Safety
Hydrogen Non-premixed Combustion in Enclosure with One Vent and Sustained Release: Numerical Experiments
Sep 2013
Publication
Numerical experiments are performed to understand different regimes of hydrogen non-premixed combustion in an enclosure with passive ventilation through one horizontal or vertical vent located at the top of a wall. The Reynolds averaged Navier–Stokes (RANS) computational fluid dynamics (CFD) model with a reduced chemical reaction mechanism is described in detail. The model is based on the renormalization group (RNG) k-ε turbulence model the eddy dissipation concept (EDC) model for simulation of combustion coupled with the 18-step reduced chemical mechanism (8 species) and the in-situ adaptive tabulation (ISAT) algorithm that accelerates the reacting flow calculations by two to three orders of magnitude. The analysis of temperature and species (hydroxyl hydrogen oxygen water) concentrations in time as well as the velocity through the vent shed a light on regimes and dynamics of indoor hydrogen fires. A well-ventilated fire is simulated in the enclosure at a lower release flow rate and complete combustion of hydrogen within the enclosure. Fire becomes under-ventilated at higher release flow rates with two different modes observed. The first mode is the external flame stabilised at the enclosure vent at moderate release rates and the second mode is the self-extinction of combustion inside and outside the enclosure at higher hydrogen release rates. The simulations demonstrated a complex reacting flow dynamics in the enclosure that leads to formation of the external flame or the self-extinction. The air intake into the enclosure at later stages of the process through the whole vent area is a characteristic feature of the self-extinction regime. This air intake is due to faster cooling of hot combustion products by sustained colder hydrogen leak compared to the generation of hot products by the ceasing chemical reactions inside the enclosure and hydrogen supply. In general an increase of hydrogen sustained release flow rate will change fire regime from the well-ventilated combustion within the enclosure through the external flame stabilised at the vent and finally to the self-extinction of combustion throughout the domain.
Nanotechnology Enabled Hydrogen Gas Sensing
Sep 2019
Publication
An important contribution to industry standards and to effective installation of hybrid renewable energy systems is evaluation of hydrogen (H2) monitoring techniques under pilot-scale and/or real-world conditions. We have designed a hybrid system to integrate solar power electrolysis and hydrogen fuel cell components in a DC micro-grid with capacity to evaluate novel nanomaterials for enhanced H2 gas sensing performance. In general enhanced hydrogen sensing performance is evaluated by high sensitivity selectivity and stability as well as low power consumption. Unique properties such as high surface area to volume ratio a large number of surface active sites high specific surface area and reactivity are key attributes of nanomaterials used for gas sensing. These attributes enable sensors to be embedded in Internet-of-Things applications or in mobile systems. With rapid development of hydrogen-based technologies for clean energy applications there remains a requirement for faster accurate and selective H2 sensors with low cost and low power consumption. Operating principles for these sensors include catalytic thermal conductivity electrochemical resistance based optical and acoustic methods. In this paper we review performance of H2 gas sensors based on conductometric devices operating at room temperature up to 200 °C. The focus of this work includes nanostructured metal oxides graphene materials and transition metal dichalcogenides employed as sensing materials.
Ignition of Hydrogen-air Mixtures Under Volumetric Expansion Conditions
Sep 2017
Publication
A better understanding of chemical kinetics under volumetric expansion is important for a number of situations relevant to industrial safety including detonation diffraction and direct initiation reflected shock-ignition at obstacles ignition behind a decaying shock among others. The ignition of stoichiometric hydrogen-air mixtures was studied using 0D numerical simulations with time-dependent specific volume variations. The competition between chemical energy release and expansion-induced cooling was characterized for different cooling rates and mathematical forms describing the shock decay rate. The critical conditions for reaction quenching were systematically determined and the thermo-chemistry dynamics were analyzed near the critical conditions.
Towards Unified Protocol for Par's Performance Rating and Safety Margins Assessment: Par Life-cycle Systemic Model
Sep 2021
Publication
Passive Autocatalytic Recombiners (PAR) is one of the important technical mitigation means for hydrogen combustion in the NPP containments under accident conditions. For the PWR/VVER/CANDU units the PARs execute functions important for safety - reduce the local hydrogen concentration to an acceptable level and provide the homogenization of gas composition and of temperature fields in the containment. Certification and licensing of PAR technology have been accepted for the different NPP types and in the different countries on the case-by-case basement. But a comprehensive and generally accepted terminology and procedures for PAR characterization and its performance and safety rating are still absent. As a next step in PAR's technology improvement and maturity it would be logical a development of their unified technical standardization and certification. Report is aimed to - 2) justify need in standardization of the PARs in the nuclear industry and in the hydrogen energy applications 2) define a minimal set of the notions which can be used for quantitative characterization of the of PARs throughout its life-cycle 3) formulate a systemic (generic state-machine or automata) model of PAR's states under the normal and accident conditions. After verification and validation of proposed PAR systemic model it can be used as one of ints for the development of an international standard for PAR performance and safety.
A CFD Analysis of Liquid Hydrogen Vessel Explosions using the ADREA-HF Code
Sep 2021
Publication
Despite hydrogen is one of the most suitable candidates in replacing fossil fuels its very low densityrepresents a drawback when it is stored. The liquefaction process can increase the hydrogen densityand therefore enhance its storage capacity. The boiling liquid expanding vapour explosion (BLEVE) isa typical accident scenario that must be always considered when liquefied gases are stored. Inparticular BLEVE is a physical explosion with low probabilities and high consequences which mayoccur after the catastrophic rupture of a vessel containing a liquid with a temperature above its boilingpoint at atmospheric pressure. In this paper a parametric CFD analysis of the BLEVE phenomenonwas conducted by means of the CFD code ADREA-HF for liquid hydrogen (LH2) vessels. Firstly theCFD model is validated against a well-documented CO2 BLEVE experiment. Next hydrogen BLEVEcases are examined. The physical parameters were chosen based on the BMW tests carried out in the1990s on LH2 tanks designed for automotive purposes. Different filling degrees initial pressures andtemperatures of the tank content are simulated to comprehend how the blast wave is influenced by theinitial conditions. The aim of this study is twofold: provide new insights and observations on theBLEVE dynamics and demonstrate the CFD tool effectiveness for conducting the consequenceanalysis and thus aiding the risk assessment of liquefied gas vessel explosion. Good agreement wasshown between the simulation outcomes and the experimental results.
Fracture Properties of Welded 304L in Hydrogen Environments
Sep 2021
Publication
Austenitic stainless steels are used for hydrogen containment of high-pressure hydrogen gas due to their ability to retain high fracture properties despite the degradation due to hydrogen. Forging and other strain-hardening processes are desirable for austenitic stainless steels to increase the material strength and thus accommodate higher stresses and reduce material costs. Welding is often necessary for assembling components but it represents an area of concern in pressure containment structures due to the potential for defects more environmentally susceptible microstructure and reduced strength. Electron beam (EB) welding represent an advanced joining process which has advantages over traditional arc welding techniques through reduced input heat and reduced heat-affected zone (HAZ) microstructure and thus present a means to maintain high strength and improve weld performance in hydrogen gas containment. In this study fracture coupons were extracted from EB welds in forged 304L and subjected to thermal gaseous hydrogen precharging at select pressures to introduce different levels of internal hydrogen content. Fracture tests were then performed on hydrogen precharged coupons at temperatures of both 293 K and 223 K. It was observed that fracture resistance (JH) was dependent on internal hydrogen concentration; higher hydrogen concentrations resulted in lower fracture resistance in both the forged 304L base material and the 304L EB welds. This trend was also apparent at both temperatures: 293 K and 223 K. EB weld samples however maintain high fracture resistance comparable to the forged 304L base material. The role of weld microstructure solidification on fracture is discussed.
