Safety
Evaluation of Optical and Spectroscopic Experiments of Hydrogen Jet Fires
Sep 2009
Publication
This paper reports results of evaluating joint experiments under the work programme of Hysafe occurring at HSL who provided the test facilities and basic measurements to generate jet fires whereas Fraunhofer ICT applied their equipment to visualise the jet fires by fast video techniques IR-cameras and fast scanning spectroscopy in the NIR/IR spectral region. Another paper describes the experimental set up and main findings of flame structures and propagation resolved in time. The spatial distribution of species and temperate as well as their time history and fluctuations give a basis of the evaluation of effects caused by such jet fires. Fraunhofer ICT applied their comprehensive evaluation codes to model the radiation emission from 3-atomic species in the flame especially H2O in the Infrared spectral range. The temperatures of the hydrogen flame were about 2000 K as found by least squares fit of the measured molecular bands by the codes. In comparison with video and thermo camera frames these might enable to estimate on a qualitative level species distribution and air entrainment and temperatures to identify hot and reactive zones. The risk analysis could use this information to estimate heat transfer and the areas of risk to direct inflammation from the jet fires by semi-empirical approaches.
The Effect of Vacancy Concentration on Hydrogen Diffusion in Alpha-Fe by Molecular Dynamic
Sep 2017
Publication
Diffusion coefficient is in significant dependence on vacancy concentration due to that migration of vacancy is the dominant mechanism of atom transport or diffusion in processes such as void formation dislocation movement and solid phase transformation. This study aims to investigate the effect of vacancy concentration on hydrogen diffusion in alpha-Fe by molecular dynamics simulations especially at low temperatures and with loading. Comparisons of the diffusion coefficients between alpha-Fe with a perfect structure and different-concentration vacancies as well as comparisons between experimental and theoretical results had been made to characterize and summarize the effect of vacancy on hydrogen diffusion coefficient.
Composite Gas Cylinders Probabilistic Analysis of Minimum Burst and Load Cycle Requirements
Oct 2015
Publication
Gas cylinders made of composite materials receive growing popularity in light-weight applications. Current standards are mostly based on safety determination relying on minimum amounts of endured load cycles and a minimum burst pressure of a small number of specimens. This paper investigates the possibilities of a probabilistic strength assessment for safety improvements as well as cost and weight savings. The probabilistic assessment is based on destructive testing of small sized samples. The influence of sample size on uncertainty of the assessment is analysed. Furthermore methods for the assessment of in-service ageing (degradation) are discussed and displayed in performance charts.
Effects of Radiation on the Flame Front of Hydrogen-air Explosions
Oct 2015
Publication
The flame velocities of unconfined gas explosions depend on the cloud size and the distance from the initiating source. The mechanisms for this effect are not fully understood; a possible explanation is turbulence generated by the propagating flame front. The molecular bands in the flame front are exposed to continuously increasing radiation intensity of water bands in the interior of the reaction product ball. A first approach to verifying this assumption is described in this paper. The flame propagation was observed by high speed video techniques including time resolved spectroscopy in the UV-Vis-NIR spectral range with a time resolution up to 3000 spectra/s. Ignition flame head velocity flame contours reacting species and temperatures were evaluated. The evaluation used video brightness subtraction and 1-dimensional image contraction to obtain traces of the movements perpendicular to the direction of propagation. Flame front velocities are found to be between 16m/s and 25 m/s. Analysis focused in particular on the flame front which is not smooth. Salients emerge on the surface to result in the well-known cellular structures. The radiation of various bands from the fire ball on the reacting species is estimated to have an influence on the flame velocity depending on the distance from initiation. Evaluation of OH-band and water band spectra might indicate might indicate higher temperatures of the flame front induced by radiation of the fireball. But it is difficult to verify the effect relative to competing flame acceleration mechanisms.
