxidation step. Increasing methane flow rate and CH4 concentration promoted syngas yields up to 8.51 mmol/gCeO2 and δ up to 0.38 at the expense of enhanced methane cracking reaction and reduced CH4 conversion. Solar-to-fuel energy conversion efficiency namely the ratio of the calorific value of produced syngas to the total energy input (solar power and calorific value of converted methane) and CH4 conversion were achieved in the range of 2.9–5.6% and 40.1–68.5% respectively.
The Optimization of Hybrid Power Systems with Renewable Energy and Hydrogen Generation
Jul 2018
Publication
This paper discusses the optimization of hybrid power systems which consist of solar cells wind turbines fuel cells hydrogen electrolysis chemical hydrogen generation and batteries. Because hybrid power systems have multiple energy sources and utilize different types of storage we first developed a general hybrid power model using the Matlab/SimPowerSystemTM and then tuned model parameters based on the experimental results. This model was subsequently applied to predict the responses of four different hybrid power systems for three typical loads without conducting individual experiments. Furthermore cost and reliability indexes were defined to evaluate system performance and to derive optimal system layouts. Finally the impacts of hydrogen costs on system optimization was discussed. In the future the developed method could be applied to design customized hybrid power systems.
Evaluation of a New Combined Energy System Performance to Produce Electricity and Hydrogen with Energy Storage Option
Mar 2021
Publication
According to new findings the use of alternative energy sources such as wind energy is needed to supply the energy demand of future generations. On the other hand combined renewable energy systems can be more efficient than their stand-alone systems. Therefore clean energy-based hybrid energy systems can be a suitable solution for fossil fuels. However for their widespread commercialization more detailed and powerful studies are needed. On the other hand in order to attain sustainable development for the use of renewable energy sources due to their nature energy storage is required. The motivation of this study is introduce and examine a new energy system performance for the production of electricity and hydrogen fuel as well as energy storage. So this paper presents the energy and exergy operation of a hybrid wind turbine water electrolyzer and Pumped-hydro-compressed air system. The electricity produced by the wind turbine is used to produce hydrogen fuel in electrolyzer and the excess energy is stored using the storage system. It was found that the electrolyzer needed 512.6 W of electricity to generate 5 mol/h of hydrogen fuel which was supplied by a 10 kW-wind turbine. In such a context the efficiency of the process was 74.93%. Furthermore on average the isothermal process requires 17.53% less storage capacity than the isentropic process. The effect of key parameters such as rate of hydrogen fuel production operating pressures wind speed and components efficiency on the process operation is also examined.
Hollow Cobalt Sulfide Nanocapsules for Electrocatalytic Selective Transfer Hydrogenation of Cinnamaldehyde with Water
Feb 2021
Publication
Designing nanostructured electrocatalysts for selective transfer hydrogenation of α β-unsaturated aldehydes with water as the hydrogen source is highly desirable. Here a facile self-templating strategy is designed for the synthesis of CoS2 and CoS2-x nanocapsules (NCs) as efficient cathodes for selective transfer hydrogenation of cinnamaldehyde a model α β-unsaturated aldehyde. The hollow porous structures of NCs are rich in active sites and improve mass transfer resulting in high turnover frequency. The specific adsorption of the styryl block on pristine CoS2 NCs is conducive to the selective formation of half-hydrogenated hydrocinnamaldehyde with 91.7% selectivity and the preferential adsorption of the C = O group induced by sulfur vacancies on defective CoS2-x NCs leads to the full-hydrogenated hydrocinnamyl alcohol with 92.1% selectivity. A cross-coupling of carbon and hydrogen radicals may be involved in this electrochemical hydrogenation reaction. Furthermore this selective hydrogenation method is also effective for other α β-unsaturated aldehydes illustrating the universality of the method.
Laser Induced Hydrogen Emission from Ethanol with Dispersed Graphene Particles
Apr 2021
Publication
Efficient hydrogen emission from ethanol with disperse graphene foam particles by using a continuous wave infrared laser diode is reported. The products of ethanol dissociation - hydrogen methane and carbon oxide were measured using mass spectrometry. It was found that the most efficient generation of hydrogen was observed when graphene particles were irradiated by a focused laser beam proceeded at the surface of ethanol solution. The process was assisted by intense white light emission resulting from the laser induced multiphoton ionization of graphene combined with the simultaneous emission of hot electrons. The hot electron emission enables the efficient dissociation of ethanol molecules located close to the solution surface with graphene foam particles.