A Simple and Low-cost Integrative Sensor System for Methane and Hydrogen Measurement
Sep 2020
Publication
Energy production by methanization or gasification of biomass is dependant on the chemical composition of the gas generated. The resistive sensors based on semiconductor metal oxides like the MQ series sensors are inexpensive and frequently used in gas detection. These sensors initially dedicated to detecting gas leaks in safety systems have relatively small measurement ranges (i.e. limited to concentrations below 10000 ppm). It is therefore necessary to find solutions to adapt these categories of sensors for gas measurements in the energy sector where the gas concentration is much more significant. In this article we propose a protocol using an adaptable capsule for MQ-4 and MQ-8 sensors to measure high concentrations of CH4 and H2 respectively. The technique consists of diluting the gas to be studied in a known volume of air. Three methods are proposed and compared regarding the linearity and the repeatability of the measurements. The first method was done in an airtight enclosed chamber the second method consists of directly injecting the gas on the sensor placed in an open environment and the final method was accomplished by direct injection of the gas on the sensor placed in a partially closed capsule. Comparisons show that the first technique provides the best repeatability with a maximum standard deviation of 13.88% for CH4 measurement and 5.1% for H2. However its linearity is weak (i.e. R2 ¼ 0.8637 for CH4 and R2 ¼ 0.5756 for H2). The second technique has better linearity but bad repeatability. The third technique presents the best results with R2 values of 0.9973 for the CH4 measurement and 0.9472 for H2. The use of the partially closed capsule resulted in an acceptable linear response of the sensors by up to 20% concentration of CH4 and until 13.33% concentration of H2 in the studied gas. The use of this simple and low-cost technique facilitates the characterization of combustible gases in isolated areas. It allows local operators of biomass valorization systems to control and improve their installations while avoiding the high costs of conventional measurement devices. This study hence contributes to the development of rural electrification projects in remote areas.
Effects of Hydrogen and Carbon Dioxide on the Laminar Burning Velocities of Methane-air Mixtures
Sep 2021
Publication
The effects of different mole fractions of hydrogen and carbon dioxide on the combustion characteristics of a premixed methane–air mixture are experimentally and numerically investigated. The laminar burning velocity of hydrogen-methane-carbon dioxide-air mixture was measured using the spherically expanding flame method at the initial temperature and pressure of 283 K and 0.1 MPa respectively. Additionally numerical analysis is conducted under steady 1D laminar flow conditions to investigate the adiabatic flame temperature and dominant elementary reactions. The measured velocities correspond with those estimated numerically. The results show that increasing the carbon dioxide mole fraction decreases the laminar burning velocity attributed to the carbon dioxide dilution which decreases the thermal diffusivity and flame temperature. Conversely the velocity increases with the thermal diffusivity as the hydrogen mole fraction increases. Moreover the hydrogen addition leads to chain-branching reactions that produce active H O and OH radicals via the oxidation of hydrocarbons which is the rate-determining reaction.
Experimental Study of the Explosion Severity of Vented Methane/Hydrogen Deflagrations
Sep 2021
Publication
Adding hydrogen to mains natural gas has been identified as one of the main strategies to reduce CO2 emissions in the United Kingdom. This work aims to characterise the explosion severity of 80:20 v./v. methane/hydrogen blends (‘a blend’) and methane vented deflagrations. The explosion severity of homogenous mixtures was measured in a 15 m3 cubic steel chamber in which the relief area was provided by four windows and a door covered with polypropylene sheet. The pressure increase over time was characterised using piezo-resistive pressure transducers and the flame speed was estimated using ionisation probes installed in the walls of the enclosure. The explosion severity of both mixtures was determined for different equivalence ratios from lean to rich mixtures. The pressure over time presented very similar behaviour for both mixtures comprising multiple peaks divided into three main stages: a first stage related to a spherical confined explosion until the opening of the vent a second stage generated by increased combustion during venting and an oscillatory peak generated by acoustic disturbances with the enclosure. A slight increase in the first stage overpressure was observed for the blend in comparison with methane regardless of the equivalence ratio but no general trend in pressure was observed for other stages of the propagation. The effect of the blockage ratio on explosion severity was studied by adding metallic elements representing furniture in a room.
Simulation of a Hydrogen-Air Diffusion Flame under Consideration of Component-Specific Diffusivities
Mar 2022
Publication
This work deals with the numerical investigation of a three-dimensional laminar hydrogenair diffusion flame in which a cylindrical fuel jet is surrounded by in-flowing air. To calculate the distribution of gas molecules the model solves the species conservation equation for N-1 components using infinity fast chemistry and irreversible chemical reaction. The consideration of the component-specific diffusion has a strong influence on the position of the high-temperature zone as well as on the concentration distribution of the individual gas molecules. The calculations of the developed model predict the radial and axial species and temperature distribution in the combustion chamber comparable to those from previous publications. Deviations due to a changed burner geometry and air supply narrow the flame structure by up to 50% and the high-temperature zones merge toward the central axis. Due to the reduced inflow velocity of the hydrogen the high-temperature zones develop closer to the nozzle inlet of the combustion chamber. As the power increases the length of the cold hydrogen jet increases. Furthermore the results show that the axial profiles of temperature and mass fractions scale quantitatively with the power input by the fuel.
Laminar Burning Velocity, Markstein Length and Cellular Instability of Spherically Propagating NH2/H2/Air Premixed Flames at Various Pressures
Sep 2021
Publication
Blending hydrogen into ammonia can I mprove the burning intensity of ammonia and the safety of hydrogen and it is important to understand the flames of NH3/H2/air mixtures. In this work lamiar flame characteristics of 50-50 (vol%) ammonia-hydrogen mixtures in air were studied using the spherical flame propagation method in a constant-volume bom at initital temperature Tu = 298K and different pressures.
Discharge Modeling of Large Scale LH2 Experiments with an Engineering Tool
Sep 2021
Publication
Accurate estimation of mass flow rate and release conditions is important for the design of dispersion and combustion experiments for the subsequent validation of CFD codes/models for consequence assessment analysis within related risk assessment studies and for associated Regulation Codes and Standards development. This work focuses on the modelling of the discharge phase of the recent large scale LH2 release and dispersion experiments performed by HSE within the framework of PRESLHY project. The experimental conditions covered sub-cooled liquid stagnation conditions at two pressures (2 and 6 bara) and 3 release nozzle diameters (1 ½ and ¼ inches). The simulations were performed using a 1d engineering tool which accounts for discharge line effects due to friction extra resistance due to fittings and area change. The engineering tool uses the Possible Impossible Flow (PIF) algorithm for choked flow calculations and the Helmholtz Free Energy (HFE) EoS formulation. Three different phase distribution models were applied. The predictions are compared against measured and derived data from the experiments and recommendations are given both regarding engineering tool applicability and future experimental design.
Hydrogen Jet Fire from a Thermally Activated Pressure Relief Device (TPRD) from Onboard Storage in a Naturally Ventilated Covered Car Park
Aug 2021
Publication
Hydrogen jet fires from a thermally activated pressure relief device (TPRD) on onboard storage are considered for a vehicle in a naturally ventilated covered car park. Computational Fluid Dynamics was used to predict behaviour of ignited releases from a 70 MPa tank into a naturally ventilated covered car park. Releases through TPRD diameters 3.34 2 and 0.5 mm were studied to understand effect on hazard distances from the vehicle. A vertical release and downward releases at 0° 30° and 45° for TPRD diameters 2 and 0.5 mm were considered accounting for tank blowdown. direction of a downward release was found to significantly contribute to decrease of temperature in a hot cloud under the ceiling. Whilst the ceiling is reached by a jet exceeding 300 °C for a release through a TPRD of 2 mm for inclinations of either 0° 30° or 45° an ignited release through a TPRD of 0.5 mm and angle of 45° did not produce a cloud with a temperature above 300 °C at the ceiling during blowdown. The research findings specifically regarding the extent of the cloud of hot gasses have implications for the design of mechanical ventilation systems.