HYRAM: A Methodology and Toolkit for Quantitative Risk Assessment of Hydrogen Systems
Oct 2015
Publication
HyRAM is a methodology and accompanying software toolkit which is being developed to provide a platform for integration of state-of-the-art validated science and engineering models and data relevant to hydrogen safety. As such the HyRAM software toolkit establishes a standard methodology for conducting quantitative risk assessment (QRA) and consequence analysis relevant to assessing the safety of hydrogen fueling and storage infrastructure. The HyRAM toolkit integrates fast-running deterministic and probabilistic models for quantifying risk of accident scenarios for predicting physical effects and for characterizing the impact of hydrogen hazards (thermal effects from jet fires thermal and pressure effects from deflagrations and detonations). HyRAM incorporates generic probabilities for equipment failures for nine types of hydrogen system components generic probabilities for hydrogen ignition and probabilistic models for the impact of heat flux and pressure on humans and structures. These are combined with fast-running computationally and experimentally validated models of hydrogen release and flame behaviour. HyRAM can be extended in scope via user contributed models and data. The QRA approach in HyRAM can be used for multiple types of analyses including codes and standards development code compliance safety basis development and facility safety planning. This manuscript discusses the current status and vision for HyRAM.
Flammability Profiles Associated with High-pressure Hydrogen Jets Released in Close Proximity to Surfaces
Oct 2015
Publication
This paper describes experimental and numerical modelling results from an investigation into the flammability profiles associated with high pressure hydrogen jets released in close proximity to surfaces. This work was performed under a Transnational Access Agreement activity funded by the European Research Infrastructure project H2FC.<br/>The experimental programme involved ignited and unignited releases of hydrogen at pressures of 150 and 425 barg through nozzles of 1.06 and 0.64 mm respectively. The proximity of the release to a ceiling or the ground was varied and the results compared with an equivalent free-jet test. During the unignited experiments concentration profiles were measured using hydrogen sensors. During the ignited releases thermal radiation was measured using radiometers and an infra-red camera. The results show that the flammable volume and flame length increase when the release is in close proximity to a surface. The increases are quantified and the safety implications discussed.<br/>Selected experiments were modelled using the CFD model FLACS for validation purposes and a comparison of the results is also included in this paper. Similarly to experiments the CFD results show an increase in flammable volume when the release is close to a surface. The unstable atmospheric conditions during the experiments are shown to have a significant impact on the results.
Overview of the DOE Hydrogen Safety, Codes and Standards Program part 4- Hydrogen Sensors
Oct 2015
Publication
Hydrogen sensors are recognized as a critical element in the safety design for any hydrogen system. In this role sensors can perform several important functions including indication of unintended hydrogen releases activation of mitigation strategies to preclude the development of dangerous situations activation of alarm systems and communication to first responders and to initiate system shutdown. The functionality of hydrogen sensors in this capacity is decoupled from the system being monitored thereby providing an independent safety component that is not affected by the system itself. The importance of hydrogen sensors has been recognized by DOE and by the Fuel Cell Technologies Office’s Safety and Codes Standards (SCS) program in particular which has for several years supported hydrogen safety sensor research and development. The SCS hydrogen sensor programs are currently led by the National Renewable Energy Laboratory Los Alamos National Laboratory and Lawrence Livermore National Laboratory. The current SCS sensor program encompasses the full range of issues related to safety sensors including development of advance sensor platforms with exemplary performance development of sensor-related code and standards outreach to stakeholders on the role sensors play in facilitating deployment technology evaluation and support on the proper selection and use of sensors.
The Effect of Polyurethane Sponge Blockage Ratio on Premixed Hydrogen-air Flame Propagation in a Horizontal Tube
Oct 2015
Publication
The effects of sponge blockage ratio on flame structure evolution and flame acceleration were experimentally investigated in an obstructed cross-section tube filled with stoichiometric hydrogen-air mixture. Experimental results show that the mechanisms responsible for flame acceleration can be in terms of the positive feedback of the unburned gas field generated ahead of the flame the area change of the gap between the sponge and the tube and the interaction between the flame and the shear layer appearing at the sponge left top corner. Especially the last one dominates the flame acceleration and causes its speed to be sonic. Then both the second and third contribute to the violent flame acceleration. In addition the unburned gas pockets can be found in both upstream and downstream regions of the sponge. With increasing blockage ratio the unburned gas pockets disappear easier and the flame acceleration is more pronounced. Moreover the sponge tilts more evidently and resultantly the maximum tilt angle increases.