Life Cycle Assessment of Substitute Natural Gas Production from Biomass and Electrolytic Hydrogen
Feb 2021
Publication
The synthesis of a Substitute Natural Gas (SNG) that is compatible with the gas grid composition requirements by using surplus electricity from renewable energy sources looks a favourable solution to store large quantities of electricity and to decarbonise the gas grid network while maintaining the same infrastructure. The most promising layouts for SNG production and the conditions under which SNG synthesis reduces the environmental impacts if compared to its fossil alternative is still largely untapped. In this work six different layouts for the production of SNG and electricity from biomass and fluctuating electricity are compared from the environmental point of view by means of Life Cycle Assessment (LCA) methodology. Global Warming Potential (GWP) Cumulative Energy Demand (CED) and Acidification Potential (AP) are selected as impact indicators for this analysis. The influence of key LCA methodological aspects on the conclusions is also explored. In particular two different functional units are chosen: 1 kg of SNG produced and 1 MJ of output energy (SNG and electricity). Furthermore different approaches dealing with co-production of electricity are also applied. The results show that the layout based on hydrogasification has the lowest impacts on all the considered cases apart from the GWP and the CED with SNG mass as the functional unit and the avoided burden approach. Finally the selection of the multifunctionality approach is found to have a significant influence on technology ranking.
Recent Advances in Biomass Pretreatment Technologies for Biohydrogen Production
Jan 2022
Publication
Hydrogen is an economical source of clean energy that has been utilized by industry for decades. In recent years demand for hydrogen has risen significantly. Hydrogen sources include water electrolysis hydrocarbon steam reforming and fossil fuels which emit hazardous greenhouse gases and therefore have a negative impact on global warming. The increasing worldwide population has created much pressure on natural fuels with a growing gap between demand for renewable energy and its insufficient supply. As a result the environment has suffered from alarming increases in pollution levels. Biohydrogen is a sustainable energy form and a preferable substitute for fossil fuel. Anaerobic fermentation photo fermentation microbial and enzymatic photolysis or combinations of such techniques are new approaches for producing biohydrogen. For cost-effective biohydrogen production the substrate should be cheap and renewable. Substrates including algal biomass agriculture residue and wastewaters are readily available. Moreover substrates rich in starch and cellulose such as plant stalks or agricultural waste or food industry waste such as cheese whey are reported to support dark- and photo-fermentation. However their direct utilization as a substrate is not recommended due to their complex nature. Therefore they must be pretreated before use to release fermentable sugars. Various pretreatment technologies have been established and are still being developed. This article focuses on pretreatment techniques for biohydrogen production and discusses their efficiency and suitability including hybrid-treatment technology
A Numerical Performance Study of a Fixed-bed Reactor for Methanol Synthesis by CO2 Hydrogenation
Mar 2021
Publication
Synthetic fuels are needed to replace their fossil counterparts for clean transport. Presently their production is still inefficient and costly. To enhance the process of methanol production from CO2 and H2 and reduce its cost a particle-resolved numerical simulation tool is presented. A global surface reaction model based on the Langmuir-Hinshelwood-Hougen-Watson kinetics is utilized. The approach is first validated against standard benchmark problems for non-reacting and reacting cases. Next the method is applied to study the performance of methanol production in a 2D fixed-bed reactor under a range of parameters. It is found that methanol yield enhances with pressure catalyst loading reactant ratio and packing density. The yield diminishes with temperature at adiabatic conditions while it shows non-monotonic change for the studied isothermal cases. Overall the staggered and the random catalyst configurations are found to outperform the in-line system.
Design of Experiment to Predict the Time Between Hydrogen Purges for an Air-breathing PEM Fuel Cell in Dead-end Mode in a Closed Environment
Feb 2021
Publication
Fuel cells are promising technologies for zero-emission energy conversion. They are used in several applications such as power plants cars and even submarines. Hydrogen supply is crucial for such systems and using Proton Exchange Membrane Fuel Cell in dead-end mode is a solution to save hydrogen. Since water and impurities accumulate inside the stack purging is necessary. However the importance of operating parameters is not well known for fuel cells working in closed environments. A Design of Experiment approach studying time between two purges and cell performance was conducted on an air-breathing stack in a closed environment. The most influential parameters on the time between two purges are the relative humidity and the current load. Convection in the closed environment can decrease the stability of the fuel cell. A linear model with interactions between these last three parameters was found to accurately describe the studied responses.