Characterization of the Hazards from Jet Releases of Hydrogen
Sep 2005
Publication
Hydrogen is a convenient energy storage medium; it can be produced from fossil fuels and biomass via chemical conversion processes or from intermittent renewable sources like wind and solar via electrolysis. It is the fuel of choice for the clean fuel-cell vehicles of the future. If the general public are to use hydrogen as a vehicle fuel customers must be able to handle hydrogen with the same degree of confidence and with comparable risk as conventional liquid and gaseous fuels. For the safe design of retail facilities through the development of appropriate codes and standards it is essential to understand all the hazards that could arise following an accidental release of hydrogen. If it is to be stored and used as a high-pressure gas the hazards associated with jet releases from accidental leaks must be considered. This paper describes work by Shell and the Health and Safety Laboratory to characterise the hazards from jet releases of hydrogen. Jet release experiments have been carried out using small leaks (circular holes ranging from 1 mm to 12 mm diameter) at system pressures up to 150 barg. Concentration measurements were made in the unignited free jets to determine the extent of the flammable cloud generated. Ignited jets were observed both in the visible and infrared to determine the flame size and shape. The experimental results for the extent of the flammable cloud and jet flame length were found to be in good agreement with model predictions.
The Challenges of Hydrogen Storage on a Large Scale
Sep 2021
Publication
With the growing success of green hydrogen the general trend is for increased hydrogen production and large quantities of storage. Engie’s projects have grown from a few kilos of hydrogen to the quest for large scale production and associated storage – e.g. several tons or tens of tons. Although a positive sign for Engie’s projects it does inevitably result in challenges in new storage methods and in risks management related to such facilities; particularly with hydrogen facilities being increasingly placed in the vicinity of general public sites. For example a leak on hydrogen storage can generate significant thermal and overpressure effects on surrounding people/facilities in the event of ignition. Firewalls can be installed to protect individuals / infrastructure from thermal effects but the adverse result is that this solution can increase the violence of an explosion in case of delayed ignition or confinement. The manner of emergency intervention on a pool fire of hydrogen is also totally different from intervention on compressed gaseous hydrogen. The first part of this presentation will explain different means to store hydrogen in large quantities. The second part will present for each storage the specific risks generated. The third and final part will explain how these risks can be addressed on a technical point of view by safety devices or by other solutions (separation distance passive/active means …).
Study of Hydrogen Enriched Premixed Flames
Sep 2005
Publication
In the present paper the theoretical study of the un-stretched laminar premixed flames of hydrogen-methane mixtures is carried out by using the detailed reaction mechanism GRI-Mech 3.0 implemented in the CHEMKIN software to find out the effect of hydrogen addition on the hybrid fuel burning velocity. The model results show that the laminar burning velocity of the hydrogen-methane mixtures is not the linear regression of those of the pure fuels since it results substantially less than the proportional averaging of the values for the fuel constituents. Moreover the effect of hydrogen addition in terms of enhancement of the mixture laminar burning velocity with respect to the methane is relevant only at very high values of the hydrogen content in the hybrid mixtures (> 70 % mol.). The performed sensitivity analysis shows that these results can be attributed to kinetics and in particular to the concentration of H radicals: depending on the hydrogen content in the fuels mixture the production of the H radicals can affect the limiting reaction step for methane combustion. Two regimes are identified in the hydrogen-methane combustion. The first regime is controlled by the methane reactivity the hydrogen being not able to significantly affect the laminar burning velocity (< 70 % mol.). In the second regime the hydrogen combustion has a relevant role as its high content in the hybrid fuel leads to a significant H radicals pool thus enhancing the reaction rate of the more slowly combusting methane.
Fire Safety of Hydrogen-Fuelled Vehicles- System-Level Bonfire Test
Sep 2005
Publication
The European Community requires a vehicle-level bonfire test for vehicles using plastic fuel tanks for conventional fuels (ECE R-34 Annex 5). A similar test could be applied to hydrogen-fuelled vehicles. It would test a realistic vehicle with its complete fuel and safety systems. An advantage of such a test is that the same test could be applied independent of the hydrogen storage technology (compressed gas liquid or hydride). There are currently standards for bonfire testing of a bare Compressed Natural Gas (CNG) tank and its Pressure Relief Device (PRD). This standard is FMVSS 304 in the U.S. and ISO 15869-1 in Europe. Japan has a similar standard. It requires that a bare tank and its associated PRD be subjected to a propane flame for 20 minutes. The tank must either survive or safely vent its contents. No modern composite wound tank is expected to survive for 20 minutes – so this is not a tank test but really a PRD test. The test procedure requires the PRD to be shielded from direct impingement of the flames – but the shield is not well specified. If it shields the PRD too well the PRD will not activate and the tank will burst. This paper describes the results of a CNG and a hydrogen tank burst from such tests. The mechanical energy released is enormous. It is simply unacceptable to allow the tank to burst – the PRD and venting system must work. Organizations in the U.S Europe and Japan are in the process of modifying the CNG tank bonfire test for compressed hydrogen storage. A bare tank with a single PRD is not a good simulation of a hydrogen fuel system installed in an actual vehicle. There will usually be multiple tanks plumbed together at either the tank pressure or at the intermediate pressure (after the pressure regulator). There may be more than one PRD. The tank may be shielded (from debris) or insulated to protect it from an underbody pool fire. Also the heat transfer from the simulated pool fire (propane flame) will be very different when mounted in a vehicle versus the bare tank test. A vehicle-level pool fire test will alleviate these problems. It is therefore recommended that the bare tank test be replaced by or augmented with a vehicle-level bonfire test similar to ECE R-34 Annex 5.
The Pressure Peaking Phenomenon for Ignited Under-Expanded Hydrogen Jets in the Storage Enclosure: Experiments and Simulations for Release Rates of up to 11.5 g/s
Dec 2021
Publication
This work focuses on the experimental and numerical investigation of maximum overpressure and pressure dynamics during ignited hydrogen releases in a storage enclosure e.g. in marine vessel or rail carriage with limited vent size area i.e. the pressure peaking phenomenon (PPP) revealed theoretically at Ulster University in 2010. The CFD model previously validated against small scale experiments in a 1 m3 enclosure is employed here to simulate real-scale tests performed by the University of South-Eastern Norway (USN) in a chamber with a volume of 15 m3 . The numerical study compares two approaches on how to model the ignited hydrogen release conditions for under-expanded jets: (1) notional nozzle concept model with inflow boundary condition and (2) volumetric source model in the governing conservation equations. For the test with storage pressure of 11.78 MPa both approaches reproduce the experimental pressure dynamics and the pressure peak with a maximum 3% deviation. However the volumetric source approach reduces significantly the computational time by approximately 3 times (CFL = 0.75). The sensitivity analysis is performed to study the effect of CFL number the size of the volumetric source and number of iterations per time step. An approach based on the use of a larger size volumetric source and uniform coarser grid with a mesh size of a vent of square size is demonstrated to reduce the duration of simulations by a factor of 7.5 compared to the approach with inflow boundary at the notional nozzle exit. The volumetric source model demonstrates good engineering accuracy in predicting experimental pressure peaks with deviation from −14% to +11% for various release and ventilation scenarios as well as different volumetric source sizes. After validation against experiments the CFD model is employed to investigate the effect of cryogenic temperature in the storage on the overpressure dynamics in the enclosure. For a storage pressure equal to 11.78 MPa it is found that a decrease of storage temperature from 277 K to 100 K causes a twice larger pressure peak in the enclosure due to the pressure peaking phenomenon.