Simulation Analysis on the Risk of Hydrogen Releases and Combustion in Subsea Tunnels
Oct 2015
Publication
Hydrogen is considered to be a very promising potential energy carrier due to its excellent characteristics such as abundant resources high fuel value clean and renewable. Its safety features greatly influence the potential use. Several safety problems need to be analyzed before using in transportation industry. With the development of the tunnel transportation technology the safe use of hydrogen in tunnels will receive a lot of research attentions. In this article the risk associated with hydrogen release from onboard high-pressure vessels and the induced combustion in tunnels was analyzed using the Partially Averaged Navier–Stokes (PANS) turbulence model. The influences of the tunnel ventilation facilities on the hydrogen flow characteristics and the flammable hydrogen cloud sizes were studied. The tunnel layouts were designed according to the subsea tunnel. And a range of longitudinal ventilation conditions had been considered to investigate the hydrogen releases and the sizes of the flammable hydrogen cloud. Then the hydrogen combustion simulation was carried out after the fixed leaking time. The overpressures induced after the ignition of leaking hydrogen were studied. The influences of ventilation and ignition delay time on the overpressure were also investigated. The main aim was to research the phenomena of hydrogen releases and combustion risk inside subsea tunnels and to lay the foundation of risk assessment methodology developed for hydrogen energy applications on transportation.
The Correlation Method to Analyze the Gas Mixing Process On The Basis Of BOS Method
Sep 2011
Publication
Structures formed during gas mixing following an injection of a gas into atmosphere are analyzed using optic methods based on the detection of density non-uniformities. Methods for determination of fractal parameters for a random distribution of these non-uniformities are described and information revealed on the gas mixing structure is analyzed. The BOS (background oriented schlieren) technique is utilized to obtain the optical image of the forming structures which afterward is processed using the correlation procedure allowing to extract the quantitative information on the mixing. Additionally a possibility to link the characteristics of the injected gas source and the system fractal parameters was demonstrated. The method can be used in the development of the non-contact methods for the evaluation of the gaseous system parameters based on the optical diagnostics and potentially for the obtaining more detailed information of the gaseous turbulence.
Validated Equivalent Source Model for an Under-expanded Hydrogen Jet
Oct 2015
Publication
As hydrogen fuel cell vehicles become more widely adopted by consumers the demand for refuelling stations increases. Most vehicles require high-pressure (either 350 or 700 bar) hydrogen and therefore the refuelling infrastructure must support these pressures. Fast running reduced order physical models of releases from high-pressure sources are needed so that quantitative risk assessment can guide the safety certification of these stations. A release from a high pressure source is choked at the release point forming the complex shock structures of an under-expanded jet before achieving a characteristic Gaussian pro le for velocity density mass fraction etc. downstream. Rather than using significant computational resources to resolve the shock structure an equivalent source model can be used to quickly and accurately describe the ow in terms of velocity diameter and thermodynamic state after the shock structure. In this work we present correlations for the equivalent boundary conditions of a subsonic jet as a high-pressure jet downstream of the shock structure. Schlieren images of under-expanded jets are used to show that the geometrical structure of under-expanded jets scale with the square root of the static to ambient pressure ratio. Correlations for an equivalent source model are given and these parameters are also found to scale with square root of the pressure ratio. We present our model as well as planar laser Rayleigh scattering validation data for static pressures up to 60 bar.