A Thorough Economic Evaluation by Implementing Solar/Wind Energies for Hydrogen Production: A Case Study
Jan 2022
Publication
A technical–economic assessment was carried out in this study to determine the possibilities for wind and solar power generation in Afghanistan’s Helmand province. The results showed that most of the province has a solar irradiance of over 400 W/m2 and also showed that wind and solar power generated in the province can be up to twice as cheap as the official price of renewable power in Afghanistan. The most suitable site for solar and hydrogen production was found to be Laškar Gah where solar and hydrogen can be produced at a cost of 0.066 $/kWh and 2.1496 $/kg-H ¯ 2 respectively. In terms of wind power production and hydrogen production from wind the most suitable site was Sang¯ın where wind power and hydrogen could be produced at costs of 0.057 $/kWh and 1.4527 $/kg-H2 respectively. Despite the high potential of wind and solar energy in the Helmand province the most suitable place in this region to produce hydrogen from wind/solar energy was evaluated from technical economic and environmental perspectives with the Multi-Criteria DecisionMaking (MCDM) method. The Stepwise Weight Assessment Ratio Analysis (SWARA) method was used for weighting criteria and the Weighted Aggregated Sum Product Assessment (WASPAS) method was used to prioritize locations. The results show that Sang¯ın is the most suitable place for the construction of a wind hydrogen power plant and Laškar Gah is the most suitable place for the ¯ construction of a solar hydrogen power plant.
A Comparative Technoeconomic Analysis of Renewable Hydrogen Production Using Solar Energy
May 2016
Publication
A technoeconomic analysis of photoelectrochemical (PEC) and photovoltaic-electrolytic (PV-E) solar-hydrogen production of 10 000 kg H2 day−1 (3.65 kilotons per year) was performed to assess the economics of each technology and to provide a basis for comparison between these technologies as well as within the broader energy landscape. Two PEC systems differentiated primarily by the extent of solar concentration (unconcentrated and 10× concentrated) and two PV-E systems differentiated by the degree of grid connectivity (unconnected and grid supplemented) were analyzed. In each case a base-case system that used established designs and materials was compared to prospective systems that might be envisioned and developed in the future with the goal of achieving substantially lower overall system costs. With identical overall plant efficiencies of 9.8% the unconcentrated PEC and non-grid connected PV-E system base-case capital expenses for the rated capacity of 3.65 kilotons H2 per year were $205 MM ($293 per m2 of solar collection area (mS−2) $14.7 WH2P−1) and $260 MM ($371 mS−2 $18.8 WH2P−1) respectively. The untaxed plant-gate levelized costs for the hydrogen product (LCH) were $11.4 kg−1 and $12.1 kg−1 for the base-case PEC and PV-E systems respectively. The 10× concentrated PEC base-case system capital cost was $160 MM ($428 mS−2 $11.5 WH2P−1) and for an efficiency of 20% the LCH was $9.2 kg−1. Likewise the grid supplemented base-case PV-E system capital cost was $66 MM ($441 mS−2 $11.5 WH2P−1) and with solar-to-hydrogen and grid electrolysis system efficiencies of 9.8% and 61% respectively the LCH was $6.1 kg−1. As a benchmark a proton-exchange membrane (PEM) based grid-connected electrolysis system was analyzed. Assuming a system efficiency of 61% and a grid electricity cost of $0.07 kWh−1 the LCH was $5.5 kg−1. A sensitivity analysis indicated that relative to the base-case increases in the system efficiency could effect the greatest cost reductions for all systems due to the areal dependencies of many of the components. The balance-of-systems (BoS) costs were the largest factor in differentiating the PEC and PV-E systems. No single or combination of technical advancements based on currently demonstrated technology can provide sufficient cost reductions to allow solar hydrogen to directly compete on a levelized cost basis with hydrogen produced from fossil energy. Specifically a cost of CO2 greater than ∼$800 (ton CO2)−1 was estimated to be necessary for base-case PEC hydrogen to reach price parity with hydrogen derived from steam reforming of methane priced at $12 GJ−1 ($1.39 (kg H2)−1). A comparison with low CO2 and CO2-neutral energy sources indicated that base-case PEC hydrogen is not currently cost-competitive with electrolysis using electricity supplied by nuclear power or from fossil-fuels in conjunction with carbon capture and storage. Solar electricity production and storage using either batteries or PEC hydrogen technologies are currently an order of magnitude greater in cost than electricity prices with no clear advantage to either battery or hydrogen storage as of yet. Significant advances in PEC technology performance and system cost reductions are necessary to enable cost-effective PEC-derived solar hydrogen for use in scalable grid-storage applications as well as for use as a chemical feedstock precursor to CO2-neutral high energy-density transportation fuels. Hence such applications are an opportunity for foundational research to contribute to the development of disruptive approaches to solar fuels generation systems that can offer higher performance at much lower cost than is provided by current embodiments of solar fuels generators. Efforts to directly reduce CO2 photoelectrochemically or electrochemically could potentially produce products with higher value than hydrogen but many as yet unmet challenges include catalytic efficiency and selectivity and CO2 mass transport rates and feedstock cost. Major breakthroughs are required to obtain viable economic costs for solar hydrogen production but the barriers to achieve cost-competitiveness with existing large-scale thermochemical processes for CO2 reduction are even greater.