A Catalyst Fusible Link for Hydrogen Detection and Activation of Passive Ventilation Systems
Sep 2021
Publication
This paper presents an experimental study of a hydrogen fusible link developed for use in the detection of hydrogen and in the activation of passive ventilation or other safety systems. Fusible links are commonly used to passively close fire dampers in the event of a fire; they generally consist of two pieces of metal joined together by a low temperature alloy to form a single device. When exposed to fire the link will heat up and eventually melt the alloy causing the metal pieces to separate. The same principle has been adopted for the hydrogen fusible link in which hydrogen recombiner catalyst was coated onto small rectangular brass plates. These plates were then soldered together to create prototypes of the hydrogen fusible link. When the resulting link is exposed to a hydrogen-air mixture an exothermic reaction occurs on the catalyst surface that will heat up the link and melt the solder separating the two sections of the hydrogen fusible link. A series of experiments was performed to characterize the thermal response of the hydrogen fusible links to various hydrogen-air mixtures. The effect of both hydrogen concentration and its rate of accumulation on the increase of catalyst temperature was examined. This study demonstrated the applicability of the hydrogen fusible link for managing hydrogen risk.
Numerical Modeling of a Moderate Hydrogen Leakage in a Typical Two-vented Fuel Cell Configuration
Sep 2021
Publication
Numerical results are presented from two direct numerical simulations (DNS) where a moderate hydrogen leakage is modeled in a typical two-vented fuel cell configuration. The study mimics one of the experimental investigations carried out on the 1 m3 enclosure with a leak flow rate of 10.4 Nl.min−1 [1]. The injection dimensionless Richardson number is at the order of unity and thus characterizes a plume flow which becomes turbulent due to gravitational accelerations. Two large exterior regions are added to the computational domain to model correctly the exchange between the in/out flows at both vents and the outer environment. Two meshes are used in this study; a first consisting of 250 million cells while the second has 2 billion cells to ensure the fine DNS resolution at the level of Kolmogorov and Batchelor length scales. The high performance computation (HPC) platform TRUST is employed where the computational domain is distributed up to 5.104 central processing unit (CPU) cores. A detailed description of the flow structure and the hydrogen dispersion is provided where the sharp effect of the cross-flow on the plume is analyzed. Comparisons versus the experimental measurements show a very good agreement where both the bi-layer Linden regime and the maximal concentration in the top homogeneous layer are correctly reproduced by the DNS. This result is extremely important and breaks the limitations shown previously with statistical RANS approaches and LES models. This study can be considered as a good candidate for any further improvements of the theoretical industrial plume models in general and for the estimation of the non-constant entrainment coefficient in particular.
Simulation of Turbulent Combustion in a Small-scale Obstructed Chamber Using Flamefoam
Sep 2021
Publication
Dynamic overpressures achieved during the combustion are related to the acceleration experienced by the propagating flame. In the case of premixed turbulent combustion in an obstructed geometry obstacles in the direction of flow result in a complex flame front interaction with the turbulence generated ahead of it. The interaction of flame front and vortex significantly affect the burning rate the rate of pressure rise and achieved overpressure the geometry of accelerating flame front and resulting structures in the flow field. Laboratory-scale premixed turbulent combustion experiments are convenient for the study of flame acceleration by obstacles in higher resolution. This paper presents numerical simulations of hydrogenair mixture combustion experiments performed in the University of Sydney small-scale combustion chamber. The simulations were performed using flameFoam – an open-source premixed turbulent combustion solver based on OpenFOAM. The experimental and numerical pressure evolutions are compared. Furthermore flow structures which develop due to the interaction between the obstacles and the flow are investigated with different obstacle configurations.
CFD Modeling and Consequence Analysis of an Accidental Hydrogen Release in a Large Scale Facility
Sep 2013
Publication
In this study the consequences of an accidental release of hydrogen within large scale (>15000 m3) facilities were modelled. To model the hydrogen release an LES Navier–Stokes CFD solver called fireFoam was used to calculate the dispersion and mixing of hydrogen within a large scale facility. The performance of the CFD modelling technique was evaluated through a validation study using experimental results from a 1/6 scale hydrogen release from the literature and a grid sensitivity study. Using the model a parametric study was performed varying release rates and enclosure sizes and examining the concentrations that develop. The hydrogen dispersion results were then used to calculate the corresponding pressure loads from hydrogen-air deflagrations in the facility.
Characterisation, Dispersion and Electrostatic Hazards of Liquid Hydrogen for the PRESLHY Project
Sep 2021
Publication
Liquid hydrogen has the potential to form part of the energy strategy in the future due to the need to decarbonise and replace fossil fuels and therefore could see widespread use. Adoption of LH2 means that the associated hazards need to be understood and managed. In recognition of this the European Union Fuel Cells and Hydrogen Joint Undertaking co-funded project PRESLHY undertook prenormative research for the safe use of cryogenic liquid hydrogen in non-industrial settings. Several key scenarios were identified as knowledge gaps and both theoretical and experimental studies were conducted to provide insight into these scenarios. This included experiments studying the evolution/dispersion of a hydrogen cloud following a liquid release and the generation of electrostatic charges in hydrogen plumes and pipework each of which are described and discussed. In addition assessment of the physical phase of the hydrogen flow within the pipework (i.e. liquid gas or two phase) was investigated. The objectives experimental set up and result summary are provided. Data generated from these experiments is to be used to generate and validate theoretical models and ultimately contribute to the development of regulations codes and standards for the storage handling and use of liquid hydrogen.
Towards the Efficient and Time-accurate Simulations of Early Stages of Industrial Explosions
Sep 2021
Publication
Combustion during a nuclear reactor accident can result in pressure loads that are potentially fatal for the structural integrity of the reactor containment or its safety equipment. Enabling efficient modelling of such safety-critical scenarios is the goal of ongoing work. In this paper attention is given to capturing early phases of flame propagation. Transient simulations that are not prohibitively expensive for use at industrial scale are required given that a typical flame propagation study takes a large number of simulation time steps to complete. An improved numerical method used in this work is based on explicit time integration by means of Strong Stability Preserving (SSP) Runge-Kutta schemes. These allow an increased time step size for a given level of accuracy—reducing the overall computational effort. Furthermore a wide range of flow conditions is encountered in analysis of accelerating flames: from incompressible to potentially supersonic. In contrast numerical schemes for spatial discretization would often prove lacking in either stability or accuracy outside the intended flow regime—with density-based schemes being traditionally designed and applied to compressible (Ma>0.3) flows. In the present work a formulation of an all-speed density-based numerical flux scheme is used for simulation of slow flames starting from ignition. Validation was carried out using experiments with spherical lean hydrogen flames at laboratory scale. Turbulence conditions in the experiments correspond to those that can arise in a nuclear reactor containment during an accident. Results show that the new numerical method has the potential to predict flame speed and pressure rise at a reduced computational effort.
Hydrogen Stratification in Enclosures in Dependence of the Gas Release Momentum
Sep 2021
Publication
The hydrogen dispersion phenomenon in an enclosure depends on the ratio of the gas buoyancy induced momentum. Random diffusive motions of individual gas particles become dominative when the release momentum is low. Then a uniform hydrogen concentration appears in the enclosure instead of the gas stratification below the ceiling. The paper justifies this hypothesis by demonstrating fullscale experimental results of hydrogen dispersion within a confined space under six different release variations. During the experiments hydrogen was released into the test room of 60 m3 volume in two methods: through a nozzle and through 21 points evenly distributed on the emission box cover (multipoint release). Each release method was tested with three different hydrogen volume flow rates (3.17·10−3 m3/s 1.63·10−3 m3/s 3.34·10−4 m3/s). The tests confirm the increase of hydrogen convective upward flow and its stratification tendency relative to increased volume flow. A tendency of more uniform hydrogen cloud distribution when Mach Reynolds and Froud number values decreased was demonstrated. Because the hydrogen dispersion phenomena impact fire and explosive hazards the presented experimental results could help fire protection systems be in an enclosure designed allowing their effectiveness optimization.