Autoignition of Hydrogen/Ammonia Blends at Elevated Pressures and Temperatures
Sep 2019
Publication
Hydrogen stored or transported as ammonia has been proposed as a sustainable carbon-free alternative for fossil-fuels in high-temperature industrial processes including power generation. Although ammonia itself is toxic and exhibits both a low flame speed and calorific value it rapidly decomposes to hydrogen in high temperature environments suggesting the potential use in applications which incorporate fuel preheating. In this work the rate of ammonia-to-hydrogen decomposition is initially simulated at elevated temperatures to indicate the proportion of fuel conversion in conditions similar to gas pipelines gas-turbines or furnaces with exhaust-gas recirculation. Following this different proportions of hydrogen and ammonia are numerically simulated in independent zero-dimensional plug-flow-reactors at pressures ranging from atmospheric to 50 MPa and pre-heating temperatures from 600 K to 1600 K. Deflagration of very-lean-to-fuel-rich mixtures was investigated employing air as the oxidant stream. Analyses of these reactors provide estimates of autoignition thresholds of the hydrogen/ammonia blends which are relevant for the safe implementation and operation of hydrogen/ammonia blends or pure ammonia as a fuel source. Further operational considerations are subsequently identified for using ammonia or hydrogen/ammonia blends as a hydrogen fuel carrier by quantifying residual concentrations of hydrogen and ammonia fuel products as well as other toxic emissions within the hot exhaust products.
Comparative Study of Regulations, Codes and Standards and Practices on Hydrogen Fuelling Stations
Oct 2015
Publication
This work deals with a comparative study of regulations codes and standards for hydrogen fuelling station dedicated for light duty land vehicles in the following countries: United States (California) United Kingdom Italy Germany Canada Sweden Norway Denmark and Spain.<br/>The following technical components of a hydrogen fuelling station are included in the scope of the study: the hydrogen storage systems (cryogenic or compressed gases) and buffer storage the compressor stations the high pressure buffer storage the cooling systems for hydrogen the dispensing equipments and the dispensing area. The hydride storage the pipelines on site production and the hydrogen vehicle have been excluded.<br/>The analysis performed in September 2014 in a report from INERIS DRA-14-141532-06227C BENCHMARK STATIONS-SERVICE HYDROGENE is based on documents collected by bibliographic review and information obtained through a questionnaire sent to authorities and IA HySafe members in the above mentioned countries.<br/>This paper gives a synthesis of the regulations and on permitting process in the different studied countries (including the new European Directive on the deployment of alternative fuels infrastructure in Europe) it develops the required safety barriers in the different parts of a fuelling station and specially for the dispensing area gives an overview of the different approaches for safety distances and processes to obtain licences to operate.
Overview of the DOE Hydrogen Safety, Codes and Standards Program Part 1- Regulations, Codes and Standards (RCS) for Hydrogen Technologies - An Historical Overview
Oct 2015
Publication
RCS for hydrogen technologies were first developed approximately sixty years ago when hydrogen was being sold as an industrial commodity. The advent of new hydrogen technologies such as Fuel Cell Electric Vehicles (FCEVs) created a need for new RCS. These RCS have been developed with extensive support from the US DOE. These new hydrogen technologies are approaching commercial deployment and this process will produce information on RCS field performance that will create more robust RCS.
Engineering Safety in Hydrogen-Energy Applications
Oct 2015
Publication
Since a few years hydrogen appears as a practical energy vector and some hydrogen applications are already on the market. However these applications are still considered dangerous hazardous events like explosion could occur and some accidents like the Hindenburg disaster are still in the mind. Objectively hydrogen ignites easily and explodes violently. Safety engineering has to be particularly strong and demonstrative; a method of precise identification of accidental scenarios (“probabilities”; “severity”) is developed in this article. This method derived from ARAMIS method permits to identify and to estimate the most relevant safety barriers and therefore helps future users choose appropriate safety strategies.
CFD Investigation of Filling and Emptying of Hydrogen Tanks
Oct 2015
Publication
During the filling of hydrogen tanks high temperatures can be generated inside the vessel because of the gas compression while during the emptying low temperatures can be reached because of the gas expansion. The design temperature range goes from −40 °C to 85 °C. Temperatures outside that range could affect the mechanical properties of the tank materials. CFD analyses of the filling and emptying processes have been performed in the HyTransfer project. To assess the accuracy of the CFD model the simulation results have been compared with new experimental data for different filling and emptying strategies. The comparison between experiments and simulations is shown for the temperatures of the gas inside the tank for the temperatures at the interface between the liner and the composite material and for the temperatures on the external surface of the vessel.