Life-cycle Assessment of Hydrogen Technologies with the Focus on EU Critical Raw Materials and End-of-life Strategies
Aug 2020
Publication
We present the results of a life-cycle assessment (LCA) for the manufacturing and end-of-life (EoL) phases of the following fuel-cell and hydrogen (FCH) technologies: alkaline water electrolyser (AWE) polymer-electrolyte-membrane water electrolyser (PEMWE) high-temperature (HT) and low-temperature (LT) polymer-electrolyte-membrane fuel cells (PEMFCs) together with the balance-of-plant components. New life-cycle inventories (LCIs) i.e. material inputs for the AWE PEMWE and HT PEMFC are developed whereas the existing LCI for the LT PEMFC is adopted from a previous EU-funded project. The LCA models for all four FCH technologies are created by modelling the manufacturing phase followed by defining the EoL strategies and processes used and finally by assessing the effects of the EoL approach using environmental indicators. The effects are analysed with a stepwise approach where the CML2001 assessment method is used to evaluate the environmental impacts. The results show that the environmental impacts of the manufacturing phase can be substantially reduced by using the proposed EoL strategies (i.e. recycled materials being used in the manufacturing phase and replacing some of the virgin materials). To point out the importance of critical materials (in this case the platinum-group metals or PGMs) and their recycling strategies further analyses were made. By comparing the EoL phase with and without the recycling of PGMs an increase in the environmental impacts is observed which is much greater in the case of both fuel-cell systems because they contain a larger quantity of PGMs.
Carbon Capture and Storage (CCS): The Way Forward
Mar 2018
Publication
Mai Bui,
Claire S. Adjiman,
André Bardow,
Edward J. Anthony,
Andy Boston,
Solomon Brown,
Paul Fennell,
Sabine Fuss,
Amparo Galindo,
Leigh A. Hackett,
Jason P. Hallett,
Howard J. Herzog,
George Jackson,
Jasmin Kemper,
Samuel Krevor,
Geoffrey C. Maitland,
Michael Matuszewski,
Ian Metcalfe,
Camille Petit,
Graeme Puxty,
Jeffrey Reimer,
David M. Reiner,
Edward S. Rubin,
Stuart A. Scott,
Nilay Shah,
Berend Smit,
J. P. Martin Trusler,
Paul Webley,
Jennifer Wilcox and
Niall Mac Dowell
Carbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting climate change targets delivering low carbon heat and power decarbonising industry and more recently its ability to facilitate the net removal of CO2 from the atmosphere. However despite this broad consensus and its technical maturity CCS has not yet been deployed on a scale commensurate with the ambitions articulated a decade ago. Thus in this paper we review the current state-of-the-art of CO2 capture transport utilisation and storage from a multi-scale perspective moving from the global to molecular scales. In light of the COP21 commitments to limit warming to less than 2 °C we extend the remit of this study to include the key negative emissions technologies (NETs) of bioenergy with CCS (BECCS) and direct air capture (DAC). Cognisant of the non-technical barriers to deploying CCS we reflect on recent experience from the UK's CCS commercialisation programme and consider the commercial and political barriers to the large-scale deployment of CCS. In all areas we focus on identifying and clearly articulating the key research challenges that could usefully be addressed in the coming decade.