Preliminary Risk Assessment (PRA) for Tests Planned in a Pilot Salt Cavern Hydrogen Storage in the Frame of the French Project STOPIL-H2
Sep 2021
Publication
The STOPIL-H2 project supported by the French Geodenergies research consortium aims to design a demonstrator for underground hydrogen storage in cavern EZ53 of the Etrez gas storage (France) operated by Storengy. Two types of tests are planned in this cavern: a tightness test with nitrogen and hydrogen then a cycling test during which the upper part of the cavern (approximately 200 m3) will be filled with hydrogen during 6 to 9 months. In this paper the PRA for the cycling test is presented comprising the identification of the major hazards and the proposed prevention and protection measures. The implemented methodology involves the following steps: data mining from the description of the project; analysis of lessons learned from accidents that occurred in underground gas storage and subface facilities; identification of the potential hazards pertaining to the storage process; analysis of external potential aggressors. Resulting as one of the outcomes of the PRA major accidental scenarios are presented and classified according to concerned storage operation phases as well as determined preventive or protective barriers able to prevent their occurrence of mitigate their consequences.
Numerical Study on Protective Measures for a Skid-Mounted Hydrogen Refueling Station
Jan 2023
Publication
Hydrogen refueling stations are one of the key infrastructure components for the hydrogen-fueled economy. Skid-mounted hydrogen refueling stations (SHRSs) can be more easily commercialized due to their smaller footprints and lower costs compared to stationary hydrogen refueling stations. The present work modeled hydrogen explosions in a skid-mounted hydrogen refueling station to predict the overpressures for hydrogen-air mixtures and investigate the protective effects for different explosion vent layouts and protective wall distances. The results show that the explosive vents with the same vent area have similar overpressure reduction effects. The layout of the explosion vent affects the flame shape. Explosion venting can effectively reduce the inside maximum overpressure by 61.8%. The protective walls can reduce the overpressures but the protective walls should not be too close to the SHRS because high overpressures are generated inside the walls due to the confined shock waves. The protective wall with a distance of 6 m can effectively protect the surrounding people and avoid the secondary overpressure damage to the container.
Experimental Parameters of Ignited Congestion Experiments of Liquid Hydrogen in the PRESLHY Project
Sep 2021
Publication
Liquid hydrogen (LH2) has the potential to form part of the UK energy strategy in the future and therefore could see widespread use due to the relatively high energy density when compared to other renewable energy sources. To study the feasibility of this the European Fuel Cells and Hydrogen Joint Undertaking (FCH JU) funded project PRESLHY undertook pre-normative research for the safe use of cryogenic LH2 in non-industrial settings. Several key scenarios were identified as knowledge gaps and both theoretical and experimental studies were conducted to provide insight into these scenarios. This included experiments studying the effect of congestion on an ignited hydrogen plume that develops from a release of LH2; this paper describes the objectives experimental setup and a summary of the results from these activities. Characterisation of the LH2 release hydrogen concentration and temperatures measurements within the resulting gas cloud was undertaken along with pressure measurements both within the cloud and further afield. Various release conditions and congestion levels were studied. Results showed that at high levels of congestion increased overpressures occurred with the higher flow rates studied including one high order event. Data generated from these experiments is being taken forward to generate and validate theoretical models ultimately to contribute to the development of regulations codes and standards (RCS) for LH2."
RANS Simulation of Hydrogen Flame Propagation in an Acceleration Tube: Examination of k-ω SST Model Parameters
Sep 2021
Publication
Due to practical computational resource limits current simulations of premixed turbulent combustion experiments are often performed using simplified turbulence treatment. From all available RANS models k-ε and k-ω SST are the most widely used. k-ω SST model is generally expected to be more accurate in bounded geometries since it corresponds to k-ε model further from the walls but switches to more appropriate k-ω model near the walls. However k-ε is still widely used and in some instances is shown to provide better results. In this paper we perform RANS simulations of premixed hydrogen flame propagation in an acceleration tube using k-ε and k-ω SST models. Accuracy of the models is assessed by comparing obtained results with the experiment. In order to better understand differences between k-ε and k-ω-SST results parameters of main k-ω-SST model features are examined. The distribution of the blending functions values and corresponding zones of are analysed in relation to flame position and resulting observed propagation velocity. We show that in the simulated case biggest difference between k-ω-SST and k-ε model results can be attributed to turbulent eddy viscosity limiting by shear strain rate in the k-ω-SST model.
Combustion Regimes of Hydrogen-air-steam Mixtures
Sep 2021
Publication
In the case of a severe nuclear power plant accident hydrogen gas formation may occur from the core degradation and cooling water evaporation and subsequent oxidation of zircaloy. These phenomena increase the risk of hazardous combustion events in the reactor especially when combined with an ignition source. If not handled carefully these types of accidents can cause severe damage to the reactor building with potential radioactive effects on the environment. Although hydrogen-air combustion has been investigated before hydrogen-air-steam mixtures remain unstudied under reactor-like conditions. Thus this study investigated such mixtures’ combustion regimes. A closed tube of 318 liters (7.65m tall and 0.23m inner diameter) measures the flame speed flame propagation and shock wave behaviors for 11-15 %vol hydrogen mixtures combined with 0 20 or 30 %vol steam and air. Thus both the effect of steam and hydrogen content was investigated and compared. The experimental setup combined photomultiplier tubes pressure sensors and shock detectors to give a full view of the different combustion regimes. A number of obstacles changed the in-chamber turbulence during flame propagation to provide further reactor-like environments. This changed turbulence affected the combustion regimes and enhanced the flame speed for some cases. The results showed varying combustion behaviors depending on the water vapor concentration where a higher concentration meant a lower flame speed reduced pressure load and sometimes combustion extinction. At 0 %vol steam dilution the flame speed remained supersonic for all H2 concentrations while at 30 %vol steam dilution the flame speed remained subsonic for all H2 concentrations. Thus with high levels of steam dilution the risk for shock waves leading to potential reactor building destruction decreases."
Numerical Investigation of Thermal Hazards from Under-expanded Hydrogen Jet Fires using a New Scheme for the Angular Discretization of the Radiative Intensity
Sep 2021
Publication
In the context of a numerical investigation of thermal hazards from two under-expanded hydrogen jet fires results from a newly-developed thermal radiation module of the ADREA-HF computational fluid dynamics (CFD) code were validated against two physical experiments. The first experiment was a vertical under-expanded hydrogen jet fire at 170 bar with the objective of the numerical investigation being to capture the spatial distribution of the radial radiative heat flux at a given time instant. In the second case a horizontal under-expanded hydrogen jet fire at 340 bar was considered. Here the objective was to capture the temporal evolution of the radial radiative heat flux at selected fixed points in space. The numerical study employs the eddy dissipation model for combustion and the finite volume method (FVM) for the calculation of the radiative intensity. The FVM was implemented using a novel angular discretization scheme. By dividing the unit sphere into an arbitrary number of exactly equal angular control volumes this new scheme allows for more flexibility and efficiency. A demonstration of numerical convergence as a function the number of both spatial and angular control volumes was performed.
Numerical Simulation of Hydrogen Leakage from Fuel Cell Vehicle in an Outdoor Parking Garage
Aug 2021
Publication
It is significant to assess the hydrogen safety of fuel cell vehicles (FCVs) in parking garages with a rapidly increased number of FCVs. In the present work a Flame Acceleration Simulator (FLACS) a computational fluid dynamics (CFD) module using finite element calculation was utilized to predict the dispersion process of flammable hydrogen clouds which was performed by hydrogen leakage from a fuel cell vehicle in an outdoor parking garage. The effect of leakage diameter (2 mm 3 mm and 4 mm) and parking configurations (vertical and parallel parking) on the formation of flammable clouds with a range of 4–75% by volume was considered. The emission was assumed to be directed downwards from a Thermally Activated Pressure Relief Device (TPRD) of a 70 MPa storage tank. The results show that the 0.7 m parking space stipulated by the current regulations is less than the safety space of fuel cell vehicles. Compared with a vertical parking configuration it is safer to park FCVs in parallel. It was also shown that release through a large TPRD orifice should be avoided as the proportion of the larger hydrogen concentration in the whole flammable domain is prone to more accidental severe consequences such as overpressure.