Hazard Distance Nomograms for a Blast Wave from a Compressed Hydrogen Tank Rupture in a Fire
Sep 2017
Publication
Nomograms for assessment of hazard distances from a blast wave generated by a catastrophic rupture of stand-alone (stationary) and onboard compressed hydrogen cylinder in a fire are presented. The nomograms are easy to use hydrogen safety engineering tools. They were built using the validated and recently published analytical model. Two types of nomograms were developed – one for use by first responders and another for hydrogen safety engineers. The paper underlines the importance of an international effort to unify harm and damage criteria across different countries as the discrepancies identified by the authors gave the expected results of different hazard distances for different criteria.
Comparisons of Hazard Distances and Accident Durations Between Hydrogen Vehicles and CNG Vehicles
Sep 2017
Publication
For the emerging hydrogen-powered vehicles the safety concern is one of the most important barriers for their further development and commercialization. The safety of commercial natural gas vehicles has been well accepted and the total number of natural gas vehicles operating worldwide was approximately 23 million by November 2016. Hydrogen vehicles would be more acceptable for the general public if their safety is comparable to that of commercialized CNG vehicles. A comparison study is conducted to reveal the differences of hazard distances and accident durations between hydrogen vehicles and CNG vehicles during a representative accident in an open environment. The tank blowdown time for hydrogen and CNG are calculated separately to compare the accident durations. CFD simulations for real world situations are performed to study the hazard distances from impinging jet fires under vehicle. Results show that the release duration for CNG vehicle is over two times longer than that for hydrogen vehicle indicating that CNG vehicle jet fire accident is more timeconsuming and firefighters have to wait a longer time before they can safely approach the vehicle. For both hydrogen vehicle and CNG vehicle the longest hazard distance near the ground occur about 1 to 4 seconds after the initiation of the thermally-activated pressure relief devices. Afterwards the flames will shrink and the hazard distances will decrease. For firefighters with bunker gear they must stand 6 m and 14 m away from the hydrogen vehicle and CNG vehicle respectively. For general public a perimeter of 12 m and 29 m should be set around the accident scene for hydrogen vehicle and CNG vehicle respectively.
Characterising the Performance of Hydrogen Sensitive Coatings for Nuclear Safety Applications
Sep 2017
Publication
The detection of hydrogen gas is essential in ensuring the safety of nuclear plants. However events at Fukushima Daiichi NPP highlighted the vulnerability of conventional detection systems to extreme events where power may be lost. Herein chemochromic hydrogen sensors have been fabricated using transition metal oxide thin films sensitised with a palladium catalyst to provide passive hydrogen detection systems that would be resilient to any plant power failures. To assess their viability for nuclear safety applications these sensors have been gamma-irradiated to four total doses (0 5 20 50 kGy) using a Co-60 gamma radioisotope. Optical properties of both un-irradiated and irradiated samples were investigated to compare the effect of increased radiation dose on the sensors resultant colour change. The results suggest that gamma irradiation at the levels examined (>5 kGy) has a significant effect on the initial colour of the thin films and has a negative effect on the hydrogen sensing abilities.
Risk Analysis of Complex Hydrogen Infrastructures
Oct 2015
Publication
Building a network of hydrogen refuelling stations is essential to develop the hydrogen economy within transport. Additional hydrogen is regarded a likely key component to store and convert back excess electrical power to secure future energy supply and to improve the quality of biomass-based fuels. Therefore future hydrogen supply and distribution chains will have to address several objectives. Such a complexity is a challenge for risk assessment and risk management of these chains because of the increasing interactions. Improved methods are needed to assess the supply chain as a whole. The method of “Functional modelling” is discussed in this paper. It will be shown how it could be a basis for other decision support methods for comprehensive risk and sustainability assessments.
No more items...