Potential for Hydrogen Production from Sustainable Biomass with Carbon Capture and Storage
Jan 2022
Publication
Low-carbon hydrogen is an essential element in the transition to net-zero emissions by 2050. Hydrogen production from biomass is a promising bio-energy with carbon capture and storage (BECCS) scheme that could produce low-carbon hydrogen and generate the carbon dioxide removal (CDR) envisioned to be required to offset hard-to-abate emissions. Here we design a BECCS supply chain for hydrogen production from biomass with carbon capture and storage and quantify at high spatial resolution the technical potential for hydrogen production and CDR in Europe. We consider sustainable biomass feedstocks that have minimal impacts on food security and biodiversity namely agricultural residues and waste. We find that this BECCS supply chain can produce up to 12.5 Mtons of H2 per year (currently ~10 Mtons of H2 per year are used in Europe) and remove up to 133 Mtons CO2 per year from the atmosphere (or 3% of European total greenhouse gas emissions). We then perform a geospatial analysis to quantify transportation distances between where biomass feedstocks are located and potential hydrogen users and find that 20% of hydrogen potential is located within 25 km from hard-toelectrify industries. We conclude that BECCS supply chains for hydrogen production from biomass represent an overlooked near-term opportunity to generate carbon dioxide removal and low-carbon hydrogen.
Optimal Design and Operation of Integrated Wind-hydrogen-electricity Networks for Decarbonising the Domestic Transport Sector in Great Britain
Nov 2015
Publication
This paper presents the optimal design and operation of integrated wind-hydrogen-electricity networks using the general mixed integer linear programming energy network model STeMES (Samsatli and Samsatli 2015). The network comprises: wind turbines; electrolysers fuel cells compressors and expanders; pressurised vessels and underground storage for hydrogen storage; hydrogen pipelines and electricity overhead/underground transmission lines; and fuelling stations and distribution pipelines.<br/>The spatial distribution and temporal variability of energy demands and wind availability were considered in detail in the model. The suitable sites for wind turbines were identified using GIS by applying a total of 10 technical and environmental constraints (buffer distances from urban areas rivers roads airports woodland and so on) and used to determine the maximum number of new wind turbines that can be installed in each zone.<br/>The objective is the minimisation of the total cost of the network subject to satisfying all of the demands of the domestic transport sector in Great Britain. The model simultaneously determines the optimal number size and location of each technology whether to transmit the energy as electricity or hydrogen the structure of the transmission network the hourly operation of each technology and so on. The cost of distribution was estimated from the number of fuelling stations and length of the distribution pipelines which were determined from the demand density at the 1 km level.<br/>Results indicate that all of Britain's domestic transport demand can be met by on-shore wind through appropriately designed and operated hydrogen-electricity networks. Within the set of technologies considered the optimal solution is: to build a hydrogen pipeline network in the south of England and Wales; to supply the Midlands and Greater London with hydrogen from the pipeline network alone; to use Humbly Grove underground storage for seasonal storage and pressurised vessels at different locations for hourly balancing as well as seasonal storage; for Northern Wales Northern England and Scotland to be self-sufficient generating and storing all of the hydrogen locally. These results may change with the inclusion of more technologies such as electricity storage and electric vehicles.
Graphene Oxide @ Nickel Phosphate Nanocomposites for Photocatalytic Hydrogen Production
Mar 2021
Publication
The graphene oxide @nickel phosphate (GO:NPO) nanocomposites (NCs) are prepared by using a one-pot in-situ solar energy assisted method by varying GO:NPO ratio i.e. 0.00 0.25 0.50 0.75 1.00 1.25 1.50 and 2.00 without adding any surfactant or a structure-directing reagent. As produced GO:NPO nanosheets exhibited an improved photocatalytic activity due to the spatial seperation of charge carriers through interface where photoinduced electrons transferred from NiPO4 to the GO sheets without charge-recombination. Out of the series the system 1.00 GO:NPO NC show the optimum hydrogen production activity (15.37 μmol H2 h−1) towards water splitting under the visible light irradiation. The electronic environment of the nanocomposite GO-NiO6/NiO4-PO4 elucidated in the light of advance experimental analyses and theoretical DFT spin density calculations. Structural advanmcement of composites are well correlated with their hydrogen production activity.