Numerical Evaluation of Terrain Landscape Influence on Hydrogen Explosion Consequences
Sep 2021
Publication
The aim of this study is to assess numerically the influence of terrain landscape on the distribution of probable harmful consequences to personnel of hydrogen fueling station caused by an accidentally released and exploded hydrogen. In order to extract damaging factors of the hydrogen explosion wave (maximum overpressure and impulse of pressure phase) a three-dimensional mathematical model of gas mixture dynamics with chemical interaction is used. It allows controlling current pressure in every local point of actual space taking into account complex terrain. This information is used locally in every computational cell to evaluate the conditional probability of such consequences on human beings as ear-drum rupture and lethal ones on the basis of probit analysis. In order to use this technique automatically during the computational process the tabular dependence ""probit-functionimpact probability"" is replaced by a piecewise cubic spline. To evaluate the influence of the landscape profile on the non-stationary three-dimensional overpressure distribution above the earth surface near an epicenter of accidental hydrogen explosion a series of computational experiments with different variants of the terrain is carried out. Each variant differs in the level of mutual arrangement of the explosion epicenter and the places of possible location of personnel. Two control points with different distances from the explosion epicenter are considered. Diagrams of lethal and ear-drum rupture conditional probabilities are build to compare different variants of landscape profile. It is found that the increase or decrease in the level of the location of the control points relative to the level of the epicenter of the explosion significantly changes the scale of the consequences in the actual zone around the working places and should be taken into account by the risk managing experts at the stage of deciding on the level of safety at hydrogen fueling stations.
Safety of Hydrogen Storage and Transportation: An Overview on Mechanisms, Techniques, and Challenges
Apr 2022
Publication
The extensive usage of fossil fuels has caused significant environmental pollution climate change and energy crises. The significant advantages of hydrogen such as cleanliness high efficiency and a wide range of sources make it quite promising. Hydrogen is prone to material damage which may lead to leakage. High-pressure leaking hydrogen is highly susceptible to spontaneous combustion due to its combustion characteristics which may cause jet fire or explosion accidents resulting in serious casualties and property damage. This paper presents a detailed review of the research progress on hydrogen leak diffusion characteristics leak spontaneous combustion mechanisms and material hydrogen damage mechanisms from the perspectives of theoretical analysis experiments and numerical simulations. This review points out that although a large number of research results have been obtained on the safety characteristics of hydrogen there are still some deficiencies and limitations. Further research topics are clarified such as further optimizing the kinetic mechanism of the high-pressure hydrogen leakage reaction and turbulence model exploring the expansion and dilution law of hydrogen clouds after liquid hydrogen flooding further studying the spontaneous combustion mechanism of leaked hydrogen and the interaction between mechanisms and investigating the synergistic damage effect of hydrogen and other components on materials. The leakage spontaneous combustion process in open space the development process of the bidirectional effect of hydrogen jet fuel and crack growth under the impact of high-pressure hydrogen jet fuel on the material may need to be explored next.
The EOS Project- A SOFC Pilot Plant in Italy Safety Aspects
Sep 2005
Publication
This paper deals with the main safety aspects of the EOS project. The partners of the project – Politecnico di Torino Gas Turbine Technologies (GTT Siemens group) Hysylab (Hydrogen System Laboratory) of Environment Park and Regione Piemonte – aim to create the main node of a regional fuel cell generator network. As a first step the Pennsylvania-based Stationary Fuel Cells division of Siemens Westinghouse Power Corporation (SWPC) supplied GTT with a CHP 100 kWe SOFC (Solide Oxide Fuel Cell) field unit fuelled by natural gas with internal reforming. The fuel cell is connected to the electricity national grid and provides part of the industrial district energy requirement. The thermal energy from the fuel cells is used for heating and air-conditioning of GTT offices bringing the total first Law efficiency of the plant to 70-80%. In the second phase of the EOS project (2007/2008) the maximum power produced by the SOFC systems installed in the GTT EOS test room will be increased to a total of about 225 kWe by means of an additional SOFC generator rated 125 kWe and up to 115 kWth. The paper provides information about the safety analysis which was performed during the main steps of the design of the system i.e. the HAZOP during the SOFC design by SWPC and the safety evaluations during the test hall design by GTT and Politecnico di Torino.
IGEM/SR/23 Review of Thermal Radiation and Noise for Hydrogen Venting
Nov 2021
Publication
IGEM/SR/23 (“Venting of natural gas”) provides recommendations for the conceptual design operation and safety aspects of permanent temporary and emergency venting of natural gas. The document was originally developed many years ago and the current edition dates to 1995. The document is due to be reviewed and updated for application to natural gas but the aim of this study is not to review the applicability of the document for natural gas but to assess the possible impact of 100% hydrogen on specific aspects of the existing guidance.<br/>A key element of the guidance concerns the safe dispersion distances for natural gas as vents are intended to provide a means of safely dispersing gas in the atmosphere without ignition. Guidance on safe dispersion distances for venting are provided in Section 6.6 accompanied by graphs showing the relationship between the mass flow rate through the vent and the safe (horizontal) dispersion distance. Details of the model used to predict the dispersion distances are given in Appendix 1. However for dispersion the guidance in IGEM/SR/23 has been superseded by similar guidance on hazard distances for unignited releases in IGEM/SR/25 (“Hazardous area classification of natural gas installations”) [2]. A comprehensive review of the applicability of IGEM/SR/25 to hydrogen is already underway for the LTS Futures project and is not duplicated here.<br/>However IGEM/SR/23 contains guidance on other important aspects relevant to the safe design and operation of vents which are not addressed elsewhere in the IGEM suite of standards; in particular guidance on hazard ranges for thermal radiation (in the event of an unplanned ignition of the venting gas) and noise.<br/>The main aim of this report is to assess the potential impact of replacing natural gas with 100% hydrogen on the guidance in IGEM/SR/23 concerned with thermal hazards with a secondary objective of assessing the available information to comment on the possible influence of hydrogen on noise.
Challenges in Hydrogen RCS’ Stakeholder Engagement in South Africa
Sep 2019
Publication
There is a great deal of knowledge and experience on the safe handling of hydrogen and the safe operation and management of hydrogen systems in South Africa. This knowledge and experience mostly sits within large gas supply companies and other large producers and consumers of hydrogen. However there appears to be less experience leading to a level of discomfort within regulatory bodies such as provincial and municipal fire departments and the national standards association. This compounded by a national policy of disallowing gas cylinders indoors has resulted in delays and indeed stalling in the process of obtaining permission to operate laboratories such as those of the national hydrogen programme HySA. In an effort to break this impasse two workshops were organised by HySA. The first was held at the CSIR’s facilities in Pretoria in October 2016. The second was held at the campus of the University of the Western Cape in Cape Town in May 2018. Four international experts and local experts in hydrogen regulations codes standards and safety addressed the 50-strong South African audiences via 5-way videoconferencing. This proved to be a very powerful tool to educate the audience and in particular the Tshwane (Pretoria) and Western Cape Fire Departments on the real issues risks and safety of hydrogen. The paper describes the South African Hydrogen RCS landscape the organisation and running of the workshops and the outputs achieved.
Studies on the Impact of Hydrogen on the Results of THT Measurement Devices
Dec 2021
Publication
An essential prerequisite for safe transport and use of natural gas is their appropriate odorization. This enables the detection of uncontrolled gas leaks. Proper and systematic odorization inspection ensures both safe use of gas and continuity of the process itself. In practice it is conducted through among others measuring odorant concentrations in gas. Control devices for rapid gas odorization measurements that are currently used on a large scale in the gas industry are equipped with electrochemical detectors selective for sulfur compounds like tetrahydrothiophene (THT). Because the selectivity of electrochemical detector response to one compound (e.g. THT) the available declarations of manufacturers show that detector sensitivity (indirectly also the quality of the measurement result) is influenced by the presence of increased e.g. sulfur or hydrogen compound content in the gas. Because of the lack of sufficient source literature data in this field it was necessary to experimentally verify this impact. The results of studies on experimental verification of suspected influence of increased amounts of hydrogen in gas on the response of electrochemical detector was carried out at the Oil and Gas Institute—National Research Institute (INiG—PIB). They are presented in this article. The data gathered in the course of researching the dependence between THT concentration measurement result quality and hydrogen content in gas composition enabled a preliminary assessment of the threat to the safety of end users of gaseous fuels caused by the introduction of this gas into the distribution network. Noticing the scope of necessary changes in the area of odorization is necessary to guarantee this safety.
An Investigation into the Change Leakage when Switching from Natural Gas to Hydrogen in the UK Gas Distribution Network
Sep 2021
Publication
The H21 National Innovation Competition project is examining the feasibility of repurposing the existing GB natural gas distribution network for transporting 100% hydrogen. It aims to undertake an experimental testing programme that will provide the necessary data to quantify the comparative risk between a 100% hydrogen network and the natural gas network. The first phase of the project focuses on leakage testing of a strategic set of assets that have been removed from service which provide a representative sample of assets across the network. This paper presents the work undertaken for Phase 1A (background testing) where HSE and industry partners have tested a range of natural gas pipework assets of varying size material age and pressure-rating in a new bespoke open-air testing facility at the HSE Science and Research Centre Buxton. The assets have been pressurised with hydrogen and then methane and the leakage rate from the assets measured in both cases. The main finding of this work is that the assets tested which leak hydrogen also leak methane. None of the assets were found to leak hydrogen but not methane. In addition repair techniques that were effective at stopping methane leaks were also effective at stopping hydrogen leaks. The data from the experiments have been interpreted to obtain a range of leakage ratios between the two gases for releases under different conditions. This has been compared to the predicted ratio of hydrogen to methane volumetric leak rates for laminar (1.2:1) and turbulent (2.9:1) releases and good agreement was observed.
Vented Hydrogen-air Explosion in a Small Obstructed Rectangular Container- effect of the Blockage Ratio
Sep 2019
Publication
The explosion venting is an effective way to reduce hydrogen-air explosion hazards but the explosion venting has been hardly touched in an obstructed container. Current experiments focused on the effects of different blockage ratios on the explosion venting in a small obstructed rectangular container. Experimental results show that three overpressure peaks are formed in the case with the obstacle while only two can be observed in the case of no obstacle. The obstacle blockage ratio has a significant influence on the peak overpressure induced by the obstacle-acoustic interactions but it has an ignorable effect on the peak overpressure caused by the rupture of the vent film. The obstacle-induced overpressure peak first increases and then decreases with the increase of the blockage ratio. In addition all overpressure peaks inside the container decreases with the increase of the vent area and its appearance time is relatively earlier for larger vent area.
Safety Analysis and Risk Control of Shore-Based Bunkering Operations for Hydrogen Powered Ships
Sep 2021
Publication
In order to ensure the safety of shore-based hydrogen bunkering operations this paper takes a 2000-ton bulk hydrogen powered ship as an example. Firstly the HAZID method is used to identify the hazards of hydrogen bunkering then the probability of each scenario is analyzed and then the consequences of scenarios with high risk based on FLACS software is simulated. Finally the personal risk of bunkering operation is evaluated and the bunkering restriction area is defined. The results show that the personal risk of shore-based bunkering operation of hydrogen powered ship is acceptable but the following risk control measures should be taken: (1) The bunkering restriction area shall be delineated and only the necessary operators are allowed to enter the area and control the any form of potential ignition source; (2) The hose is the high risk hazards during bunkering. The design form of bunkering arm and bunkering hose is considered to shorten the length of the hose as far as possible; (3) A safe distance between shore-based hydrogenation station and the building outside the station should be guaranteed. The results have a guiding role in effectively reducing the risk of hydrogen bunkering operation.
A Model for Hydrogen Detonation Diffraction or Transmission to a Non-confined Layer
Sep 2021
Publication
One strategy for arresting propagating detonation waves in pipes is by imposing a sudden area enlargement which provides a rapid lateral divergence of the gases in the reaction zone and attenuates the leading shock. For sufficiently small tube diameter the detonation decays to a deflagration and the shock decays to negligible strengths. This is known as the critical tube diameter problem. In the present study we provide a closed form model to predict the detonation quenching for 2D channels. This problem also applies to the transmission of a detonation wave from a confined layer to a weakly-confined layer. Whitham’s geometric shock dynamics coupled with a shock evolution law based on shocks sustained by a constant source obtained by the shock change equations of Radulescu is shown to capture the lateral shock dynamics response to the failure wave originating at the expansion corner. A criterion for successful detonation transmission to open space is that the lateral strain rate provided by the failure wave not exceed the critical strain rate of steady curved detonations. Using the critical lateral strain rate obtained by He and Clavin a closed form solution is obtained for the critical channel opening permitting detonation transmission. The predicted critical channel width is found in excellent agreement with our recent experiments and simulations of diffracting H2/O2/Ar detonations. Model comparison with available data for H2/air detonation diffraction into open space at ambient conditions or for transmission into a weakly confined layer by air is also found in good agreement within a factor never exceeding 2 for the critical opening or layer dimension.
Statistics, Lessons Learnt and Recommendations from the Analysis of the Hydrogen Incidents and Accidents Database (HIAD 2.0)
Sep 2021
Publication
The Hydrogen Incidents and Accidents Database (HIAD) is an international open communication platform collecting systematic data on hydrogen-related undesired incidents which was initially developed in the frame of HySafe an EC co-funded Network of Excellence in the 6th Frame Work Programme by the Joint Research Centre of the European Commission (EC-JRC). It was updated by JRC as HIAD 2.01 in 2016 with the support of the Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU). Since the launch of the European Hydrogen Safety Panel2 (EHSP) initiative in 2017 by FCH 2 JU the EHSP has worked closely with JRC to upload additional/new incidents to HIAD 2.0 and analyze them to gather statistics lessons learnt and recommendations through Task Force 3. The first report to summarise the findings of the analysis was published by FCH 2 JU in September 2019. Since the publication of the first report the EHSP and JRC have continuously worked together to enlarge HIAD 2.0 by adding newly occurred incidents as well as quality historic incidents which were not previously uploaded to HIAD 2.0. This has facilitated the number of validated incidents in HIAD 2.0 to increase from 272 in 2018 to 593 in March 2021. This number is also dynamic and continues to increase as new incidents are being continuously added by both EHSP and JRC; and validated by JRC. The overall quality of the published incidents has also been improved whenever possible. For example additional information has been added to some existing incidents. Since mid-2020 EHSP Task Force TF3 has further analysed the 485 events which were in the database as of July 2020. For completeness of the statistics these include the events considered in our first report3 as well as the newly added/validated events since then. In this process the EHSP has also re-visited the lessons learnt in the first report to harmonise the approaches of analysis and improve the overall analysis. The analysis has comprehensively covered statistics lessons learnt and recommendations. The increased number of incidents has also made it viable to extract statistics from the available incidents at the time of the analysis including previously available incidents. It should be noted that some incidents reported is of low quality therefore it was not included in the statistical analysis.