A Novel Self-Assembly Strategy for the Fabrication of Nano-Hybrid Satellite Materials with Plasmonically Enhanced Catalytic Activity
Jun 2021
Publication
The generation of hydrogen from water using light is currently one of the most promising alternative energy sources for humankind but faces significant barriers for large-scale applications due to the low efficiency of existing photo-catalysts. In this work we propose a new route to fabricate nano-hybrid materials able to deliver enhanced photo-catalytic hydrogen evolution combining within the same nanostructure a plasmonic antenna nanoparticle and semiconductor quantum dots (QDs). For each stage of our fabrication process we probed the chemical composition of the materials with nanometric spatial resolution allowing us to demonstrate that the final product is composed of a silver nanoparticle (AgNP) plasmonic core surrounded by satellite Pt decorated CdS QDs (CdS@Pt) separated by a spacer layer of SiO2 with well-controlled thickness. This new type of photoactive nanomaterial is capable of generating hydrogen when irradiated with visible light displaying efficiencies 300% higher than the constituting photo-active components. This work may open new avenues for the development of cleaner and more efficient energy sources based on photo-activated hydrogen generation.
Hydrogen Production During Direct Cellulose Fermentation by Mixed Bacterial Culture: The Relationship Between the Key Process Parameters Using Response Surface Methodology
Jun 2021
Publication
Dark fermentation is a promising method to produce hydrogen from lignocellulosic biomass. This study assessed the influence of temperature phosphate buffer concentration and substrate concentration on direct hydrogen production form cellulose using response surface methodology. Mixed bacterial culture was successfully enriched on cellulose and used as an inoculum for hydrogen production. The model indicated that the highest cumulative hydrogen production (CHP) of 2.14 L H2/Lmedium could be obtained at 13.5 gcellulose/L 79.5 mM buffer and 32.6 °C. However hydrogen yield is then only 0.58 mol H2/molhexose due to low substrate conversion efficiency (SCE). Simultaneous optimization of CHP and SCE with desirability function approach resulted in the H2 yield of 2.71 ± 0.1 mol H2/molhexose and 93.8 ± 1.8% SCE at 3.35 gcellulose/L 69 mM buffer and 32.9 °C. Phosphate concentration above 80 mM decreased H2 production but had positive effect on cellulose consumption. The bacterial community analysis showed that Ruminiclostridium papyrosolvens was responsible for cellulose hydrolysis. Lachnoclostridium sp. was positively correlated with ethanol production at high phosphate buffer concentration while Caproiciproducens sp. with caproate production at low buffer concentration. The obtained results opens the possibility of simultaneous hydrogen and caproate production from cellulosic substrates.
How Do Dissolved Gases Affect the Sonochemical Process of Hydrogen Production: An Overview of Thermodynamic and Mechanistic Effects – On the “Hot Spot Theory”
Dec 2020
Publication
Although most of researchers agree on the elementary reactions behind the sonolytic formation of molecular hydrogen (H2) from water namely the radical attack of H2O and H2O2 and the free radicals recombination several recent papers ignore the intervention of the dissolved gas molecules in the kinetic pathways of free radicals and hence may wrongly assess the effect of dissolved gases on the sonochemical production of hydrogen. One may fairly ask to which extent is it acceptable to ignore the role of the dissolved gas and its eventual decomposition inside the acoustic cavitation bubble? The present opinion paper discusses numerically the ways in which the nature of dissolved gas i.e. N2 O2 Ar and air may influence the kinetics of sonochemical hydrogen formation. The model evaluates the extent of direct physical effects i.e. dynamics of bubble oscillation and collapse events if any against indirect chemical effects i.e. the chemical reactions of free radicals formation and consequently hydrogen emergence it demonstrates the improvement in the sonochemical hydrogen production under argon and sheds light on several misinterpretations reported in earlier works due to wrong assumptions mainly related to initial conditions. The paper also highlights the role of dissolved gases in the nature of created cavitation and hence the eventual bubble population phenomena that may prevent the achievement of the sonochemical activity. This is particularly demonstrated experimentally using a 20 kHz Sinaptec transducer and a Photron SA 5 high speed camera in the case of CO2-saturated water where degassing bubbles are formed instead of transient cavitation.
No more items...