Numerical Simulations of Atmospheric Dispersion of Large-scale Liquid Hydrogen Releases
Sep 2021
Publication
Numerical simulations have been conducted for LH2 massive releases and the subsequent atmospheric dispersion using an in-house modified version of the open source computational fluid dynamics (CFD) code OpenFOAM. A conjugate heat transfer model has been added for heat transfer between the released LH2 and the ground. Appropriate interface boundary conditions are applied to ensure the continuities of temperature and heat fluxes. The significant temperature difference between the cryogenic hydrogen and the ground means that the released LH2 will instantly enter in a boiling state resulting in a hydrogen- air gaseous cloud which will initially behave like a dense gas. Numerical predictions have been conducted for the subsequent atmospheric dispersion of the vaporized LH2 for a series of release scenarios - with and without retention pits - to limit the horizontal spread of the LH2 on the ground. The considered cases included the instantaneous release of 1 10 and 50 tons of LH2 under neutral (D) and stable (F) weather conditions. More specifically 3F and 5D conditions were simulated with the former representing stable weather conditions under wind speed of 3 m/s at 10 m above the ground and the later corresponding to neutral weather conditions under 5 m/s wind speed (10 m above the ground). Specific numerical tests have also been conducted for selected scenarios under different ambient temperatures from 233 up to 313 K. According to the current study although the retention pit can extend the dispersion time it can significantly reduce the extent of hazards due to much smaller cloud size within both the flammability and explosion limits. While the former has negative impact on safety the later is beneficial. The use of retention pit should hence be considered with caution in practical applications.
Numerical Simulation of Hydrogen Leakage and Diffusion Process of Fuel Cell Vehicle
Oct 2021
Publication
Regarding the problem of hydrogen diffusion of the fuel cell vehicle (HFCV) when its hydrogen supply system leaks this research uses the FLUENT software to simulate numerical values in the process of hydrogen leakage diffusion in both open space and closed space. This paper analyzed the distribution range and concentration distribution characteristics of hydrogen in these two different spaces. Besides this paper also took a survey about the effects of leakage rate wind speed wind direction in open space and the role the air vents play on hydrogen safety in closed space which provides a reference for the hydrogen safety of HFCV. In conclusion the experiment result showed that: In open space hydrogen leakage rate has a great influence on its diffusion. When the leakage rate doubles the hydrogen leakage range will expand about 1.5 times simultaneously. The hydrogen diffusion range is the smallest when the wind blows at 90 degrees which is more conducive to hydrogen diffusion. However when the wind direction is against the direction of the leakage of hydrogen the range of hydrogen distribution is maximal. Under this condition the risk of hydrogen leakage is highest. In an enclosed space when the vent is set closest to the leakage position the volume fraction of hydrogen at each time is smaller than that at other positions so it is more beneficial to safety.
A Flammability Limit Model for Hydrogen-air-diluent Mixtures Based on Heat Transfer Characteristics in Flame Propagation
May 2019
Publication
Predicting lower flammability limits (LFL) of hydrogen has become an ever-important task for safety of nuclear industry. While numerous experimental studies have been conducted LFL results applicable for the harsh environment are still lack of information. Our aim is to develop a calculated non-adiabatic flame temperature (CNAFT) model to better predict LFL of hydrogen mixtures in nuclear power plant. The developed model is unique for incorporating radiative heat loss during flame propagation using the CNAFT coefficient derived through previous studies of flame propagation. Our new model is more consistent with the experimental results for various mixtures compared to the previous model which relied on calculated adiabatic flame temperature (CAFT) to predict the LFL without any consideration of heat loss. Limitation of the previous model could be explained clearly based on the CNAFT coefficient magnitude. The prediction accuracy for hydrogen mixtures at elevated initial temperatures and high helium content was improved substantially. The model reliability was confirmed for H2-air mixtures up to 300 C and H2-air-He mixtures up to 50 vol % helium concentration. Therefore the CNAFT model developed based on radiation heat loss is expected as the practical method for predicting LFL in hydrogen risk analysis.
A Chicken and Egg Situation: Enhancing Emergency Service Workers' Knowledge of Hydrogen
Sep 2021
Publication
This paper reports on the results of interviews conducted with 21 representatives from emergency services organisations within Australia and New Zealand. With a relative emergent industry such as future fuels a chicken and egg situation does emerge with regards to how much training needs to be in place in advance of large-scale industry development or not. These respondents were employed in a variety of roles being directly involved in research and training of emerging technologies frontline operational managers and other senior roles across the emergency services sector. Participants' responses to a series of questions were able to provide insights into the state of knowledge and training requirements within their organisations in relation to hydrogen and other future fuels. The findings suggest that formal and informal processes currently exist to support the knowledge development and transferal around the adoption of hydrogen and other future fuels. From the interviews it became clear that there are a number of processes that have emerged from the experiences gained through the implementation of rooftop solar PV and battery storage that provide some background context for advancing future fuels information across the sector. Because safety is a critical component for securing a social licence to operate engagement and knowledge sharing with any representatives from across this sector will only help to build confidence in the industry. Similarly because interviewees were very keen to access information they expressed a clear willingness to learn more through more formalised relationships rather than an ad hoc information seeking that has been employed to date. The presentation will identify key recommendations and also highlight the importance of QR Codes in the emergency responder landscape. Implications for industry and policy makers are discussed.
Safety Planning and Management in EU Hydrogen and Fuel Cells Projects - Guidance Document
Sep 2021
Publication
The document provides information on safety planning implementation and reporting for projects involving hydrogen and/or fuel cell technologies. It does not intend to replace or contradict existing regulations which prevail under all circumstances. Neither is it meant to conflict with relevant international or national standards or to replace existing company safety policies codes and procedures. Instead this guidance document aims to assist projects and project partners in identifying hazards and associated risks in prevention and/or mitigation of them through a proper safety plan in implementing the safety plan and reporting safety related events. This shall help in safely delivering the project and ultimately producing inherently safer systems processes and infrastructure.
Performance of Hydrogen Storage Tanks of Type IV in a Fire: Effect of the State of Charge
Sep 2021
Publication
The use of hydrogen storage tanks at 100% of nominal working pressure (NWP) is expected only after refuelling. Driving between refuellings is characterised by the state of charge SoC <100%. There is experimental evidence that Type IV tanks tested in a fire at initial pressures below 1/3 NWP leaked without rupture. This paper aims at understanding this phenomenon. The numerical research has demonstrated that the heat transfer from fire through the composite overwrap at storage pressures below NWP/3 is sufficient to melt the polymer liner. This melting initiates hydrogen microleaks through the composite before it loses the load-bearing ability. The fire-resistance rating (FRR) is defined as the time to rupture in a fire of a tank without or with blocked thermally activated pressure relief device. The dependence of a FRR on the SoC is demonstrated for the tanks with defined material properties and volumes in the range of 36–244 L. A composite wall thickness variation is shown to cause a safety issue by reducing the tank’s FRR and is suggested to be addressed by tank manufacturers and OEMs. The effect of a tank’s burst pressure ratio on the FRR is investigated. Thermal parameters of the composite wall i.e. decomposition heat and temperatures are shown in simulations of a tank failure in a fire to play an important role in its FRR.
Prediction of Hydrogen Concentration in Containment During Severe Accidents Using Fuzzy Neural Network
Jan 2015
Publication
Recently severe accidents in nuclear power plants (NPPs) have become a global concern. The aim of this paper is to predict the hydrogen buildup within containment resulting from severe accidents. The prediction was based on NPPs of an optimized power reactor 1000. The increase in the hydrogen concentration in severe accidents is one of the major factors that threaten the integrity of the containment. A method using a fuzzy neural network (FNN) was applied to predict the hydrogen concentration in the containment. The FNN model was developed and verified based on simulation data acquired by simulating MAAP4 code for optimized power reactor 1000. The FNN model is expected to assist operators to prevent a hydrogen explosion in severe accident situations and manage the accident properly because they are able to predict the changes in the trend of hydrogen concentration at the beginning of real accidents by using the developed FNN model.
No more items...